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Abstract

This paper presents a novel Fourier analysis-based tech-
nique to aggregate, communicate, and visualize decision
trees in a mobile environment. Fourier representation of
a decision tree has several useful propertiesthat are partic-
ularly useful for mining continuous data streams from small
mobile computing devices. This paper presents algorithms
to compute the Fourier spectrum of a decision tree and the
vice versa. It offersa framework to aggregate decision trees
in their Fourier representations. It also describes a touch-
pad/ticker-based approach to visualize decision trees using
their Fourier spectrum and an implementation for PDAs.

1. Introduction

Analyzing and monitoring time-critical data streams us-
ing mobile devices in a ubiquitous manner is important for
many applications in finance, defense, process control and
other domains. These applications demand the ability to
quickly analyze large amount of data. Decision trees (e.g.,
CART[4], ID3[2]], and C4.5 [22]) are fast, and scalable.
So decision tree-based data mining is a natural candidate
for monitoring data streams from ubiquitous devices like
PDAs, pamtops, and wearable computers. However, there
are several problems.

Mining time-critical data streams usually requires on-
line learning that often produces a series of models[6, 8, 15,
23] like decision trees. From a data mining perspectiveit is
important that these models are properly aggregated. This
is because different data blocks observed at different time
frames may generate different modelsthat may actually be-
long to a single model which can be generated when all the
data blocks are combined and mined together. Even for de-
cision trees [5, 24] that are capable of incrementally modi-
fying themselves based on new data, in many applications
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(e.g., multiple data streams observed at different distributed
locations) we end up with an ensemble of trees. Apart from
better understanding of the model, communication of large
number of trees over awireless network also poses a major
problem. We need on-line data mining algorithms that can
easily aggregate and evolve modelsin an efficient represen-
tation.

Visualization of decision trees [1] in a small display is
also achallenging task. Presenting adecision tree with even
a moderate number of featuresin a small display screen is
not easy. Since the number of nodes in a decision tree may
grow exponentially with respect to the number of features
defining the domain, drawing even a small tree in the dis-
play area of a palmtop device or a cell phone is a difficult
thing to do. Reading an email in a cell phone is sometimes
annoying; so imagine browsing over alarge number of tree-
diagrams in a small screen. It simply does not work. We
need an aternate approach. We need to represent trees in
such away that they can be easily and intuitively presented
to the user using a small mobile device.

This paper takes a small step toward that possibility. It
considers manipulation and visualization of decision trees
for mining data streams from small computing devices. It
points out that Fourier basis offers an interesting representa-
tion of decision treesthat can facilitate quick aggregation of
alarge number of decision trees[9, 18] and their visualiza-
tion in a small screen using a novel “decision tree-ticker”.
The efficient representation of decision treesin Fourier rep-
resentation also alows quicker communication of tree en-
sembles over low-bandwidth wireless networks. Although
we present the material in the context of mobile devices, the
approach is also useful for desktop applications.

Section 2 explains the relation between Fourier repre-
sentation and decision trees. It also presents an agorithm
to compute the Fourier spectrum of adecision tree. Section
3 considers aggregation of multiple trees in Fourier repre-
sentation. Section 4 presents a decision tree visualization
technique using a touch-pad and a ticker. Section 5 de-
scribes an application of this technology for mining stock



data streams. Finally, Section 6 concludes this paper.

2. Decision Trees as Numeric Functions

This paper adopts an algebraic perspective of decision
trees. Note that a decision tree is a function that maps the
domain members to a range of class labels. Sometimes, it
is a symbolic function where features take symbolic (non-
numeric) values. However, a symbolic function can be eas-
ily converted to anumeric function by simply replacing the
symbols with numeric values in a consistent manner. See
Figure 1 for an example. A numeric function-representation
of adecision tree may be quite useful. For example, we may
be able to aggregate a collection of trees (often produced
by ensembl e learning techniques) by simply performing ba-
sic arithmetic operations (e.g. adding two decision trees,
weighted average) in their numeric representations. Later
in this paper we will see that a numeric representation is
also suitable for visualizing and aggregating decision trees.

