
1

Orthogonal Decision Trees

Hillol Kargupta
���

, Byung-Hoon Park
�
, Haimonti Dutta

�
�
Department of Computer Science and Electrical Engineering,

University of Maryland Baltimore County,

1000 Hilltop Circle,

Baltimore, MD 21250

Email:
�
hillol,hdutta1 � @csee.umbc.edu

�
Computer Science and Mathematics Division,

Oak Ridge National Laboratory,

PO BOX 2008 MS6164,

Oak Ridge, TN 37831-6164.

Email:parkbh@ornl.gov
�
The author is also affiliated to Agnik, LLC., Columbia, MD.

A 4-page version of this paper was published in the Proceedings of the 2004 IEEE International Conference on Data Mining.

DRAFT

Abstract

This paper introduces orthogonal decision trees that offer an effective way to construct a redundancy-

free, accurate, and meaningful representation of large decision-tree-ensembles often created by popular

techniques such as Bagging, Boosting, Random Forests and many distributed and data stream mining

algorithms. Orthogonal decision trees are functionally orthogonal to each other and they correspond to

the principal components of the underlying function space. This paper offers a technique to construct

such trees based on Fourier transformation of decision trees and eigen-analysis of the ensemble in the

Fourier representation. It offers experimental results to document the performance of orthogonal trees

on grounds of accuracy and model complexity.

Index Terms

Orthogonal Decision Trees, Redundancy Free Trees, Principle Component Analysis, Fourier Trans-

form.

I. INTRODUCTION

Decision tree [1] ensembles are frequently used in data mining and machine learning applica-

tions. Boosting [2], [3], Bagging[4], Stacking [5], and Random Forests [6] are some of the well-

known ensemble-learning techniques. Many of these techniques often produce large ensembles

that combine the outputs of a large number of trees for producing the overall output. Ensemble-

based classification and outlier detection techniques are also frequently used in mining continuous

data streams [7], [8]. Large ensembles pose several problems to a data miner. They are difficult

to understand and the overall functional structure of the ensemble is not very “actionable” since

it is difficult to manually combine the physical meaning of different trees in order to produce a

simplified set of rules that can be used in practice. Moreover, in many time-critical applications

such as monitoring data streams in resource-constrained environments [9], maintaining a large

ensemble and using it for continuous monitoring are computationally challenging. So it will

be useful if we can develop a technique to construct a redundancy-free meaningful compact

representation of large ensembles. This paper offers a technique to do that and possibly more.

This paper presents a technique to construct redundancy-free decision-tree-ensembles by con-

structing orthogonal decision trees. The technique first constructs an algebraic representation

of trees using multi-variate discrete Fourier bases. The new representation is then used for

eigen-analysis of the covariance matrix generated by the decision trees in Fourier representation.

The proposed approach then converts the corresponding principal components to decision trees.

These trees are defined in the original attributes-space and they are functionally orthogonal to

each other. These orthogonal trees are in turn used for accurate (in many cases with improved

accuracy) and redundancy-free (in the sense of orthogonal basis set) compact representation of

large ensembles.

Section II presents the motivation of this work. Section III presents a brief overview of the

Fourier spectrum of decision trees. Section IV describes the algorithms for computing the Fourier

transform of a decision tree. Section V offers the algorithm for computing the tree from its Fourier

spectrum. Section VI discusses orthogonal decision trees. Section VII presents experimental

results using many well-known data sets. Finally, Section VIII concludes this paper.

II. MOTIVATION

This paper extends our earlier work [10], [9], [11] on Fourier spectrum of decision trees.

The main motivation behind this approach is to create an algebraic framework for meta-level

analysis of models, produced by many ensemble learning, data stream mining, distributed data

mining, and other related techniques. Most of the existing techniques treat the discrete model

structures such as decision trees in an ensemble primarily as a black box. Only the output of the

models are considered and combined in order to produce the overall output. Fourier bases offer

a compact representation of a discrete structure that allows algebraic manipulation of decision

trees. For example, we can literally add two different trees, produce weighted average of the

trees themselves or perform eigen analysis of an ensemble of trees. Fourier representation of

decision trees may offer something that is philosophically similar to what spectral representation

of graphs [12] offers—an algebraic representation that allows deep analysis of discrete structures.

Fourier representation allows us to bring in the rich volume of well-understood techniques

from Linear Algebra and Linear Systems Theory. This opens up many exciting possibilities for

future research, such as quantifying the stability of an ensemble classifier, mining and monitoring

mission-critical data streams using properties of the eigenvalues of the ensemble. This paper takes

some steps toward achieving these goals.

The main contributions of this paper are listed below:

1) It offers several new analytical results regarding the properties of the Fourier spectra of

decision trees.

2) It presents a detailed discussion on the Tree Construction from Fourier Spectrum (TCFS)

algorithm for computing a decision tree from the Fourier coefficients. This includes dis-

cussion and experimental evaluation of the TCFS algorithm. New experimental results

compare the performance of the trees constructed using the TCFS technique with that of

the trees constructed using standard techniques such as C4.5.

3) It discusses Orthogonal Decision Trees (ODTs) in details and offers extensive experimental

results documenting the performance of ODTs on benchmarked data sets.

The following section reviews the Fourier representation of decision trees.

III. DECISION TREES AND THE FOURIER REPRESENTATION

This section reviews the Fourier representation of decision tree ensembles, introduced else-

where [13], [14]. It also presents some new analytical results.

A. Decision Trees as Numeric Functions

The approach developed in this paper makes use of linear algebraic representation of the trees.

In order to do that we first need to convert the tree into a numeric tree just in case the attributes

are symbolic. A decision tree defined over a domain of categorical attributes can be treated as a

numeric function. First note that a decision tree is a function that maps its domain members to a

range of class labels. Sometimes, it is a symbolic function where attributes take symbolic (non-

numeric) values. However, a symbolic function can be easily converted to a numeric function by

simply replacing the symbols with numeric values in a consistent manner. Since the proposed

approach of constructing orthogonal trees uses this representation as an intermediate stage and

eventually the physical tree is converted back to the exact scheme for replacing the symbols (if

any) does not matter as long as it is consistent.

Once the tree is converted to a discrete numeric function, we can also apply any appropriate

analytical transformation as necessary. Fourier transformation is one such interesting possibility.

Fourier representation of a function is a linear combination of the Fourier basis functions. The

weights, called Fourier coefficients, completely define the representation. Each coefficient is

associated with a Fourier basis function that depends on a certain subset of features defining the

domain. This section reviews the Fourier representation of decision tree ensembles, introduced

elsewhere [9].

B. A Brief Review of Multivariate Fourier Basis

Fourier basis set is comprised of orthogonal functions that can be used to represent any

discrete function. In other words, it is a functionally complete representation. Consider the set

of all � -dimensional feature vectors where the � -th feature can take ��� different discrete values.

The Fourier basis set that spans this space is comprised of ����	��
 ��� basis functions. Each Fourier

basis function is defined as,

 ���������� �� ����	��� ��� �
�� ����� �"!$#&%(')+*$, *�-.*

where / and � are vectors of length � ; 0 � and 1 � are 2 -th attribute-value in x and j, respectively;

0 �43 1 �6587:9�3 � 3<;=;=; ���.> and � represents the feature-cardinality vector, ��
 3<;=;=; � � ;

 �� ���?� is called

the j-th basis function. The vector / is called a partition, and the order of a partition / is the

number of non-zero feature values it contains. A Fourier basis function depends on some 0@� only

when the corresponding 1=�$A� 9 . If a partition / has exactly B number of non-zeros values, then

we say the partition is of order B since the corresponding Fourier basis function depends only

on those B number of variables that take non-zero values in the partition / .
A function CEDGFH�JI K , that maps an � -dimensional discrete domain to a real-valued range,

can be represented using the Fourier basis functions: C ���?���ML �"N �
 �� �O��� . where N � is the Fourier

Coefficient (FC) corresponding to the partition / and

 ��P����� is the complex conjugate of

 �� ����� ;
N � �QLSR
 �������� C ����� . The Fourier coefficient N � can be viewed as the relative contribution of

the partition / to the function value of C ���?� . Therefore, the absolute value of N � can be used as

the “significance” of the corresponding partition / . If the magnitude of some N � is very small

compared to other coefficients, we may consider the / -th partition to be insignificant and neglect

its contribution. The order of a Fourier coefficient is nothing but the order of the corresponding

partition. We shall often use terms like high order or low order coefficients to refer to a set of

Fourier coefficients whose orders are relatively large or small respectively. Energy of a spectrum

is defined by the summation L ��N4T� . Let us also define the inner product between two spectra UWVX�.Y
and U V T Y where U VZ�	Y �\[N VZ�	YO]^� N VZ�	Y&] T 3<;=;=; N V_�	Y&]a` bc` d	e is the column matrix of all Fourier coefficients

in an arbitrary but fixed order. Superscript � denotes the transpose operation and ����� denotes the

total number of coefficients in the spectrum. The inner product, � U V �.Y 3 U V T Y�� � L �"N VX�.Y&] � N V T YO] �	�
We will also use the definition of the inner product between a pair of real-valued functions

defined over some domain
 . This is defined as � C � ����� 3 C T �O��� � � L R���
 CG� �O��� C T ����� �
The following section considers the Fourier spectrum of decision trees and discusses some of

its useful properties.