Oncethetreeis converted to anumeric discrete function,
we can also apply any appropriate analytical transformation
that we want. Fourier transformation is one such possibility
anditisaninteresting one. Fourier basis offersan additively
decomposabl e representation of afunction. In other words,
the Fourier representation of afunction is aweighted linear
combination of the Fourier basis functions. Theweights are
called Fourier coefficients. The coefficients completely de-
fine the representation. Each coefficient is associated with
a Fourier basis function that depends on a certain subset
of features defining the domain of the data set to be mined.
Thefollowing section presentsabrief review of Fourier rep-
resentation.

2.1. A Brief Review of the Fourier Basis

Fourier bases are orthogonal functions that can be used
to represent any function. Consider the function space over
the set of all /-bit Boolean feature vectors. The Fourier ba-
sis set that spans this space is comprised of 2¢ Fourier ba-
sis functions; for the time being let us consider only dis-
crete Boolean Fourier basis. Each Fourier basis function
is defined as ¢5(x) = (—1)*¥). Where j and x are bi-
nary strings of length ¢. In other wordsj = (51, j2,- - - j¢),
x = (z1,79, --x¢) and j,x € {0,1}% x - j denotes the
inner product of x and j. ;(x) can either be equal to 1
or -1. The string j is caled a partition. The order of a
partition j is the number of 1-sin j. A Fourier basis func-
tion depends on some z; only when j; = 1. Therefore, a
partition can also be viewed as a representation of a cer-
tain subset of x;-s; every unique partition correspondsto a
unique subset of z;-s. If apartition j has exactly o number
of 1-sthen we say the partitionis of order a sincethe corre-
sponding Fourier function depends on only those o number

of features corresponding to the 1-s in the partition j. A
function f : X! — R, that maps an ¢-dimensional space of
binary strings to a real-valued range, can be written using
the Fourier basisfunctions: f(x) = 3 ; w;v;(x); where w;
is the Fourier coefficient corresponding to the partition j;
wj = 57 >y f(x)15(x). The Fourier coefficient w; can be
viewed as the relative contribution of the partition j to the
function value of f(x). Therefore, the absolute value of w ;
can be used asthe “significance” of the corresponding parti-
tion j. If the magnitude of some w; is very small compared
to other coefficients then we may consider the j-th partition
to be insignificant and neglect its contribution.

2.2. Fourier Analysis with Non-binary Features

The Fourier basis can be easily extended to the non-
Boolean case. Consider a domain defined by ¢ possibly
non-Boolean features where the i-th feature can take )\ ; dis-
tinct values. Let A = A;, \s - - - A,. The generalized Fourier
basis function over an \-ary feature space is defined as,
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When\; = Xy = --- = A\, = X\ we can write, 1/Jj(>‘) (x) =
exp X (x3) Where j and x are \-ary strings of length ¢.
The Fourier coefficients for non-Boolean domain can be

defined as follows:
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where E}A) (x) isthe complex conjugate of 1 J.(A) (x).

Since adecision tree is afunction defined over adiscrete
space (inherently discrete or some discretization of acontin-
uous space) we can computeits Fourier transformation. We
shall discuss the techniques to compute the Fourier spec-
trum of a decision tree later. It turns out that the Fourier
representation of a decision tree with bounded depth has
some very interesting properties [12, 14]. These observa-
tions are discussed in the following section.

2.3. Fourier Spectrum of a Decision Tree: Why
bother?

For ailmost all practical applications decision trees have
bounded depths. The Fourier spectrum of a bounded depth
decision tree has some interesting properties.

1. The Fourier representation of a bounded depth (say k)
Boolean decision tree only has a polynomia humber
of non-zero coefficients; all coefficients corresponding
to partitions involving more than & feature variables
are zero. The proof isrelatively straight forward.



Figure 1. (Top) A symbolic decision tree and
(Bottom) the numeric (Boolean) version that
simply replaces the symbols by numbers.

2. If the order of a partition beits number of defining fea-
tures then the magnitude of the Fourier coefficients de-
cay exponentially with the order of the corresponding
partition; in other words low order coefficients are ex-
ponentially more significant than the higher order co-
efficients. This was proved in [14] for Boolean deci-
sion trees. Its counterpart for trees with non-boolean
features can be found elsewhere [18].

These observations suggest that the spectrum of the de-
cision tree can be approximated by computing only a small
number of low-order! coefficients. So Fourier basis offers
an efficient numeric representation of a decision tree in the
form of an algebraic function that can be easily stored, com-
municated, and manipulated.

2.4. From Fourier Coefficients to a Decision Tree

Fourier coefficients have important physical meanings.
Recall that every coefficient is associated with a Fourier ba-
sis function. Any given basis function depends on a unique
subset of features defining the domain. For an /-bit Boolean
domain there are 2 unique feature subsets. There are also
2¢ different Fourier basis functionsand each of them is asso-
ciated with a unique subset. The magnitude of a coefficient

10rder of a coefficient is the number of features defining the corre-
sponding partition. Low-order coefficients are the ones for which the or-
ders of the partitions are relatively small

represents the “strength” of the contribution of the corre-
sponding subset of features to the overall function value.
So if the magnitude of a coefficient is relatively large then
the corresponding features together have strong influence
on the function value. For example, consider a linear func-
tion of the form f(x) = >, a;z;. All terms in this func-
tion are linear; so the features together (in a multiplicative
sense) do not make any contribution to the function value.
This linearity is aso reflected in its Fourier spectrum. It
is easy to show that all Fourier coefficients of this function
corresponding to basis functions that depend on more than
one variable are zero. This connection between the struc-
ture of the function and its spectrum is a general property
of the Fourier basis. The magnitudes of the Fourier coef-
ficients expose the underlying structure of the function by
identifying the dependencies and correlation among differ-
ent features.

However, Fourier spectrum of a decision tree tells us
more than the interactions among the features. This coef-
ficients can also tell us about the distribution of class labels
at any node of the decision tree. Recall that any nodein the
tree is associated with some feature ;. A downward link
from the node z; is labeled with an attribute value of this
i-th feature. As aresult, a path from the root node to a suc-
cessor node represents the subset of domain that satisfies
the different feature values labeled along the path. These
subsets are essentially similarity-based equival ence classes.
In this paper we shall call them schemata (schemain sin-
gular form). If h is a schemain a Boolean domain, then
h € {0, 1, *}¢, where  denotes a wild-card that matches
any value of the corresponding feature. For example, the
path {(x3 Y T x2} in Figure 1(Bottom) represents
the schema0 x 1, since all members of the data subset at the
final node of this path take featurevalues0 and 1 for z; and
T3 respectively.

The distribution of class |abelsin a schemais an impor-
tant aspect since that identifies the utility of the schema as
a decision rule. For example, if al the members of some
schemah has aclass label value of 1 then h can be used as
an effective decision rule. On the other hand, if the propor-
tion of label values 1 and 0 isamost equal then h cannot be
used as an effective decision rule. In decision tree learning
algorithms like ID3 and C4.5 this “skewedness’ in the dis-
tribution for a given schema is measured by computing the
information-gain defined in the following.

h
Z Ih| Entropy(hy)

Gain(h,z;) = Entropy(h) — ]
)

veValues(z;

where Values(x;) is the set of all possible values for at-
tribute z;, and |h,| is the set of those members of h that
have a value v for attribute z;; if p and ¢ are the propor-



tions of the positive and negative instances in some h, then
Entropy(h) = —plogp — qlogg.

The gain computation clearly depends on the proportion
of classlabelsin aschemawhich can be determined directly
from the Fourier spectrum of the tree. For example consider
aproblem with Boolean class |abels {0, 1}. The total num-
ber of members of schemah with classlabels 1,

ni(h) = Y wi(B(h)) (3
j€I(h)
where,
0 if hz = *;
Ji(h) :{ * it by =0, 1;
0 if hl = 0, *]
fih) :{ 1 ifh; =1

Let ny be the total number of features that are set to spe-
cific values in order to define the schema and ¢ be the
total number of features defining the entire domain. So
the total number of members covered by the schema h is
2¢=ms . The total number of membersin h with class label
0, ng = 2= —n,. Clearly, we can compute this distribu-
tion information for any given schema using the spectrum
of the tree. In other words, we can construct the tree using
the Fourier spectrum of theinformation gain. Thefollowing
section presents a fast technique for computing the Fourier
spectrum of a decision tree.

2.5. Computing the Fourier Transform of a Tree

The Fourier spectrum of a decision tree can be easily
computed by traversing the leaf nodesin a systematic fash-
ion. The proposed algorithm is extremely fast and the over-
head of computing these coefficients is minimal compared
to the load for learning the tree. Let A be the completein-
stance space. Let us also assume that there are n leaf nodes
in the decision tree and the i-th leaf node covers a subset of
A, denoted by .S;,. Therefore, U, S;, = A.