C. Properties of Decision Trees in the Fourier Domain

For almost all practical purposes decision trees have bounded depths. This section will there-

fore consider decision trees of finite depth bounded by some constant. The underlying functions

in such decision trees are computable by a constant depth Boolean AND and OR circuit (or

equivalently ���
 circuit). Linial et al. [15] noted that the Fourier spectrum of ���
 circuit has

very interesting properties and proved the following lemma.

Lemma 1: (Linial, 1993) Let � and � be the size and depth of an ���
 circuit. Then

�
� � `�� V � Y������

N T� �"! � !�# �%$�&�')(T

where * � / � denotes the order (the number of non-zero variable) of partition j and + is a non-

negative integer. The term on the left hand side of the inequality represents the energy of the

spectrum captured by the coefficients with order greater than a given constant + .
The lemma essentially states the following properties about decision trees:

1) High order Fourier coefficients are small in magnitude.

2) The energy preserved in all high order Fourier coefficients is also small.

The key aspect of these properties is that the energy of the Fourier coefficients of higher order

decays exponentially. This observation suggests that the spectrum of a Boolean decision tree (or

equivalently bounded depth function) can be approximated by computing only a small number

of low order Fourier coefficients. So Fourier basis offers an efficient numeric representation of

a decision tree in terms of an algebraic function that can be easily stored and manipulated.

The exponential decay property of Fourier spectrum also holds for non-Boolean decision trees.

The complete proof is given in the appendix which is available as supplementary material from

the publisher.

There are two additional important characteristics of the Fourier spectrum of a decision tree

that we will use in this paper:

1) The Fourier spectrum of a decision tree can be efficiently computed [9].

2) The Fourier spectrum can be directly used for constructing the tree.

In other words, we can go back and forth between the tree and its spectrum. This is philo-

sophically similar to the switching between the time and frequency domains in the traditional

application of Fourier analysis for signal processing. These two issues will be discussed in details

later in this paper. However, before that we would like to make a note of one additional property.

Fourier transformation of decision trees preserves inner product. The functional behavior of

a decision tree is defined by the class labels it assigns. Therefore, if 7 � � 3 � T 3<;=;=; � `
 `_> are the

members of the domain
 then the functional behavior of a decision tree C �O��� can be captured

by the vector [C d , �
 � [C ��� � � C �O� T � ;=;=; C ��� `
 ` � d	e , where the superscript � denotes the transpose

operation. The following lemma proves that the inner product between two such vectors is

identical to the same in between their respective Fourier spectra.

Lemma 2: Given two functions C � ����� � L � N V �.Y&] �
 � � �O��� and C T ����� � L � N V T Y&] �

 � � �O��� in

Fourier representation. Then � C � ����� 3 C T �O��� � � � U VX�.Y 3 U V T Y�� .

Proof:

� C � ���?� 3 C T ����� � � �
R �
 CG� ���?� C T ����� � �R���

�
�] �

N V �.Y�] �
 � � ����� N V T YO] �

�
� �O���

� �
�] �

N VX�.YO] � N V T YO] �
�
R���

 � � �����
 �
� �O����� � � N V �.YO] � N V T Y&] � � � U V �.Y 3 U V T Y � �

�

The fourth step is true since Fourier basis functions are orthonormal.

IV. COMPUTING THE FOURIER TRANSFORM OF A DECISION TREE

The Fourier spectrum of a given tree can be computed efficiently by traversing the tree. This

section first reviews an algorithm to do that. It discusses aggregation of the multiple spectra

computed from the base classifiers of an ensemble. It also extends the technique for dealing

with non-Boolean class labels. Kushilevitz and Mansour [16] considered the issue of learning

the low order Fourier spectrum of the target function (represented by a Boolean decision tree)

XX
11

XX
33

XX
22

XX
22

00

00

00 00

11

11

11 11

11

11 00 00 11

Fig. 1. A Boolean decision tree.

from a data set with uniformly distributed observations. Note that the current contribution is

fundamentally different from their goal. This paper does not try to learn the spectrum directly

from the data. Rather it considers the problem of computing the spectrum from the decision tree

generated from the data.

A. Schema Representation of a Decision Path

For the sake of simplicity, let us consider a Boolean decision tree as shown in Figure 1. The

Boolean class labels correspond to positive and negative instances of the concept class. We can

express a Boolean decision tree as a function C D�� � I 7:9�3 � > . The function C maps positive

and negative instances to one and zero respectively. A node in a tree is labeled with a feature

0�� . A downward link from the node 0 � is labeled with an attribute value of the � -th feature.

The path from the root node to a successor node represents the subset of data that satisfies

the different feature values labeled along the path. These subsets of the domain are essentially

similarity-based equivalence classes and we shall call them schemata (schema in singular form).

If � is a schema, then � 587:9�3 � 3�� > � , where � denotes a wildcard that matches any value of the

corresponding feature. For example, the path 7 � 0�� �I 0@� 3 0@�
I 0 T > in Figure 1 represents the

schema 9�� � , since all members of the data subset at the final node of this path take feature

values 9 and � for 0 � and 0�� respectively. We shall use the term *
	�����	 to represent the number

of non-wildcard values in a schema. The following section describes an algorithm to extract

Fourier coefficients from a tree.

B. Extracting and Calculating Significant Fourier Coefficients from a Tree

Considering a decision tree as a function, the Fourier transform of a decision tree can be

defined as:

N � � �� � �
�
R ��� C ���?�
 � ����� � �� � �

�
R ����� $

C ���?�
 � ������� �� � �
�
R��	�
�

#
C �O���
 � ������� ��� � � �� � �

�
R �����
� C �O���
 � ���?�

� ��� � $ �� � � C � ��� �
 � � ��� ��� �
� � #
�

� � � C � ��� � �
 � � ��� ��� � ��� � ��� �
� �
� � � C � ��� �
 � � ��� � (1)

Where � denotes the complete instance space, � � '
is an instance subspace which � ��� leaf node

� � covers and � � is a schema defined by a path to
� � respectively (Note that any path to a node

in a decision tree is essentially a subspace or hyperplane, thus it is a schema).

Lemma 3: For any Fourier basis function

 � , LSR��
�
 � ������� 9 .

Proof: Since Fourier basis functions form an orthogonal set,

LSR��
�
 � ����� � LSR ���

 �����
 � �O��� � 9 �

Here,

 is the zero-th Fourier basis function, which is constant (one) for all � .

�

Lemma 4: Let � � be a schema defined by the path to a leaf node
� � . Then if j has a non-zero

attribute value at a position where � � has no value (wild-card),

L R��	�
�
'
C ���?�
 � ����� � C � � � ��LSR��	�
�

'

 � ������� 9 �

Where � � '
is the subset that � � covers.

Proof: Let / � � / ���(/���� � � , where / ��� are features which are included ��� and /���� � are features not in

��� respectively. Since all values for /<��� are fixed in � � ,

 �

'
� � 0 � is constant for all 0 5 � � '

. And � � '
forms redundant (multiples of) complete domain with respect to / ��� � . Therefore for a leaf node

� � ,

�
R��	�
�

'
C �O���
 � ����� � �

R �����
'
C � � � �
 � �O��� � C � � � � �R��	�
�

'

 �
'
� �O���
 ���! #" ���?� � C � � � �
 � � � � � �R��	�
�

'

 ���$ %" ������� 9 �

�

Lemma 5: For any Fourier coefficient N � whose order is greater than the depth of a leaf node
� � , L R��	� �

'

 � �O����� 9 . If the order of N � is greater than the depth of tree, then N � � 9 .

Proof: The proof immediately follows from Lemma 4.
�

Thus, for a FC N � to be non-zero, there should exist at least one schema h that has non-

wild-card attributes for all non-zero attributes of j. In other words, there exists a set of non-zero

FCs associated with a schema h. This observation leads us to a direct way of detecting and

calculating all non-zero FCs of a decision tree: For each schema h (or path) from the root, we

can easily detect all non-zero FCs by enumerating all FCs associated with h.

Before describing the algorithm, we need to introduce some notations. Let ��� ��� be a vector

that is generated by replacing the
�

-th position of � with value � . Note that this notation will

be used for both schema and partition. Let us consider a non-leaf node � that has � children.

In other words, there exist � disjoint subtrees below � . If 0�� is the feature appearing in � , then
� ,�� � � � denotes the average function value of domain members covered by a subtree accessible

through the � -th child of � . For example, in Figure 2,
� , $ � 9 � is �

T and
� ,

#
� � � is one. Note that

� ,�� � � � is equivalent to the average of schema h, where h denotes the path (from the root node)

to � -th subtree of the node where 0�� appears.

The algorithm starts with pre-calculating all
� , � � � � -s (This is essentially recursive “Tree-Visit”

operation). Then it incrementally finds non-zero FCs as it traverses the tree. If we let 	 denote

the set of partitions that correspond to non-zero FCs, initially, 	 � 7:9 9c9 ��� � 9 > and corresponding

N

�
�
�

 is calculated with overall average of output. In Figure 2, it is: �
T

 �� � �

T

 � ���� . The

algorithm continues to extract all remaining non-zero FCs in recursive fashion from the root.

New non-zero FCs are identified by inducing their correponding partitions from the existing S.