The j-th coefficient of the spectrum can be computed as
follows:

|—i| 3 £ ()
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Now note that both f(x) and +;(x) take a constant value
for every member x in S;,. Since the path to a leaf node
represents a schema, with some abuse of symbols we can
write,

wi = |Sl1|
! Al

|51, |

f(ha)ys(hy) + -+ A f(hn)ii(hn)

Where h; is a schema defined by a path to [; respectively.
Further details about this algorithm can be found el sewhere
[18]. For each path from the root to a leaf node(schemah),
all non-zero Fourier coefficient are detected by enumerating
all possible value for each attribute in h. The running time
of thisalgorithmis O(n).

3. Aggregating Multiple Trees

The Fourier spectrum of a decision tree-ensemble classi-
fier can also be computed using the algorithm described in
the previous section. We first have to compute the Fourier
spectrum of every tree and then aggregate them using the
chosen scheme for constructing the ensemble. Let f(x) be
an ensemble of m different decision trees where the out-
put is aweighted linear combination of the outputs of these
trees.

f(x) = afi(x) +azfa(x) + ... + anfim(x)
= @y w00+ an Y w" ()

JEJ JEIm

where f;(x) and a; are i*" decision tree and its weight re-
spectively. J; isset of non-zero Fourier coefficientsthat are
detected by i decisiontree and wj(’) isaFourier coefficient
in .J;. Now we can write,

fx) = > wi(x) (4)

jedJ

wherew; = > aw!” and J = U, J;.

Therefore Fourier spectrum of f(x) (an ensemble clas-
sifier) is simply the weighted spectrum of each tree. The
spectrum of the ensemble can be directly useful for at least
two immediate purposes:

1. visualization of the ensemble through its Fourier spec-
trum,

2. minimizing the communication overhead,

3. understanding the ensemble classifier through its spec-
trum, and

4. construction of simpler and smaller ensemble (possi-
bly a single concise tree) from the aggregated spec-
trum.

The following section considers the visualization aspect.

4. Visualization of the Fourier Representation

Fourier representation offers a unique way to visualize
decision trees. This section presents a ticker and touchpad-
based approach to visualize decision trees that are espe-
cially suitable for smaller displays like the ones that we get



in pamtop devices. However, the approach is aso suitable
for desktop applications.

4.1. Fourier Spectrum-based Touch-pad and Ticker

Fourier coefficients of afunction provide usalot of use-
ful information. Aswe noted earlier, individual coefficients
tell us about strongly mutualy interacting features that
significantly contribute toward the overall function value.
Moreover, different subsets of these coefficients can aso
provide us the distribution information (i.e. “information-
gain” value used in ID3/C4.5) at any node. This section de-
velops a novel approach for visualizing decision trees that
exploits both of these properties of the Fourier spectrum.
The approach is based on two primary components:

1. A touch-pad that presents a 2D density plot of all the
significant coefficients and

2. a ticker that alows continuous monitoring of
information-gain produced by a set of classifiers con-
structed by a certain group of features (possibly se-
lected using the touch-pad). This is particularly im-
portant for time-critical applications.

Each of them is described in details next.
4.2. The Touch-pad

The touch-pad is a rectangular region that presents
a graphical interface to interact with the distribution of
Fourier coefficients. Let us consider any arbitrary set of
coefficients. These coefficients can be viewed as a graph
(V, E) where every node in V' is associated with a unique
coefficient; E isthe set of edges where every edge between
node v; and v; is associated with the “distance” (p(v;, v;))
between their associated partitions. The distance metric (p)
can be chosenin different ways. For example, if the domain
is binary, partitions are also going to be binary strings. So
we may choose hamming distance as the metric for defin-
ing the graph. For discrete non-binary partitions we may
choseany of thewidely known distance metrics. The choice
of distance metric does not fundamentally change the pro-
posed approach. Any reasonable distance metric that cap-
tures the distance between a pair of integer strings (i.e. par-
titions) should work fine with the proposed visualization ap-
proach.