For any � 5 	 , when a node with the feature 0�� is visited, partitions ��� ��� 3<;=;=;@3 ��� � � � # � are

added into 	 , where ��� is the cardinality of 0�� . For the tree in Figure 2, 	 is initially 7 000 > .

Then 010 is added to 	 when 0 � is visited. Note that 010 is found by replacing the first position

(starting from zero) with 1, i.e., � �.��� � 9 � 9 is obtained from h = 000. N
(�
 is computed using

Equation 1:

N
(�
 � �!
 C � � 9�� �

(�
 � � 9�� ��� �!
 C � � � � �

(�
 � � � � �

� �!

� , $ � 9 �

(�
 � � 9 � � �Q�!

� , $ � � �

(�
 � � � � �
� �!
 �!
 � � �!
 �
 ��� � � � �� � �! ��� ��

For 0 T , 7:9 9 � 3 9 � � > will be added into 	 . N

(� and N
(� � are computed similarly as N
(�
 . The

pseudo code of the algorithm is presented in Figure 3.

00 11

XX11

XX22 11

00 11

00 11

Average = ½ Average = 1

Average = 1Average = 0

Fig. 2. An instance of Boolean decision tree that shows average output values at each subtree.

C. Fourier Spectrum of an Ensemble Classifier

The Fourier spectrum of an ensemble classifier that consists of multiple decision trees can be

computed by aggregating the spectra of the individual base models. Let C ����� be the underlying

function computed by a tree-ensemble where the output of the ensemble is a weighted linear

combination of the outputs of the base tree-classifiers.

C �O��� � � � CG� �O������� T C T ������� ��� � ��� � C � ����� ��� � �- � b $
N VX�.Y�
 � �O����� ��� � ��� � �- � b �

N V �<Y�
 � �����

where C � ���?� and � � are � ��� decision tree and its weight respectively. � � is set of non-zero Fourier

coefficients that are detected by � ��� decision tree and N VZ�	Y� is a Fourier coefficient in �G� . Now

equation 2 is written as: C ����� � L - � b N �
 � ����� , where N � � L ��	��� � � N VZ�	Y� and � ��� ��	��� �c� .
The following section extends the Fourier spectrum-based approach to represent and aggregate

decision trees to domains with multiple class labels.

D. Fourier Spectrum of Multi-Class Decision Trees

A multi-class decision tree has
� � ! different class labels. In general, we can assume that each

label is again assigned a unique integer value. Since such decision trees are also functions that

map an instance vector to numeric value, the Fourier representation of such tree is essentially

not any different. However, the Fourier spectrum cannot be directly applied to represent an

1 Function ExtractFS(input: Partition Set S, Node � *�� � , Schema h)
2 0 ��� feature appearing in � * � �
3

� � �
4 for each / 5 	
5 for each � from (� 3<;=;=;@3 � � � �)
6

� � � � 7 / � ���.>
7 end
8 end

9 �<��� ��� ` �����
	(`� � ` � `
10 for each / 5 �
11 for each � from (9�3<;=;=;@3 � � � �)
12 N � � N � � �<��� �
 � ,�� � � �
 � � � � ��� �
13 end
14 end
15 	�� 	 � �
16 for each � from (9�3<;=;=;P3 � � � �)
17 ExtractFS(S, � * � �<� 3 ��� ���)
18 end
19 end

Fig. 3. Algorithm for obtaining Fourier spectrum of a decision tree. � in
 � implies that
 � is the � th feature. � � denotes the
cardinality of
 � and � ��������� denotes the size of subspace ������� covers. � ��� is the size of the complete instance space. ������� ' is
the � th child of ������� .

ensemble of decision trees that uses voting as its aggregation scheme. The Fourier spectrum

faithfully represents functions in closed forms and ensemble classifiers are not such functions.

Therefore, we need a different approach to model a multi-class decision trees with the Fourier

basis.

Let us consider a decision tree that has
�

classifications. Then let us define �4� to be the Fourier

spectrum of a decision tree whose class labels are all set to zero except the � -th class. In other

words, we treat the tree to have a Boolean classification with respect to the � -th class label. If

we define C V � Y �O��� to be a partial function that computes the inverse Fourier transform using � � ,
classification of an input vector x is written as: C ���?�$��� � C VX�.Y ��������� T C V T Y �O����� ;=;=; ��� � C

V � Y ���?� ,
where each � � corresponds to a mapped value for the � -th classification. Note that if x belongs

to 1 -th class, C V_� Y �O��� � � when � � 1 , and 0 otherwise.

Now let us consider an ensemble of decision trees in weighted linear combination form. Then

C V � Y ����� can be written as: C V � Y ������� � �(C V �.Y� ����� � � T C V T YT ����� � ;=;=; � � C
V � Y� ����� , where � � and C V � Y� ���?�

represent the weight of � -th tree in the ensemble and its partial function for the
�

-th classification

respectively. Finally, the classification of an ensemble of decision tree that adopts voting as its

aggregation scheme can be defined as: C ���?��� argmax � � C V � Y ����� �
In this section, we discussed the Fourier representation of decision trees. We showed that the

Fourier spectrum of a decision tree is very compact in size. In particular, we proved that the

exponential decay property is also true for a Fourier spectrum of non-Boolean decision trees. In

the following section, we will describe how the Fourier spectrum of an ensemble can be used

to construct a single tree.

V. CONSTRUCTION OF A DECISION TREE FROM FOURIER SPECTRUM

This section discusses an algorithm to construct a tree from the Fourier spectrum of an

ensemble of decision trees. The following section first shows that the information gain needed to

choose an attribute at the decision nodes can be efficiently computed from the Fourier coefficients.

A. Schema Average and Information Gain

Consider a classification problem with Boolean class labels— 7:9"3 � > . Recall that a schema h

denotes a path to a node � � in a decision tree. In order to compute the information gain introduced

by splitting the node using a particular attribute, we first need to compute the entropy of the

class distribution at that node. We do that by introducing a quantity called schema average. Let

us define the schema average function value as follows:

� � � ��� �� � �
�
R���� C ����� 3 (2)

where C ���?� is the classification value of x and � � � denotes the number of members in schema h.

Note that the schema average � � � � is nothing but the frequency of all instances of the schema �

with a classification value of � . Similarly, note that the frequency of the tuples with classification

value of 9 is � � � � � � � � . It can therefore be used to compute the entropy at the node � � .

confidence � � � � max � � � � � 3 � � � � � �(�
entropy � � � � � � � � ������� � � � � � � � � � � � �(��������� � � � � � �(�

The computation of � � � � using the above expression for a given ensemble is not practical

since we need to evaluate all � 5 � . Instead we can use the following expression that computes

� � � � directly from the given FS:

� � � � � �
� $
� � �
� *

N V_
(]�
�
^] � $]�
�
^] � *]�
�
^]
+Y � �"! T��
� V�� $ � $)�� $

�
�
 � � *��X*)	� * Y
(3)

where h = � ����
 � � � ��
 T � ����
 � � � � that has 2 non-wildcard values
 � at position 1 � and

 � 5 7:9�3 � 3 � � � 3 � - '

� � > . A similar Walsh analysis-based approach for analyzing the behavior of

genetic algorithms can be found elsewhere [17]. Note that the summations in Equation 3 are

defined only for the fixed (non-wild-card) positions that correspond to the features defining the

path to the node ��� .
Using Equation 3 as a tool to obtain information gain, it is relatively straight-forward to

come up with a version of ID3 or C4.5-like algorithms that work using the Fourier spectrum.

However, a naive approach may be computationally inefficient. The computation of � � � � requires

an exponential number of FCs with respect to the order of h. Thus, the cost involved in computing

� � � � increases exponentially as the tree becomes deeper. Moreover, since the Fourier spectrum

of the ensemble is very compact in size, most Fourier coefficients involved in computing � � � �
are zero. Therefore, the evaluation of � � � � using Equation 3 is not only inefficient but also

involves unnecessary computations.

Construction of a more efficient algorithm to compute � � � � is possible by taking advantage

of the recursive and decomposable nature of Equation 3. When computing the average of an

order
�

schema h, we can reduce some computational steps if any of the order
�
-1 schemata

which subsumes h is already evaluated. For a simple example in the Boolean domain, let us

consider the evaluation of � � � � � 9 ��� � . Let us also assume that � � � � ��� � � is pre-calculated. Then,

� � � � � 9 � � � is obtained by simply adding N

(�

 and � N
(�
(�

 to � � � � � � � � . This observation

leads us to an efficient algorithm to evaluate schema averages. Recall that the path to a node

from the root in a decision tree can be represented as a schema. Then, choosing an attribute

for the next node is essentially the same as selecting the best schema among those candidate

schemata that are subsumed by the current schema whose orders are just one more than that of

this schema. In the following section, we describe a tree construction algorithm that is based on

these observations.

1 Function TCFS(input: Fourier Spectrum FS)
2 Initialize Candidate Feature Set CFSET
3 create 	 * * + node
4 h � (***...***)
5 	�*�* + � Build(h, FS,SFSET)
6 return 	 * * +
7 end

Fig. 4. Algorithm for constructing a decision tree from Fourier spectrum (TCFS).