Once the graph (V, E) is defined, our next task is to
project it to a two dimensiona space in such a way that
“neighbors’ in the original high dimensional space do re-
main “neighbors’ in the projected space. In other words,
we would like to have near isometric projections where

ZE;—:)J; = q for all pairsi and 5 and constant value of a;

v; and v;; are the projections of v; and v; respectively. This
work makes use of existing off-the-shelf algorithmsto con-
struct this projection. It usesthe widely known self organiz-
ing feature map (SOM) [10, 11, 13] for this purpose. The
SOM takes the Fourier coefficients and maps them to atwo
dimensional grid where coefficients with similar partitions
are located in neighboring positions. Although, this par-
ticular approach uses the SOM for the 2-D projection, any
other technique (possibly greedy algorithms) should work
fine as long as the relative distance between the nodes are
reasonably preserved. The touch-pad is aso color coded
in order to properly convey the distribution of significant
and insignificant coefficients. Figure 2 shows a screen shot
of the implementations of the touch-pad in a HP Jornada
palmtop device.

The touch-pad is aso interactive. Since the display area
is usualy small our implementation of the touch-pad of-
fers variable degrees of resolutions. The user can interac-
tively zoom-in or zoom-out of a specific region. The user
can aso find out the subset of features defining acertain part
of thetouch-pad by interactively choosing aregion from the
screen. By marking acertain region of interest, the user will
get a better understanding about interesting patterns among
features residing and their finer and more detailed visual-
ization. This interactive feature of the touch-pad also gives
the user an opportunity to explore the dependencies among
selected subset of features with the aid of a dynamically
changing “ticker”. The following section describes this in
detail.

4.3. The Ticker

The ticker is provided to allow continuous monitoring
of specific classifiers produced by the decision trees. This
is particularly important for time-critical applications. The
ticker shows the “strengths’ (measures like information-
gain used frequently in the decision tree literature) for a
subset of “good” decision rules produced by the trees. Fig-
ure 2 shows screen shot of the ticker depicting the strengths
of aset of classifiersat aparticular time. Asnew dataarrive
the strengths are modified.

It is inherently designed to complement the touch-pad-
based approach to visualize the spectrum of the decision
tree. Recall that the information-gain (i.e. differencein the
entropies) at aparticular node of adecisiontreeis computed
by using the distribution of the domain membersthat it cov-
ers. As we noted earlier, the information-gain can aso be
computed from the spectrum of the decision tree. User’s se-
lection of a certain region from the touch-pad identifies the
current interest of the user to a certain subset of features.
The user can invoke the ticker and instruct it to monitor al
the decision rules that can be constructed using those fea-
tures. The user can also interactively select the decision
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Figure 2. (Top) Fourier spectrum-based de-
cision tree mining interface for HP Jornada.
(Bottom) An enlarged view of the interface.
The interface has three windows. The left-
most window is the touch-pad. The bottom
window shows the ticker. The right window
is a small area to interactively construct and
compute the accuracy of the classifiers.

rules that are comprised of different features. Theticker in
turn collects the relevant Fourier coefficients and computes
the information-gain associated with all the decision rules
that can be constructed using those features and shows only
the good ones.

5. Experiments with Financial Data Streams

This section presents the experimental performance of
the proposed aggregation approach for combining multiple
decision trees. It presents results using two ensemble learn-
ing techniques, namely Bagging and Arcing.

The ensemble learning literature considers different
ways to compute the output of the ensemble. Averaging
the outputs of the individual models with uniform weight
is probably the simplest possibility. Perrone and Cooper
[19][17] refer to this method as Basic Ensemble Method
(BEM) or naive Bagging. Breiman proposed an Arcing
method Arc-fx [2][3] for mining from large data set and
stream data . It is fundamentally based on the idea of Arc-
ing—adaptive re-sampling by giving higher weightsto those

instances that are usually mis-classified. We consider both
of these ensemble learning techniques to create an ensem-
ble of decision trees from the data stream. These trees are
however combined using the proposed Fourier spectrum-
based approach which the regular ensemble learning tech-
niques do not offer. We aso performed experiments us-
ing an AdaBoost-based approach suggested elsewhere [7].
However, we choose not to report that sinceits performance
appears to be considerably inferior to those of Bagging and
Arcing for the data set we use.

Not all the models generated from different data blocks
should always be aggregated together. Sometimes we may
want to use a pruning algorithm [16, 20] for selecting the
right subset of models. Sometimes a “windowing scheme’
[7, 3] can be used where only W most recent classifiers are
used for learning and classification.