B. Bottom-up Approach to Construct a Tree

Before describing the algorithm, we need to introduce some notations. Let � � ��� and � be two

schemata. The order of ��� ��� is one higher than that of � . Schema � � ��� is identical to � except at

one position—the
�
-th feature is set to � (Note that we use similar notation for ExtractFS). For

example, consider schemata h = (*1**2) and � �+��� � � � � � � ! � . Here we use an integer number-

based indexing of the features (zero for the leftmost feature). � � � � denotes a set of partitions

that are required to compute � � � � (See Equation 3). A
�

-fixed partition is a partition with a

non-zero value at the
�

-th position. Let
� � � � be a set of order one

�
-fixed partitions; � � � � ��� �

be the partial sum of � � � � ��� � which only includes
�

-fixed partitions. Now the information gain

achieved by choosing the
�
-th feature with a given h is redefined using these new notations:

Gain � � 3 � � � entropy � � ��� �� �
� � # ��
� ��

entropy � � � ��� �

entropy � � � ��� � � � � � ��� ��� ������� � � � ��� ��� �(� � � � � � � ��� ��� �(��� � ��� � � � � ��� ��� � �
� � ��� ��� � � � � � ��� � � � � ��� �
� � � � ��� � � �

� � � V � Y����(V � Y

 � � ��� ��� � N �

where � is the Cartesian product and ��� is the cardinality of the
�
-th feature, respectively.

Now we are ready to describe the Tree Construction from Fourier Spectrum (TCFS) algorithm,

which essentially notes the decomposable definition of � � ��� ��� � and focuses on computing

� � ��� ��� � -s. Note that with a given h (the current path), selecting the next feature is essentially

identical to choosing the
�
-th feature that achieves the maximum � � � � � � 3 � � . Therefore, the basic

idea of TCFS is to associate most up-to-date � � ��� ��� � -s with the
�

-th feature. In other words, when

TCFS selects the next node (after some � is chosen for � � ���), � � ��� becomes the new h . Then, it

1 Function Build(input: Schema h,
Fourier Spectrum FS, Candidate Feature Set CFSET)

2 create 	�*�* + node
3 odr � � � 3 *
	�����	 � � � � � �
4 Marked � �
5 for each Fourier Coefficient N � within odr from FS
6 ft = intersect(h,i,CFSET)
7 if ft is not �
8 for each value 1 of ft
9 update � � ���)� � - � with N �
10 end
11 add N � to Marked
12 end
13 end
14 if Marked is �
15 set label for 	 * * + using average of h
16 return 	�*�* +
17 end
18 for each feature C � in CFSET
19 � � � ����� � � � � � � 3 C � �
20 end
21 remove

�
with the maximum � � � �P� from CFSET

22 	 * * + � �
23 FS � FS - Marked
24 for each possible branch
 	 � of

�
25 ��� � � � update h with

� � �
26
 	 ��� Build(� � ��� ,FS, CFSET)
27 end
28 add

�
into CFSET

29 add Marked into FS
30 return 	�*�* +
31 end

Fig. 5. Algorithm for constructing a decision tree from Fourier spectrum (TCFS). order(h) returns the order of schema h.
intersect(h, i) returns the feature to be updated using ��� , if such a feature exists. Otherwise it returns � .

identifies a set of FCs (We call these appropriate FCs) that are required to compute all � � ��� -s for

each feature and computes the corresponding entropy. This process can be considered to update

each � � � � ��� � for the corresponding
�
-th feature as if it were selected. The reason is that such

computations are needed anyway if a feature is to be selected in the future along the current path.

This is essentially updating � � ��� ��� � -s for a feature
�

using bottom-up approach (following the

flavor of dynamic programming). Note that � � � � ��� � is, in fact, computable by adding � � � � ��� � to

� � � � . Here � � ��� ��� � -s are partial sums that only current appropriate FCs contribute to. Detection

of all appropriate FCs requires a scan over the FS. However, they are removed from the FS

once they are used in computation, since they are no longer needed for the calculation of higher

order schemata. Thus it takes a lot less time to compute higher order schemata; note that it is

just opposite to what we encountered in the naive implementation. The algorithm stops growing

a path when either the original FS becomes an empty set or the minimum confidence level

is achieved. The depth of the resulting tree can be set to a pre-determined bound. A pictorial

description of the algorithm is shown in Figure 6. Pseudo code of the algorithm is presented in

Figures 4 and 5.

The TCFS uses the same criteria to construct a tree as that of the C4.5. Both of them require a

number of information-gain-tests that grows exponentially with respect to the depth of the tree.

In that sense, the asymptotic running time of TCFS is the same as that of the C4.5. However,

while the C4.5 uses original data to compute information gains, TCFS uses a Fourier spectrum.

Therefore, in practice, a comparison of the running time between the two approaches will depend

on the sizes of the original data and that of Fourier spectrum. The following section presents an

extension of the TCFS for handling non-Boolean class labels.

C. Extension of TCFS to Multi-Class Decision Trees

The extension of TCFS algorithm to multi-class problems is immediately possible by redefining

the “entropy” function. It should be modified to capture an entropy from the multiple class labels.

For this, let us first define � VZ�	Y � � � to be a schema average function that uses ��� (See Section IV-

D) only. Note that it computes the average occurrence of the � -th class label in h. Then the

entropy of a schema is redefined as follows.

entropy � � � � �
��
�	���

� VZ�	Y � � ��� ��� � V_�	Y � � �

where
�

is the number of class labels.

This expression can be directly used for computing the information gain to choose the decision

nodes in a tree for classifying domains with non-Boolean class labels.

In this section, we discussed a way to assign a confidence to a node in a decision tree,

and considered a method to estimate information gain using it. Consequently, we showed that

X2

X3

X1

A snapshot of
Tree Construction

Evaluated
Schemata

X1 X2 X3 X4

(0***)
(1***)

(*0**)
(*1**)

(**0*)
(**1*)

(***0)
(***1)

(000**)
(100**)

(*000*)
(*001*)

(*00*0)
(*00*1)

(000*)
(100*)

(*000)
(*001)

FS

Update

Update

Update

Split of Fourier
Spectrum

11

11

00

00

Fig. 6. Illustration of the Tree Construction from Fourier Spectrum (TCFS) algorithm. It shows the constructed tree on the

left. The schemata evaluated at different orders are shown in the middle. The rightmost tree shows the splitting of the set of all

Fourier coefficients used for making the process of looking up the appropriate coefficients efficient.

a decision tree construction from the Fourier spectrum is possible. In particular, we devised

TCFS algorithm that exploits the recursive and decomposable nature of tree building process in

spectrum domain, thus constructing a decision tree efficiently. In the following section, we will

discuss orthogonal decision trees that can constructed using the Fourier spectrum of the trees in

an ensemble.

VI. REMOVING REDUNDANCIES FROM ENSEMBLES

Existing ensemble-learning techniques work by combining (usually a linear combination)

the output of the base classifiers. They do not structurally combine the classifiers themselves.

As a result they often share a lot of redundancies. The Fourier representation offers a unique

way to fundamentally aggregate the trees and perform further analysis to construct an efficient

representation.

Let C 	 ����� be the underlying function representing the ensemble of 2 different decision trees

where the output is a weighted linear combination of the outputs of the base classifiers. Then

we can write,

C 	 ���?� � B���� V �.Y ���?��� B T �:V T Y �O����� ;=;=; � B � � V � Y ����� � BJ� �- ��� $
N V �.YO] �
 �� ������� ;=;=; � B � �� ��� *

N V � YO] �
 �� ����� �

Where B?� is the weight of the � ��� decision tree and
� � is the set of all partitions with non-

zero Fourier coefficients in its spectrum. Therefore, C 	 ����� � L - ��� N V 	 Y&] �
 ��P����� , where N V 	 YO] � �
L ��	��� B � N VZ�	YO] � and

� � � ��	��� � � . Therefore, the Fourier spectrum of C 	 ����� (a linear ensemble

classifier) is simply the weighted sum of the spectra of the member trees.

Consider the matrix � where � �] - � � V - Y �O� � � , where �:V - Y �O� � � is the output of the tree �:V - Y for

input � � 5
 . � is an �
 �
 2 matrix where �
 � is the size of the input domain and 2 is the

total number of trees in the ensemble.

An ensemble classifier that combines the outputs of the base classifiers can be viewed as

a function defined over the set of all rows in � . If ���] - denotes the 1 -th column matrix of

� then the ensemble classifier can be viewed as a function of �	�]^� 3 �
�] T 3<;=;=; �
�] � . When the

ensemble classifier is a linear combination of the outputs of the base classifiers we have
� �

BJ���
�]^� � B T ���] T � ;=;=; B � �
�] � , where
�

is the column matrix of the overall ensemble-output.

Since the base classifiers may have redundancy, we would like to construct a compact low-

dimensional representation of the matrix � . However, explicit construction and manipulation

of the matrix � is difficult, since most practical applications deal with a very large domain.

We can try to construct an approximation of � using only the available training data. One such

approximation of � and its Principal Component Analysis-based projection is reported elsewhere

[18]. Their technique performs PCA of the matrix � , projects the data in the representation

defined by the eigenvectors of the covariance matrix of � , and then performs linear regression

for computing the coefficients B � 3 B T 3<;=;=;@3 and B � .