Our experiments were performed using a semi-synthetic
data stream with 174 Boolean attributes. The objectiveisto
continuously evolve a decision tree-based predictive model
for a Boolean attribute. The data-stream generator is es-
sentially a C4.5 decision tree learned from three years of
S&P100 and Nasdaq 100 stock quote data. The original
data are pre-processed and transformed to discrete data by
assigning discrete values for “increase” and “decrease” in
stock quote between consecutive days (i.e. local gradient).
Decision trees predict whether the Yahoo stock is likely to
increase or decrease based on the attribute values of the 174
stocks.

We assume a non-stationary sampling strategy in order
to generate the data. Every leaf in the decision tree-based
datagenerator is associated with a certain probability value.
Data samples are generated by choosing the leaves accord-
ing to the assigned probability distribution. This distribu-
tion is changed several times during a single experiment.
We also add white noise to the generator. Test data set is
comprised of 10, 000 instances.

We implemented the naive Bagging and Arcing tech-
niques and performed various tests over the validation data
set as described below. Decision tree models are gener-
ated from every data block collected from the stream and
their spectrums are combined using the BEM and Arc-
ing. We studied the accuracy of each model with var-
ious sizes (V) of data block at each update. We use
N =100, 200, 300, 400, 500. We also studied the accuracy
of each model generated using the “windowing” technique
with various window sizes, W = 50,80, 100. All the re-
sults are measured over 300 iterations where every iteration
corresponds to a unique discrete time step.

Figure 3 plots the classification accuracies of Bagging
and Arcing with various data block sizes. Bagging con-
vergesrapidly with al different block sizes beforeor around
50 iterations, while Arcing shows gradual increase through-
out al iteration steps. Although we stopped at 300 itera-
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Figure 3. Accuracy vs. iterations with vari-

ous data block sizes: (Top) Bagging (Bottom)
Arcing.

tions, the accuracy does not seem to reach its asymptotic
value. Figure 4 plots the classification accuracies of Bag-
ging and Arcing with various window size. With relatively
largewindow size (80 and 100), we observed small decrease
in accuracies in both cases. Figure 5 plots the classification
accuracies of Bagging and Arcing using different signifi-
cant fractions of the Fourier spectrum. It shows that only a
small fraction of all the coefficientsin the spectrum is suffi-
cient for accurate classification. Further details about these
and additional experiments studying the complexity of the
Fourier representations of decision trees can be found else-
where[18].

6. Conclusion

The emerging domain of wireless computing is aluding
the possibility of making data mining ubiquitous. However,
this new breed of applicationsislikely to have different ex-
pectations and they will have to work with different system
resource requirements. Thiswill demand dramatic changes
in the current desktop technology for data mining. This pa
per considered a small but important aspect of thisissue.

This paper presented a novel Fourier analysis-based ap-
proach to enhance interaction with decision trees in a mo-
bile environment. It observed that a decision tree is afunc-
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Figure 4. Accuracy vs. iterations with vari-
ous window sizes: (Top) Bagging (Bottom)
Arcing.

tion and its numeric functional representation in Fourier ba-
sis has severa utilities; the representation is efficient and
easy to compute. It is also suitable for aggregation of
multiple trees frequently generated by ensemble-based data
stream mining techniques like boosting and bagging. This
approach also offers a new way to visualize decision trees
that is completely different from the traditional tree-based
presentation used in most data mining software. The ap-
proach presented here is particularly suitable for portable
applications with small display areas. The touch-pad and
ticker-based approach is very intuitive and can be easily
implemented on touch sensitive screen often used in small
wireless devices. We are currently extending the ticker in-
terface, introducing different additional application func-
tionalities, and exploring related techniques to mine real-
valued financial data online.

Acknowledgments

The authors acknowledge supports from the United
States National Science Foundation CAREER award 11S-
0093353 and NASA (NRA) NAS2-37143.



Accuracy of Fourier Spectrum vs Percentages of FCs Used (Bagging Ensemble Model)

) it

Accuracy (%)

L L L L L L L L L
0 10 20 30 40 50 60 70 80 % 100
Percentage of Fourier Coefficients Used

Accuracy of Fourier Spectrum vs Percentages of FCs Used (Arcing Ensemble Model)

Accuracy (%)

Percentage of Fourier Coefficients Used
Figure 5. Accuracy vs. percentage of Fourier

coefficients used for prediction: (Top) Bag-
ging, (Bottom) Arcing.

References

[1] M. Ankerst, C. Elsen, M. Ester, and H. Kriegel. Visua
classication: An interactive approach to decision tree con-
struction. Proceeding of the 5th International Conference
on Knowledge Discovery and Data Mining, pages 392—397,
1999.

[2] L.Breiman. Bias, variance and arcing classifiers. Technical
Report 460, Statistics Department, University of California
at Berkeley, 1996.

[3] L. Breiman. Pasting small votes for classification in large
databases and on-line. Machine Learning, 36(1-2):85-103,
1999.

[4] L. Breiman, J. H. Freidman, R. A. Olshen, and C. J. Stone.
Classification and regression trees.

[5] P.Domingsand G. Hulten. Mining high-speed data streams.
In Sxth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, Boston, MA, August,
2000.

[6] H. Drucker and C. Cortes. Boosting decision trees. Ad-
vances in Neural Information Processing Systems, 8:479—
485, 1996.

[7] W. Fan, S. Stolfo, and J. Zhang. The application of Ad-
aBoost for distributed, scalable and on-line learning. In
Fifth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, San Diego, California,
1999.

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

(23]

[24]

Y. Freund and R. E. Schapire. Experiments with a new
boosting agorithm. In Machine Learning: Proceedings of
the Thirteenth International Conference, Murray Hill, NJ,
1996.

H. Kargupta, B. Park, D. Hershberger, and E. Johnson. Col-
lective data mining: A new perspective toward distributed
data mining. In H. Kargupta and P. Chan, editors, Ad-
vances in Distributed and Parallel Knowledge Discovery,
pages 133-184. AAAI/ MIT Press, Menlo Park, California,
USA, 2000.

S. Kaski. Fast winner search for SOM-based monitoring
and retrieval of high-dimensional data. In Proceedings of
ICANN99, Ninth International Conference on Artificial Neu-
ral Networks, volume 2, pages 940-945. |EE, London, 1999.
T. Kohonen. The self-organizing map. Proceeding of the
|EEE, 78(9):1464-1479, 1990.

S. Kushilevitz and Y. Mansour. Learning decision rees us-
ing fourier spectrum. In Proc. 23rd Annual ACM Symp. on
Theory of Computing, pages 455464, 1991.

K. Lagus, T. Honkela, S. Kaski, and T. Kohonen. WEB-
SOM for textual data mining. Artificial Intelligence Review,
13(5/6):345-364, December 1999.

N. Linial, Y. Mansour, and N. Nisan. Constant depth cir-
cuits, fourier transform, and learnability. Journal of the
ACM, 40:607—620, 1993.

R. Maclin and D. Opitz. An empirical evaluation of bagging
and boosting. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence, pages 546-551, Cam-
bridge, MA, 1997. AAAI Press/ MIT Press.

D. Margineantu and T. Dietterich. Pruning adaptive boost-
ing. In Proceedings, Fourteenth Intl. Conf. Machine Learn-
ing, pages 211-218, 1997.

C. J. Merz and M. J. Pazzani. A principal components ap-
proach to combining regression estimates. Machine Learn-
ing, 36(1-2):9-32, 1999.

H. Park. Knowledge Discovery from Heterogeneous Data
Streams Using Fourier Analysis of Decision Trees. PhD.
Dissertation, School of Electrical Engineering and Com-
puter Science, Washington State University, August, 2001.
M. P. Perrone and L. N. Cooper. When networks disagree:
Ensemble method for neural networks. In R. J. Mammone,
editor, Neural Networks for Speech and Image processing.
Chapman-Hall, 1993.

A. L. Prodromidis and S. J. Stolfo. Mining databases with
different schemas: Integrating incompatible classifiers. In
R. e. a Agrawal, editor, The Fourth International Confer-
ence on Knowledge Discovery and Data Mining, pages 314—
318. AAAI Press, 1998.

J. R. Quinlan. Induction of decision trees. Machine Learn-
ing, 1(1):81-106, 1986.

J. R. Quinlan. C4.5: Programs for Machine Learning. Mor-
gan Kauffman, 1993.

J. R. Quinlan. Bagging, boosting and C4.5. In Proceedings
of AAAI’96 National Conference on Artificial Intelligence,
pages 725730, 1996.

P. Utgoff. Incremental induction of decision trees. Machine
Learning, 4:161-186, 1989.