While the approach is interesting, it has a serious limitation. First of all, the construction of

an approximation of � even for the training data is computationally prohibiting for most large

scale data mining applications. Moreover, this is an approximation since the matrix is computed

only over the observed data set of the entire domain. In the following we demonstrate a novel

way to perform a PCA of the matrix containing the Fourier spectra of trees. The approach works

without explicitly generating the matrix � . It is important to note that the PCA-based regression

scheme [18] offers a way to find the weightage for the members of the ensemble. It does not

offer any way to aggregate the tree structures and construct a new representation of the ensemble

which the current approach does.

The following analysis will assume that the columns of the matrix � are mean-zero. This

restriction can be easily removed with a simple extension of the analysis. Note that the covariance

of the matrix � is � e � . Let us denote this covariance matrix by � . The � � 3 1 � -th entry of the

matrix,

� �] - � � � � � 3 � � 3 � � � 3 1 � � � � �:VZ�	Y ����� 3 �:V - Y �O��� � � �
�

N V_�	Y&] � N V - Y&] � � � U VZ�	Y 3 U V - Y � (4)

The fourth step is true by Lemma 2. Now let us the consider the matrix
�

where
� �] - is the

coefficient corresponding to the � -th member of the partition set
�

from the spectrum of the

tree � V - Y . Equation 4 implies that the covariance matrices of � and
�

are identical. Note that
�

is an � � �
 2 dimensional matrix. For most practical applications � � � � � �
 � . Therefore

analyzing
�

using techniques like PCA is significantly easier. The following discourse outlines

a PCA-based approach.

PCA of the covariance matrix of W produces a set of eigenvectors ��� 3 � T 3<;=;=; � � . The eigen-

value decomposition constructs a new representation of the underlying domain. Note that since

the eigenvectors are nothing but a linear combination of the original column vectors of W,

each of them also form a Fourier spectrum and we can reconstruct a decision tree from this

spectrum. Moreover, since they are orthogonal to each other, the tree constructed from them

also maintain the orthogonality condition and therefore they are redundancy-free. They define a

basis set and can be used to represent any given decision tree in the ensemble in the form of a

linear combination. Orthogonal decision trees can be defined as an immediate extension of this

framework.

A pair of decision trees C � ����� and C T ����� are orthogonal to each other if and only if �
C�� ���?� 3 C�� ����� � � 9 when � A�
 and � C�� ����� 3 C�� ����� � � � otherwise. The second condition is

actually a slightly special case of orthogonal functions—orthonormal condition. A set of trees

are pairwise orthogonal if every possible pair of members of this set satisfy the orthogonality

condition.

The orthogonality condition guarantees that the representation is not redundant. These orthog-

onal trees form a basis set that spans the entire function space of the ensemble. The overall

output of the ensemble is computed from the output of these orthogonal trees. Specific details

of the ensemble output computation depends on the adopted technique to compute the overall

output of the original ensemble. However, for most popular cases considered here boils down to

computing the average output. If we choose to go for weighted averages, we may also compute

the coefficients corresponding to each ��� by simply performing linear regression.

VII. EXPERIMENTAL RESULTS

This section reports the experimental performance of orthogonal decision trees on the following

data sets - SPECT, NASDAQ, DNA, House of Votes and Contraceptive Method Usage Data.

For each data set, the following three experiments are performed using known classification

techniques:

1) C4.5: The C4.5 classifier is built on training data and validated over test data.

2) Bagging: A popular ensemble classification technique, bagging, is used to test the clas-

sification accuracy of the data set.

3) Random Forest: Random forests are built on the training data, using approximately half

the number of features in the original data set. The number of trees in the forest is identical

to that used in the bagging experiment1.

We then perform another set of experiments for comparing the techniques described in the

previous sections in terms of error in classification and tree complexity.

1) Reconstructed Fourier Tree (RFT): The training set is uniformly sampled, with re-

placement and C4.5 trees are built on each sample. The Fourier representation of each

individual tree is obtained preserving a certain percentage (e.g. 90%) of the energy. This

representation of a tree is used to reconstruct a decision tree using the TCFS algorithm

described in Section V. The performance of a reconstructed Fourier tree is compared

with the original C4.5 tree. The error in classification and tree complexity of each of the

reconstructed trees is reported. The purpose of this experiment is to study the effect of

”noise removal” from the ensemble on its classification-accuracy by going to the Fourier

domain and then coming back to the tree domain using the TCFS algorithm.

2) Aggregated Fourier Tree(AFT): The training set is uniformly sampled, with replacement

and C4.5 decision trees are built on each sample (This is identical to bagging). A Fourier

1We used the WEKA implementation(http://www.cs.waikato.ac.nz/ml/weka/) of Bagging and Random Forests

representation of each tree is obtained(preserving a certain percentage of the total energy),

and these are aggregated with uniform weighting to obtain the spectrum of an Aggregated

Fourier Tree (AFT). The AFT is reconstructed using the TCFS algorithm described before

and the classification accuracy and the tree complexity of this aggregated Fourier tree is

reported.

3) Orthogonal Decision Trees: The matrix containing the Fourier coefficients of the decision

trees is subjected to principal component analysis. Orthogonal trees are built using the

corresponding eigenvectors. In most cases it is found that that the first principal eigenvector

captures most of the variance, and thus the orthogonal decision tree constructed from this

eigenvector is of particular interest. We report the error in classification and tree complexity

of the orthogonal decision tree obtained from the most dominant eigenvector . We also

perform experiments where we keep k2 significant eigenvectors. The trees are combined

by weighting them according to the coefficients obtained from a Least Square Regression.

Each orthogonal decision tree is weighted using coefficients calculated from Least Square

Regression. For this, we allow all the orthogonal decision trees to individually produce their

classification on the test set. Thus each ODT produces a column vector of its classification

estimate. Since the class-labels in the test set are already known, we use the least square

regression to obtain the weights to assign to each ODT. The accuracy of the orthogonal

decision trees is reported as ODT-LR(ODTs combined using Least Square Regression).

In addition to reporting the error in classification, we also report the tree complexity, the

total number of nodes in the tree. Similarly, the term ensemble complexity reflects the total

number of nodes in all the trees in the ensemble. A smaller ensemble tree complexity implies a

compact representation of an ensemble and therefore it is desirable. Our experiments show that

ODTs usually offer significantly reduced ensemble tree complexity without any reduction in the

accuracy. The following section presents the results for the SPECT data set.

2We select the value of k in such a manner that the total variance captured is more than 90%. One could potentially do

cross-validation to obtain a suitable value of k as pointed out in [19] but this is beyond the current scope of the work and will

be explored in future.

Method of classification Error Percentage

C4.5 24.5989 (%)

Bagging 20.85 (%)

Random Forest 22.99466 (%)

Aggregated Fourier Tree (AFT) 19.78(%)

ODT from 1st PC 8.02(%)

ODT-LR 8.02(%)

Method of classification Tree Complexity

C4.5 13

Bagging (average of 40 trees) 5.06

Aggregated Fourier Tree(AFT)(40 trees) 3

Orthogonal Decision Tree from 1st PC 17

Orthogonal Decision Trees (average of 15 trees) 4.3

TABLE I

CLASSIFICATION ERROR(LEFT) AND TREE COMPLEXITY(RIGHT) FOR SPECT DATA.

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

90

100

i−th Tree in the ensemble

A
cc

ur
ac

y
of

 C
la

ss
ifi

ca
tio

n

C4.5
RFT

0 5 10 15 20 25 30 35 40 45
0

5

10

15

i−th tree in the ensemble

T
re

e
C

om
pl

ex
ity

C4.5
RFT

Fig. 7. The accuracy and tree complexity of C4.5 and RFT for SPECT data

A. SPECT Data set

This section illustrates the idea of orthogonal decision trees using a well known binary data

set. The dataset, available from the University of California Irvine, Machine Learning Repository,

describes diagnosing of cardiac Single Proton Emission Computed Tomography (SPECT) images

into two categories, normal or abnormal. The database of 267 SPECT image sets (patients)

is processed to extract features that summarize the original SPECT images. As a result, 44

continuous feature patterns are obtained for each patient, which are further processed to obtain

22 binary feature patterns. The training data set consists of 80 instances and 22 attributes. All

the features are binary, and the class label is also binary (depending on whether a patient is

deemed normal or abnormal). The test data set consists of 187 instances and 22 attributes.

Table I(Left) shows the error percentage obtained in each of the different classification schemes.

The root mean squared error for the 10 fold cross validation in the C4.5 experiment is found

to be 0.4803 and the standard deviation is 2.3862. For Bagging, the number of trees in the

ensemble is chosen to be forty. Our experiments reveal that further increase in number of trees

in the ensemble causes a decrease in accuracy of classification of the ensemble possibly due to

over-fitting of the data.

For experiments with Random Forests, forest of 40 trees, each constructed while considering

12 random features is built. The average Out of bag error is reported to be 0.3245.

Figure 7(Left) compares the accuracy of the original C4.5 ensemble with that of the Recon-

structed Fourier Tree(RFT) ensemble preserving 90% of the energy of the spectrum. The results

reveal that if all of the spectrum is preserved, the accuracy of the original C4.5 tree and RFT

are identical. When the higher order Fourier coefficients are removed, this becomes equivalent

to pruning a decision tree. This explains the higher accuracy of the reconstructed Fourier tree

preserving 90% of the energy of the spectrum. Figure 7(Right) compares the tree complexity of

the original C4.5 ensemble with that of the RFT ensemble.

In order to construct the orthogonal decision trees, the coefficient matrix is projected onto

the first fifteen most significant principal components. The most significant principal component

captures 85.1048% of the variance and the tree complexity of the ODT constructed from this

component is 17 with an accuracy of 91.97%. Figure 8 shows the variance captured by all the

fifteen principal components.

0 5 10 15
0

10

20

30

40

50

60

70

80

90

Principle Component

P
er

ce
nt

ag
e

of
 v

ar
ia

nc
e

ca
pt

ur
ed

Fig. 8. Percentage of variance captured by principal components for SPECT Data.

Table I(Right) illustrates the tree complexity for this data set. The orthogonal trees are found

to be smaller in complexity, thus reducing the complexity of the ensemble.

B. NASDAQ Data set

The NASDAQ data set is a semi-synthetic data set with 1000 instances and 100 discrete

attributes. The original data set has three years of NASDAQ stock quote data. It is preprocessed

and transformed to discrete data by encoding percentages of changes in stock quotes between

consecutive days. For these experiments we assign, 4 discrete values, that denote levels of

changes. The class labels, predict whether the Yahoo stock is likely to increase or decrease

based on attribute values of the 99 stocks. We randomly select 200 instances for training and

the remaining 800 instances forms the test data set.

Method of classification Error Percentage

C4.5 24.63 (%)

Bagging 32.75 (%)

Random Forest 25.75 (%)

Aggregated Fourier Tree(AFT) 34.51 (%)

ODT from 1st PC 31.12(%)

ODT-LR 31.12(%)

Method of classification Tree Complexity

C4.5 29

Bagging(average of 60 trees) 17

Aggregated Fourier Tree(AFT) (60 trees) 15.2

Orthogonal Decision Tree from 1st PC 3

Orthogonal Decision Trees (average of 10 trees) 6.2

TABLE II

CLASSIFICATION ERROR(LEFT) AND TREE COMPLEXITY(RIGHT) FOR NASDAQ DATA.

Table II(Left) illustrates the classification accuracies of different experiments performed on this

data set. The root mean squared error for the 10 fold cross validation in the C4.5 experiment is

found to be 0.4818 and the standard deviation is 2.2247. C4.5 has the best classification accuracy,

though the tree built has the highest tree complexity also. For the bagging experiment, C4.5 trees

are built on the dataset, such that the size of each bag (used to build the tree) as a percentage

of the data set is 40%. Also, Random forest of 60 trees, each constructed while considering 50

random features is built on the training data and tested with the test data set. The average out

of bag error is reported to be 0.3165.

Figure 9(Left) compares the accuracy of the original C4.5 ensemble with that of the Re-

constructed Fourier Tree(RFT) ensemble preserving 90% of the energy of the spectrum. Fig-

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

i−th tree in the ensemble

A
cc

ur
ac

y
of

 C
la

ss
ifi

ca
tio

n
C4.5
RFT

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

i−th tree in the ensemble

T
re

e
C

om
pl

ex
ity

C4.5
RFT

Fig. 9. The accuracy and tree complexity of C4.5 and RFT for Nasdaq data

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Principle Component

P
er

ce
nt

ag
e

of
 v

ar
ia

nc
e

Fig. 10. Percentage of variance captured by principal components for Nasdaq Data.

ure 9(Right) compares the tree complexity of the original C4.5 ensemble with that of the RFT

ensemble.

For the orthogonal trees, we project the data along the first 10 most significant principal

components. The Figure 10 illustrates the percentage of variance captured by the ten most

significant principal components.

Table II(Right) presents the tree-complexity information for this set of experiments. Both the

aggregated Fourier tree and the orthogonal trees performed better than the single C4.5 tree or

bagging. The tree-complexity result appears to be quite interesting. While a single C4.5 tree had

twenty nine nodes in it, the orthogonal tree from the first principal component requires just three

nodes, which is clearly a much more compact representation.

C. DNA Data Set

The DNA data set3 is a processed version of the corresponding data set available from

UC Irvine repository. The processed StatLog version replaces the symbolic attribute values

representing the nucleotides (only A,C,T,G) by 3 binary indicator variables. Thus the original 60

symbolic attributes are changed into 180 binary attributes. The nucleotides A,C,G,T are given

indicator values as follows: � � � 9 9"3 � � 9 � 9�3 � � 9 9 � 3 � � 9 9 9 . The data set has three class

values 1, 2, and 3 corresponding to exon-intron boundaries (sometimes called acceptors), intron-

exon boundaries (sometimes called donors), and the case when neither is true. We further process

the data such that, there are are only two class labels i.e. class 1 representing either donors or

acceptors, while class 0 representing neither. The training set consists of 2000 instances and 180

attributes of which 47.45% belongs to class 1 while the remaining 52.55% belongs to class 0.

The test data set consists of 1186 instances and 180 attributes of which 49.16% belongs to class

0 while the remaining 50.84% belongs to the class 1. Table III(Left) reports the classification

error. The root mean squared error for the 10 fold cross validation in the C4.5 experiment is

found to be 0.2263 and the standard deviation is 0.6086 .

Method of classification Error Percentage

C4.5 6.4924 (%)

Bagging 8.9376(%)

Random Forest 4.595275 (%)

Aggregated Fourier Tree(AFT) 8.347(%)

ODT from 1st PC 10.70(%)

ODT-LR 10.70(%)

Method of classification Tree Complexity

C4.5 131

Bagging (average of 10 trees) 34

Aggregated Fourier Tree(AFT)(10 trees) 3

Orthogonal Decision Tree from 1st PC 25

Orthogonal Decision Trees (average of 5 trees) 7.4

TABLE III

CLASSIFICATION ERROR(LEFT) AND TREE COMPLEXITY(RIGHT) FOR DNA DATA.

It may be interesting to note, that the first five eigenvectors are used in this experiment.

Figure 11 shows the variance captured by these components. As before, the redundancy free

3Obtained from http://www.liacc.up.pt/ML/statlog/datasets/dna

1 2 3 4 5
0

10

20

30

40

50

60

70

80

Principle Components

P
er

ce
nt

ag
e

of
 v

ar
ia

nc
e

ca
pt

ur
ed

Fig. 11. Percentage of variance captured by principal components for DNA Data.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

80

90

i−th tree in the ensemble

A
cc

ur
ac

y
of

 C
la

ss
ifi

ca
tio

n

C4.5
RFT

0 1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

i−th tree in the ensemble

T
re

e
C

om
pl

ex
ity

C4.5
RFT

Fig. 12. The accuracy and tree complexity of C4.5 and RFT for DNA data

trees are combined by the weights obtained from Least Square Regression. Table III(Right)

reports the tree complexity for this data set.

Figure 12(Left) compares the accuracy of the original C4.5 ensemble with that of the Re-

constructed Fourier Tree(RFT) ensemble preserving 90% of the energy of the spectrum. Fig-

ure 12(Right) compares the tree complexity of the original C4.5 ensemble with that of the RFT

ensemble.

D. House of Votes Data

The 1984 United States Congressional Voting Records Database is obtained from the Univer-

sity of California, Machine Learning Repository. This data set includes votes for each of the U.S.

House of Representatives Congressmen on the 16 key votes identified by the CQA including

water project cost sharing, adoption of budget resolution, mx-missile, immigration etc. It has

435 instances, 16 boolean valued attributes and a binary class label(democrat or republican).Our

experiments use the first 335 instances for training and the remaining 100 instances for testing.

In our experiments, missing values in the data are replaced by one.

The results of classification are shown in the Table IV(Left) while the tree complexity is shown

in Table IV(Right). The root mean squared error for the 10 fold cross validation in the C4.5

experiment is found to be 0.2634 and the standard deviation is 0.3862. For Bagging, fifteen trees

are constructed using the dataset, since this produced the best classification results. The size of

each bag was 20% of the training data set. Random Forest of fifteen trees, each constructed by

considering 8 random features produces an average out of bag error of 0.05502. The accuracy

of classification and the tree complexity of the original C4.5 and RFT ensemble are illustrated

in the left and right hand side of Figure 13 respectively.

For orthogonal trees, the coefficient matrix is projected onto the first five most significant

principal components. Figure 14(Left) illustrates the amount of variance captured by each of the

principal components.

Method of classification Error Percentage

C4.5 8.0 (%)

Bagging 11.0(%)

Random Forest 5.6(%)

Aggregated Fourier Tree(AFT) 11(%)

ODT from 1st PC 11(%)

ODT-LR 11(%)

Method of classification Tree Complexity

C4.5 9

Bagging (average of 15 trees) 5.266

Aggregated Fourier Tree (AFT)(15 trees) 5

Orthogonal Decision Tree from 1st PC 5

Orthogonal Decision Trees (average of 5 trees) 3

TABLE IV

CLASSIFICATION ERROR(LEFT) AND TREE COMPLEXITY(RIGHT) FOR HOUSE OF VOTES DATA.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

10

20

30

40

50

60

70

80

90

100

i−th tree in the ensemble (i varies from 1 to 15)

A
cc

ur
ac

y
of

 C
la

ss
ifi

ca
tio

n
C4.5
RFT

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

i−th tree in ensemble (i varies from 1 to 15)

T
re

e
C

om
pl

ex
ity

C4.5
RFT

Fig. 13. The accuracy and tree complexity of C4.5 and RFT for House of Votes data

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

Principle Components

P
er

ce
nt

ag
e

of
 v

ar
ia

nc
e

ca
pt

ur
ed

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

Siginificant Principle Components

P
er

ce
nt

ag
e

of
 v

ar
ia

nc
e

ca
pt

ur
ed

Fig. 14. Percentage of variance captured by principal components for (Left) House of Votes Data and (Right) Contraceptive

Method Usage data.

E. Contraceptive Method Usage Data

This dataset,is obtained from the University of California Irvine, Machine Learning Repository

and is a subset of the 1987 National Indonesia Contraceptive Prevalence Survey. The samples are

married women who are either not pregnant or do not know if they are at the time of interview.

The problem is to predict the current contraceptive method choice of a woman based on her

demographic and socio-economic characteristics. There are 1473 instances, and 10 attributes

including a binary class label. All attributes are processed so that they are binary. Our experiments

use 1320 instances for the training set while the rest form the test data set.

The results of classification are tabulated in the Table V(Left) while Table V(Right) shows

the tree complexity. The root mean squared error for the 10 fold cross validation in the C4.5

experiment is found to be 0.5111 and the standard deviation is 1.8943. Random Forest built

with 10 trees, considering 5 random features produces an average error in classification of about

45.88% and an average out of bag error of 0.42556. Figure 15(Left) compares the accuracy of the

original C4.5 ensemble with that of the Reconstructed Fourier Tree(RFT) ensemble preserving

90% of the energy of the spectrum. Figure 15(Right) compares the tree complexity of the original

C4.5 ensemble with that of the RFT ensemble.

For ODTs, the data is projected along the first ten principal components. Figure 14(Right)

shows the amount of variance captured by each principal component. It is interesting to note

that the first principal component captures only about 61.85% of the variance and thus the

corresponding ODT generated from the first principal component has a relatively high tree

complexity.

Method of classification Error Percentage

C4.5 49.6732(%)

Bagging 52.2876(%)

Random Forest 45.88234 (%)

Aggregated Fourier Tree(AFT) 33.98(%)

ODT from 1st PC 46.40(%)

ODT-LR 46.40(%)

Method of classification Tree Complexity

C4.5 27

Bagging(average of 10 trees) 24.8

Aggregated Fourier Tree(AFT)(10 trees) 55

Orthogonal Decision Tree from 1st PC 15

Orthogonal Decision Trees (average of 10 trees) 6.6

TABLE V

CLASSIFICATION ERROR(LEFT) AND TREE COMPLEXITY(RIGHT) FOR CONTRACEPTIVE METHOD USAGE DATA.

VIII. CONCLUSIONS

This paper introduced the notion of orthogonal decision trees and offered a methodology

to construct them. Orthogonal decision trees are functionally orthogonal to each other and

they provide an efficient redundancy-free representation of large ensembles that are frequently

produced by techniques like Boosting [2], [3], Bagging[4], Stacking [5], and random forests [6].

The proposed technique is also likely to be very useful in ensemble-based mining of distributed

[10] and stream data [7], [8].

0 1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

70

i−th tree in the ensemble (i varies from 1 to 10)

A
cc

ur
ac

y
in

 C
la

ss
ifi

ca
tio

n
C4.5
RFT

0 1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

i−th tree in the ensemble (i varies from 1 to 10)

T
re

e
C

om
pl

ex
ity

C4.5
RFT

Fig. 15. The accuracy and tree complexity of C4.5 and RFT for Contraceptive Method Usage data

The proposed approach exploits the earlier work done by the first author and his colleagues

[20], [9] which showed that the Fourier transform of decision trees can be efficiently computed.

This work also shows that we can compute the tree back from its Fourier spectrum. The paper

also offered a collection of new results regarding the properties of the multi-variate Fourier

spectrum of decision trees. Although, the paper considers the Fourier representation, this is

clearly not the only available linear representation around. However, our work shows that it is

particularly suitable for representing decision trees.

This work also opens up several new possibilities. Linear systems theory offers many tools

for analyzing properties like stability and convergence. For example, eigenvalues of a linear

system are directly associated with the stability of the system. Similar concepts may be useful

in understanding the behavior of large ensembles. We plan to explore these issues in the future.

ACKNOWLEDGMENTS

The authors acknowledge supports from NSF CAREER award IIS-0093353, NSF grant IIS-

0203958, and NASA grant NAS2-37143. The work of B.-H. Park was partially funded by the Sci-

entific Data Management Center (http://sdmcenter.lbl.gov) under the Department of Energy’s Sci-

entific Discovery through Advanced Computing (DOE SciDAC) program (http://www.scidac.org).

REFERENCES

[1] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, no. 1, pp. 81–106, 1986.

[2] Y. Freund, “Boosting a weak learning algorithm by majority,” Information and Computation, vol. 121, no. 2, pp. 256–285,

1995.

[3] H. Drucker and C. Cortes, “Boosting decision trees,” Advances in Neural Information Processing Systems, vol. 8, pp.

479–485, 1996.

[4] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp. 123–140, 1996.

[5] D. Wolpert, “Stacked generalization,” Neural Networks, vol. 5, pp. 241–259, 1992.

[6] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001.

[7] W. Fan, S. Stolfo, and J. Zhang, “The application of adaboost for distributed, scalable and on-line learning,” in Fifth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, California, 1999.

[8] W. N. Street and Y. Kim, “A streaming ensemble algorithm (sea) for large-scale classificaiton,” in Seventh ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, 2001.

[9] H. Kargupta and B. Park, “A fourier spectrum-based approach to represent decision trees for mining data streams in mobile

environments,” IEEE Transactions on Knowledge and Data Engineering, vol. 16, no. 2, pp. 216–229, 2002.

[10] B. Park, A. R., and H. Kargupta, “A fourier analysis-based approach to learn classifier from distributed heterogeneous

data,” in Proceedings of the First SIAM Internation Conference on Data Mining, Chicago, US, 2001.

[11] B. H. Park and H. Kargupta, “Constructing simpler decision trees from ensemble models using fourier analysis,” in

Proceedings of the 7th Workshop on Research Issues in Data Mining and Knowledge Discovery, ACM SIGMOD, 2002,

pp. 18–23.

[12] F. Chung, Spectral Graph Theory. Providence, Rhode Island, USA: American Mathematical Society, 1994.

[13] H. Kargupta and B. Park, “Mining time-critical data stream using the Fourier spectrum of decision trees,” in Proceedings

of the IEEE International Conference on Data Mining. IEEE Press, 2001, pp. 281–288.

[14] H. Kargupta, B. Park, S. Pittie, L. Liu, D. Kushraj, and K. Sarkar, “Mobimine: Monitoring the stock market from a PDA,”

ACM SIGKDD Explorations, vol. 3, no. 2, pp. 37–46, January 2002.

[15] N. Linial, Y. Mansour, and N. Nisan, “Constant depth circuits, fourier transform, and learnability,” Journal of the ACM,

vol. 40, pp. 607–620, 1993.

[16] E. Kushilevitz and Y. Mansour, “Learning decision trees using the Fourier spectrum,” SIAM Journal oo Computing, vol. 22,

no. 6, pp. 1331–1348, 1993.

[17] D. Goldberg, “Genetic algorithms and Walsh functions: Part I, a gentle introduction,” Complex Systems, vol. 3, no. 2, pp.

129–152, 1989.

[18] C. J. Merz and M. J. Pazzani, “A principal components approach to combining regression estimates,” Machine Learning,

vol. 36, no. 1–2, pp. 9–32, 1999.

[19] C. Merz and M. Pazzani, “A principal components approach to combining regression estimates,” Machine Learning, vol. 36,

pp. 9–32, 1999.

[20] H. Kargupta, B. Park, D. Hershberger, and E. Johnson, “Collective data mining: A new perspective towards distributed

data mining,” in Advances in Distributed and Parallel Knowledge Discovery, Eds: Kargupta, Hillol and Chan, Philip.

AAAI/MIT Press, 2000.

Hillol Kargupta is an Associate Professor in the Department of Computer Science and Electrical En-

gineering, University of Maryland, Baltimore County. He received the PhD degree in computer science

from the University of Illinois at Urbana-Champaign in 1996. He is also a cofounder of Agnik LLC,

an ubiquitous intelligence company. His research interests include mobile and distributed data mining

and computation in biological process of gene expression. Dr. Kargupta won a US National Science

Foundation CAREER award in 2001 for his research on ubiquitous and distributed data mining. He along

with his coauthors received the best paper award at the 2003 IEEE International Conference on Data Mining for a paper on

privacy-preserving data mining. He won the 2000 TRW Foundation Award and the 1997 Los Alamos Award for Outstanding

Technical Achievement. His research has been funded by the US National Science Foundation, US Air Force, Department of

Homeland Security, NASA, and various other organizations. He has published more than 90 peer-reviewed articles in journals,

conferences, and books. He has coedited two books: Advances in Distributed and Parallel Knowledge Discovery, AAAI/MIT

Press, and Data Mining: Next Generation Challenges and Future Directions, AAAI/MIT Press. He is an associate editor of the

IEEE Transactions on Knowledge and Data Engineering and IEEE Transactions on Systems, Man, and Cybernetics, Part B. He

regularly serves in the organizing and program committee of many data mining conferences. More information about him can

be found at http://www.cs.umbc.edu/ hillol.

Byung-Hoon Park received the MS and PhD degrees in computer science both from the Washington

State University in 1996 and 2001, respectively. He is currently a research scientist at the Computer

Science and Mathematics Division of Oak Ridge National Laboratory (ORNL). His research areas include

distributed data mining, computational biology, genetic computing, data stream analysis, and text mining.

His research activities have been supported by the Genomes-to-Life program of Department of Energy

(DOE), Scientific Data Management (SDM) of DOE SciDAC program, and the Biodefense Knowledge

Center projects of Department of Homeland Security. Before joining the ORNL, Dr. Park was with University of Maryland

Baltimore County as a postdoctoral research associate, where he was involved in NASA EOS distributed data mining project.

He served on the program committees of several data mining conferences and workshops. He also serves as a reviewer of

numerous journals and conferences.

Haimonti Dutta received her BS degree in Computer Science from Jadavpur University, Kolkata, India

in 1999 and the MS degree in Computer and Information Science from Temple University, Philadelphia

in 2002. She worked for an year as a Software Consultant at iGate Global Solutions, Bangalore. She

is currently a Phd student in the Department of Computer Science and Electrical Engineering at the

University of Maryland, Baltimore County. Her research interests include distributed data mining, data

stream monitoring, grid mining and medical informatics.

APPENDIX

APPENDIX: THE EXPONENTIAL DECAY PROPERTY OF THE NON-BOOLEAN FOURIER

SPECTRUM

Let us consider
�
-dimensional discrete domain � � � �- ��� 7:9�3 � ��� 3 � - � � > , where each ele-

ment � 5 � is denoted as � 0 � 3 0 T 3 � � � 3 0 � � . Note that �@� 3 � T 3<;=;=;@3 � � denote the cardinalities of

0@� 3 0 T 3 ��� � 3 0 � respectively. That is, the component 0 - can take only the values 9�3 � 3 � � � 3 � - � � .
The Fourier basis function that corresponds to the partition j is,

 �� ���?��� � �� ��� � �"! #&% ') * , * - *

The Fourier transform that corresponds to the partition j is then,

N � � � �� ��� ����
�
R

 �� ����� � �O���

The inverse Fourier transform for an instance vector x is,

C ���?� � � � N �
 �� �O���

where

 �� ����� is the complex conjugate of

 �� ����� .
Now we prove the exponential decay property of Fourier spectrum in a non-Boolean domain.

For the sake of simplicity, let us further assume that each � - � ! � � , where � - is any non-

negative integer, so that the 1 -th non-binary variable can be represented using � - bits. The

results stated here are general and they extend easily to the case where the cardinalities are

not powers of two. In the following proof, we treat a schema4 as both a subset of � and a

vector in � ��� �- ��� 7 � 3 9�3 ��� � 3 � - � � > . � is the set of all schemata on � . The proof is based on

transforming each non-Boolean vector in the
�
-dimensional space � to a (longer) Boolean vector

in ��� � 7:9�3 � >�� , where � � L �- ��� � - . This is done by replacing each feature of a vector in �
with its binary expansion. Following arguments establish a correspondence between the energy

contained in corresponding sets of Fourier coefficients in the spectrum of the function defined

on � and the function induced on ��� by the transformation. Thus, since the exponential decay

property holds for the Boolean case, it must hold for the general discrete case as well.

4A schema is a hyperplane that denotes a subset of domain members. It is essentially a similarity based equivalence class.

Schemata is its plural form.

We next define the transformation

� D ���I � � 3

formally. � � refers to the set of all schemata on � � , that is, � � � 7 � 3 9�3 � > � . We first define

feature-wise transformations

 - D 7 � 3 9�3 � 3 � � � 3 � - � � >��I 7 � 3 9�3 � > �
�

by

 - � 0 - � �
���� �

'� 	�
 �� � ��� � � if 0 - � �

0 �- if 0 - 587:9�3 � 3 ��� � 3 � - � � >
where 0 �- is the � - -bit binary representation of 0 - . Now for any schema
 � � �c� 3 � T 3 � � � 3 � � � 5 � ,� is defined as

� D � � � 3 � T 3 � ��� 3 � � � �I �
 � � � � � 3
 T � � T � 3 � � � 3
 � � � � �(�� is essentially a map from an
�
-feature schema in an arbitrary discrete domain to a � -feature

schema in a binary domain. We note here that we treat � as a subset of � and thus can apply �
to elements of � . For a subset ��� � we use the notation � � � � to denote the set 7 � ����� � � 5 � > .

Let us further assume that C ����� is a functional representation of a decision tree � whose

domain of definition is � . We establish some further before we proceed. We use � to denote the

set of schemata 7 � 3 9 > � . That is, schemata in � have only zeroes at their fixed (non-wildcard)

features. We also define a set of schemata associated with any fixed schema
 5 � :

� �
 � � 7 � 5 � � � � � � , if � � � 9 and � � 587:9�3 � 3 ��� � 3 � � � � > , otherwise >

where � � denotes the
�

-th feature in the schema � , and similarly for � � . Thus elements of � �
 �
can have wildcards at those positions where
 has zeroes.

Lemma 6: For any schema
 5 � ,

�
� ����� �

 �
� ������� �

� ��� V � Y N �
 � � � �O���(�

Proof: For any � 5
 ,
� � � �� � �

�
R��
� C ���?�
 �

�������

� ���� �
 � � ����	� V � Y �� � �
�
R � � C �O���
 �

� �����

where � � � and ��� �
 � � denote the sizes of � and � �
 � respectively. Now for any � 5
 and

� 5 � �
 � ,
 �
� ����� is invariant over � 5 � . Let us denote this value by

 �
� � � � . Then we get

� � � ���� �
 � � ����	� V � Y �� � �
�
R � � C �O���
 �

� �����

� ���� �
 � � ����	� V � Y

 �

� � � �
� � �

�
R���� C �����

� ���� �
 � � ����	� V � Y � � � �
 �
��� � �

where � � � � is the average of C �O��� 3 for � 5 � . Now � � � � (by inverse Fourier transform) for any

� 5 � �
 � is

� � � ��� �� � �
�
, � �
�

� ��� � �

 �

� �O��� � �� � �
�

� �
� � �
�
, � �

 �
� �O��� � �

� ��� � �

 �

� � � �

since L , ���
 �
� � � � equals 0 if ���5
 and � � � otherwise. Similarly, � � � � � � � for any � 5 � �
 � is

� � � � � � � � � � ��� N �
 � � � � � �(�
Since for any � , � � � ��� � � � � � �(� ,

�
� ��� � �

 �
� � � � � �

� ��� V�� Y N �
 � � � � � � �
Therefore,

�
� ��� � �

 �
� �O��� � �

� ��� V � Y N �
 � � � ����� � 3 for all � 5 � �

This completes the proof of the lemma.
�

Now let us define � �
 � as,

� �
 � � 7 � 5
 � * � � �J� * �
 � >

where * � � � and * �
 � denote the orders of � and
 respectively. � �
 � is a subset of
 which only

includes partitions whose orders are the same as that of
 . Now consider the following corollary.

Corollary 1: For any � �
 � and � � � �
 � � ,
�

� ��� V � Y � �

 �

� �O��� � �
� ��� V � V � Y Y N �
 � � � ����� �

Proof: Let
� �] � be the set of all schemata that are obtained by replacing � of the *-s in

with zero Then,

�
� ��� V � Y � �

� ���?�
 �

� ����� � �
� ��� � �

�
� �O�����

� V � Y�
�=���

� � � �
� �
� ������� �

�
� � � � �

�
� ���?�

� �
	 ��� V � Y N 	
 	 � � ���?�(��� � V � Y�

�<���
��� � �

� �
� ��� ��� �

�
	 ��� V � Y N 	
 	 � � ���?�(�

� �
� ��� V � V � Y Y N �
 � � � ����� �

The second equality follows from Lemma 6.
�

Now let us rephrase Linial’s original lemma as follows. That is, in the Boolean Fourier basis

notation,

�
� V � Y�
 �

N T� �
��� � �

where �J� � � decreases exponentially in
�

. Now consider the main theorem.

Theorem 1: In a non-Boolean
�
-dimensional discrete domain � , for any non-negative integer

� � �
and Fourier spectrum � � -s of a decision tree defined over � ,

�
� V � Y�
 �

��� � � ��� T �
�J� � �

where � � � � ��� denotes the magnitude of � � .

Proof: For the sake of convenience, let us define,

C � ����� � �
� ��� V � Y � �

 �
� �O���

C � V�� Y � � �O���(� � �
� ��� V � V � Y Y N �
 � �����

Then, by Corollary 1, C � ���?��� C � V � Y � � ���?�(� . Following Parseval’s Identity,

�� � �
�
R��
� C T� ����� � �� � �

�
R��
� C T� V � Y � � �O���(�

� �
� ��� V � Y � � � � � � T

� �
� ��� V � V � Y Y N T�

Since, for any � 5
 and / 5 � �
 � 3 * � � ��� * � / � ,
�
� V � Y�
 �

�
� ��� V � Y � � � � � � T � � � V � Y

�
� ��� V � V � Y Y N T�

� �
� V � Y
 �

N T�

� ��� � �

Thus, the non-Boolean Fourier spectrum of a decision tree also has the exponential decay

property.
�

