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Abstract. We present a collective approach to learning a Bayesian network from dis-
tributed heterogenous data. In this approach, we first learn a local Bayesian network at
each site using the local data. Then each site identifies the observations that are most
likely to be evidence of coupling between local and non-local variables and transmits
a subset of these observations to a central site. Another Bayesian network is learnt at
the central site using the data transmitted from the local site. The local and central
Bayesian networks are combined to obtain a collective Bayesian network, that models
the entire data. Experimental results and theoretical justification that demonstrate the
feasibility of our approach are presented.
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1. Introduction

Raw data is useful only when it is transformed into knowledge or useful in-
formation. This involves data analysis and transformation to extract interesting
patterns and correlations among the problem variables. In practical applications,
such transformations require efficient data access, analysis, and presentation of
the outcome in a timely manner. For example, web server log contains records of
user interactions when request for the resources in the servers is received. This
contains a wealth of data for the analysis of web usage and identifying differ-
ent patterns. The advent of large distributed environments in both scientific and
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Table 1. Homogeneous case: Site A with a table for credit card transaction
records.

Account Amount Location Previous Unusual
Number record transaction

11992346 -42.84 Seattle Poor Yes
12993339 2613.33 Seattle Good No
45633341 432.42 Portland Okay No
55564999 128.32 Spokane Okay Yes

Table 2. Homogeneous case: Site B with a table for credit card transaction
records.

Account Amount Location Previous Unusual
Number record transaction

87992364 446.32 Berkeley Good No
67845921 978.24 Orinda Good Yes
85621341 719.42 Walnut Okay No
95345998 -256.40 Francisco Bad Yes

commercial domains (e.g. the Internet and corporate intranets) introduces a new
dimension to this process — a large number of distributed sources of data that
can be used for discovering knowledge. Cost of data communication between
the distributed databases is a significant factor in an increasingly mobile and
connected world with a large number of distributed data sources. This cost con-
sists of several components like (a) limited network bandwidth, (b) data security,
and (c) existing organizational structure of the applications environment. The
field of Distributed Knowledge Discovery and Data Mining (DDM) studies algo-
rithms, systems, and human-computer interaction issues for knowledge discovery
applications in distributed environments for minimizing this cost.

In this paper, we consider a Bayesian network (BN) model to represent
uncertain knowledge. Specifically, we address the problem of learning a BN
from heterogenous distributed data. It uses a collective data mining (CDM)
approach introduced earlier by Kargupta et. al. (Kargupta, Huang, Sivakumar
and Johnson, 2001; Kargupta, Park, Hershberger and Johnson, 2000; Hersh-
berger and Kargupta, 2001; Park and Kargupta, 2002). Section 2 provides some
background and reviews existing literature in this area. Section 3 presents the
collective Bayesian learning technique. Experimental results for three datasets
— one simulated and two real world — are presented in Section 4. A prelim-
inary version of these results have been presented in (Chen, Sivakumar and
Kargupta, 2001a; Chen, Sivakumar and Kargupta, 2001b). Finally, Section 5
provides some concluding remarks and directions for future work.

2. Background, Motivation, and Related Work

In this section, we provide and background and motivation to the problem by
means of an example. We then review the existing literature in this area.

Distributed data mining (DDM) must deal with different possibilities of data
distribution. Different sites may contain data for a common set of features of the
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problem domain. In case of relational data this would mean a consistent database
schema across all the sites. This is the homogeneous case. Tables 1 and 2 illustrate
this case using an example from a hypothetical credit card transaction domain.1

There are two data sites A and B, connected by a network. The DDM-objective
in such a domain may be to find patterns of fraudulent transactions. Note that
both the tables have the same schema. The underlying distribution of the data
may or may not be identical across different data sites.

In the general case the data sites may be heterogeneous. In other words, sites
may contain tables with different schemata. Different features are observed at
different sites. Let us illustrate this case with relational data. Table 3 shows
two data-tables at site X. The upper table contains weather-related data and
the lower one contains demographic data. Table 4 shows the content of site Y,
which contains holiday toy sales data. The objective of the DDM process may be
detecting relations between the toy sales, the demographic and weather related
features. In the general heterogeneous case the tables may be related through
different sets of key indices. For example, Tables 3 (upper) and (lower) are related
through the key feature City; on the other hand Table 3 (lower) and Table 4 are
related through key feature State. We consider the heterogenous data scenario
in this paper.

We would like to mention that heterogenous databases, in general, could
be more complicated than the above scenario. For example, there maybe a set
of overlapping features that are observed at more than one site. Moreover, the
existence of a key that can be used to link together observations across sites is
crucial to our approach. For example, in a web log mining application, the key
that can be used to link together observations across sites could be produced
using either a “cookie” or the user IP address (in combination with other log
data like time of access). However, these assumptions are not overly restrictive,
and are required for a reasonable solution to the distributed Bayesian learning
problem.

2.1. Motivation

Bayesian networks offer very useful information about the mutual dependencies
among the features in the application domain. Such information can be used for
gaining better understanding about the dynamics of the process under obser-
vation. Financial data analysis, manufacturing process monitoring, sensor data
analysis, web mining are a few examples where mining Bayesian networks has
been quite useful. Bayesian techniques will also be useful for mining distributed
data. In this section we discuss examples of such scenario and explain how the
proposed collective Bayesian learning algorithm can be useful in practice.

Advances in computing and communication over wired and wireless networks
have resulted in many pervasive distributed computing environments. The In-
ternet, intranets, local area networks, and ad hoc wireless networks are some
examples. Many of these environments have different distributed sources of volu-
minous data and multiple compute nodes. Since data mining offers the capability
of sifting through data in search of useful information, it finds many applications
in distributed systems just like their centralized monolithic counterparts.

1 Please note that the credit card domain may not always have consistent schema. The domain
is used just for illustration.
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Table 3. Heterogeneous case: Site X with two tables, one for weather and the
other for demography.

City Temp. Humidity Wind
Chill

Boise 20 24% 10
Spokane 32 48% 12
Seattle 63 88% 4

Portland 51 86% 4
Vancouver 47 52% 6

City State Size Average Proportion
earning of small

businesses

Boise ID Small Low 0.041
Spokane WA Medium Medium 0.022
Seattle WA Large High 0.014

Portland OR Large High 0.017
Vancouver BC Medium Medium 0.031

Table 4. Heterogeneous case: Site Y with one table holiday toy sales.

State Best Selling Price Number Items Sold
Item ($) (In thousands)

WA Snarc Action Figure 47.99 23
ID Power Toads 23.50 2
BC Light Saber 19.99 5
OR Super Squirter 24.99 142
CA Super Fun Ball 9.99 24

There are many domains where distributed processing of data is a more natu-
ral and scalable solution. For example, consider an ad hoc wireless sensor network
where the different sensor nodes are monitoring some time-critical events. Cen-
tral collection of data from every sensor node may create heavy traffic over the
limited bandwidth wireless channels and this may also drain a lot of power from
the devices. A distributed architecture for data mining is likely to reduce the
communication load and also reduce the battery power more evenly across the
different nodes in the sensor network. One can easily imagine similar needs for
distributed computation of data mining primitives in ad hoc wireless networks
of mobile devices like PDAs, cellphones, and wearable computers. Potential ap-
plications include personalization, collaborative process monitoring, intrusion
detection over ad hoc wireless networks. We need data mining architectures that
pay careful attention to the distributed resources of data, computing, and com-
munication in order to consume them in a near optimal fashion. Distributed data
mining (DDM) considers data mining in this broader context. The objective of
DDM is to perform the data mining operations based on the type and availability
of the distributed resources. It may choose to download the data sets to a single
site and perform the data mining operations at a central location. However, that
decision in DDM should be based on the properties of the computing, storage,
and communication capabilities. This is in contrast with the traditional central-
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ized data mining methodology where collection of data at a single location prior
to analysis is an invariant characteristic.

The wireless domain is not the only example. In fact, most of the applica-
tions that deal with time-critical distributed data are likely to benefit by pay-
ing careful attention to the distributed resources for computation, storage, and
the cost of communication. The world wide web is a very good example. It
contains distributed data and computing resources. An increasing number of
databases (e.g. weather databases, oceanographic data at www.noaa.gov), and
data streams (e.g. financial data at www.nasdaq.com, emerging disease infor-
mation at www.cdc.gov) are coming online; many of them change frequently. It
is easy to think of many applications that require regular monitoring of these
diverse and distributed sources of data. A distributed approach to analyze this
data is likely to be more scalable and practical particularly when the applica-
tion involves a large number of data sites. The distributed approach may also
find applications in mining remote sensing and astronomy data. For example,
the NASA Earth Observing System (EOS), a data collector for a number of
satellites, holds 1450 data sets that are stored, managed, and distributed by the
different EOS Data and Information System (EOSDIS) sites that are geograph-
ically located all over the USA. A pair of Terra spacecraft and Landsat 7 alone
produces about 350 GB of EOSDIS data per day. An online mining system for
EOS data streams may not scale if we use a centralized data mining architecture.
Mining the distributed EOS repositories and associating the information with
other existing environmental databases may benefit from DDM. In astronomy,
the size of telescope image archives have already reached the terabyte range and
they continue to increase very fast as information is collected for new all-sky sur-
veyors such as the GSC-II (McLean, Hawkins, Spagna, Lattanzi, Lasker, Jenkner
and White, 1998) and the Sloan Digital Survey (Szalay, 1998). DDM may offer
a practical scalable solution for mining these large distributed astronomy data
repositories.

DDM may also be useful in environments with multiple compute nodes con-
nected over high speed networks. Even if the data can be quickly centralized
using the relatively fast network, proper balancing of computational load among
a cluster of nodes may require a distributed approach.

2.2. Related Work

We now review important literature on BN learning. A BN is a probabilistic
graphical model that represents uncertain knowledge (Jensen, 1996). Spiegelhal-
ter and Lauritzen (1990) and Buntine (1991) discuss parameter learning of a BN
from complete data, whereas Binder, Koller, Russel and Kanazawa (1997) and
Thiesson (1995) discuss parameter learning from incomplete data using gradi-
ent method. Lauritzen (1995) has proposed an EM algorithm to learn Bayesian
network parameters, whereas Bauer, Koller and Singer (1997) describe methods
for accelerating convergence of the EM algorithm. Learning using Gibbs sam-
pling has been proposed by Thomas, Spiegelhalter and Gilks (1992) and Gilks,
Richardson and Spiegelhalter (1996). The Bayesian score to learn the structure
of a BN is discussed by Cooper and Herskovits (1992), Buntine (1991), and Heck-
erman, Geiger and Chickering (1995). Learning the structure of a BN based on
the Minimal Description Length (MDL) principle has been presented by Bouck-
aert (1994), Lam and Bacchus (1994), and Suzuki (1993). Learning BN structure
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using greedy hill-climbing and other variants was introduced by Heckerman and
Gieger (1995), whereas Chickering (1996) introduced a method based on search
over equivalence network classes. Methods for approximating full Bayesian model
averaging were presented by Buntine (1991), Heckerman and Gieger (1995), and
Madigan and Raftery (1994).

Learning the structure of BN from incomplete data was considered by Chick-
ering and Heckerman (1997), Cheeseman and Stutz (1996), Friedman (1998),
Meila and Jordan (1998), and Singh (1997). The relationship between causality
and Bayesian networks has been discussed by Heckerman and Gieger (1995),
Pearl (1993), and Spirtes, Glymour and Scheines (1993). Buntine (1991), Fried-
man and Goldszmidt (1997), and Lam and Bacchus (1994) discuss how to se-
quentially update the structure of a BN based on additional data. Applications
of Bayesian network to clustering (AutoClass) and classification has been pre-
sented in (Cheeseman and Stutz, 1996; Ezawa and T, 1995; Friedman, Geiger
and Goldszmidt, 1997; Singh and Provan, 1995). Zweig and Russel (1998) have
used BNs for speech recognition, whereas Breese, Heckerman and Kadie (1998)
have discussed collaborative filtering methods that use BN learning algorithms.
Applications to causal learning in social sciences has been presented by Spirtes
et al. (1993)

An important problem is how to learn the Bayesian network from data in dis-
tributed sites. The centralized solution to this problem is to download all datasets
from distributed sites. Kenji (1997) has worked on the homogeneous distributed
learning scenario. In this case, every distributed site has the same feature but
different observations. In this paper, we address the heterogenous case, where
each site has data about only a subset of the features. To our knowledge, there
is no significant work that addresses the heterogenous case.

3. Collective Bayesian Learning

In the following, we briefly review Bayesian networks and then discuss our col-
lective approach to learning a Bayesian network that is specifically designed for
a distributed data scenario.

3.1. Bayesian Networks: A review

A Bayesian network (BN) is a probabilistic graph model. It can be defined as a
pair (G, p), where G = (V, E) is a directed acyclic graph (DAG) (Jensen, 1996;
Heckerman, 1998). Here, V is the vertex set which represents variables in the
problem and E is the edge set which denotes probabilistic relationships among
the variables. For a variable X ∈ V, a parent of X is a node from which there
is a directed link to X. Let pa(X) denote the set of parents of X, then the
conditional independence property can be represented as follows:

P (X | V \ X) = P (X | pa(X)). (1)

This property can simplify the computations in a Bayesian network model. For
example, the joint distribution of the set of all variables in V can be written as
a product of conditional probabilities as follows:

P (V) =
∏

X∈V

P (X | pa(X)). (2)
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Fig. 1. ASIA Model

The conditional independence between variables is either obtained from a priori
expert knowledge or discerned from data, or a combination of both (Jensen,
1996). The set of conditional distributions {P (X | pa(X)), X ∈ V} are called the
parameters of a Bayesian network. Note that if variable X has no parents, then
P (X | pa(X)) = P (X) is the marginal distribution of X.

Figure 1 is a Bayesian network called the ASIA model (adapted from Lau-
ritzen and Spiegelhalter (1988)). The variables are Dyspnoea, Tuberculosis, Lung
cancer, Bronchitis, Asia, X-ray, Either, and Smoking. They are all binary vari-
ables. The joint distribution of all variables is

P (A,S, T, L,B,E,X,D) = P (A)P (S)P (T | A)P (L | S)P (B | S)

P (E | T,L)P (X | E)P (D | B,E).
(3)

The ordering of variables constitutes a constraint on the structure of a Bayesian
network. If variable X appears before variable Y , then Y can not be a parent
of X. We use the ordering (A,S, T, L,B,E,X,D) as prior knowledge in our
example.

Two important issues in using a Bayesian network are : (a) learning a Bayesian
network and (b) probabilistic inferencing. Learning a BN involves learning the
structure of the network (the directed graph), and obtaining the conditional
probabilities (parameters) associated with the network. Once a Bayesian net-
work is constructed, we usually need to determine various probabilities of in-
terest from the model. This process is referred to as probabilistic inference. For
example, in the ASIA model, a diagnosis application would require finding the
probability P (B | D) of Bronchitis, given the (observed) symptom Dyspnoea.
This probability (usually called posterior probability) can be computed using
the Bayes rule.

3.2. Collective Bayesian Network Learning Strategy

We now present a collective strategy to learn a Bayesian network (both structure
and parameters) when data is distributed among different sites. The centralized
solution to this problem is to download all datasets from distributed sites to a
central site. In many applications, this would not be feasible because of the size of
the data, available communication bandwidth, or due to security considerations.
Learning a BN for the homogeneous case was studied by Kenji (1997). In this
case, every distributed site has the same set of features but has different set of
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observations. We address here the heterogenous case, where each distributed site
has all the observations for only a subset of the features.

The primary steps in our approach are:

– Compute local BNs (local model) involving the variables observed at each site
(local variables) based on local data.

– At each site, based on the local BN, identify the observations that are most
likely to be evidence of coupling between local and non-local variables. Trans-
mit a subset of these observations to a central site.

– At the central site, a limited number of observations of all the variables are
now available. Using this, compute a non-local BN consisting of links between
variables across two or more sites.

– Combine the local models with the links discovered at the central site to obtain
a collective BN.

The non-local BN thus constructed would be effective in identifying associa-
tions between variables across sites, whereas the local BNs would detect associ-
ations among local variables at each site. The conditional probabilities can also
be estimated in a similar manner. Those probabilities that involve only variables
from a single site can be estimated locally, whereas the ones that involve variables
from different sites can be estimated at the central site. The same methodology
could be used to update the network based on new data. First, the new data
is tested for how well it fits with the local model. If there is an acceptable sta-
tistical fit, the observation is used to update the local conditional probability
estimates. Otherwise, it is also transmitted to the central site to update the ap-
propriate conditional probabilities (of cross terms). Finally, a collective BN can
be obtained by taking the union of nodes and edges of the local BNs and the
nonlocal BN, along with the conditional probabilities from the appropriate BNs.
Probabilistic inference can now be performed based on this collective BN. Note
that transmitting the local BNs to the central site would involve a significantly
lower communication as compared to transmitting the local data.

It is quite evident that learning probabilistic relationships between variables
that belong to a single local site is straightforward and does not pose any addi-
tional difficulty as compared to a centralized approach.2 The important objec-
tive is to correctly identify the coupling between variables that belong to two (or
more) sites. These correspond to the edges in the graph that connect variables
between two sites and the conditional probability(ies) at the associated node(s).
In the following, we describe our approach to selecting observations at the local
sites that are most likely to be evidence of strong coupling between variables at
two different sites.

3.3. Selection of samples for transmission to global site

For simplicity, we will assume that the data is distributed between two sites
and will illustrate the approach using the BN in Figure 1. The extension of this
approach to more than two sites is straightforward. Let us denote by A and B the
variables in the left and right groups, respectively, in Figure 1. We assume that

2 This may not be true for arbitrary Bayesian network structure. We will discuss this issue
further in the last section.
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the observations for A are available at site A, whereas the observations for B are
available at a different site B. Furthermore, we assume that there is a common
feature (“key” or index) that can be used to associate a given observation in site
A to a corresponding observation in site B. Naturally, V = A ∪ B.

At each local site, a local Bayesian network can be learned using only samples
in this site. This would give a BN structure involving only the local variables
at each site and the associated conditional probabilities. Let pA(.) and pB(.)
denote the estimated probability function involving the local variables. This is
the product of the conditional probabilities as indicated by (2). Since pA(x),
pB(x) denote the probability or likelihood of obtaining observation x at sites A
and B, we would call these probability functions the likelihood functions lA(.) and
lB(.), for the local model obtained at sites A and B, respectively. The observations
at each site are ranked based on how well it fits the local model, using the local
likelihood functions. The observations at site A with large likelihood under lA(.)
are evidence of “local relationships” between site A variables, whereas those with
low likelihoods under lA(.) are possible evidence of “cross relationships” between
variables across sites. Let S(A) denote the set of keys associated with the latter
observations (those with low likelihood under lA(.)). In practice, this step can
be implemented in different ways. For example, we can set a threshold ρA and
if lA(x) ≤ ρA, then x ∈ SA. The sites A and B transmit the set of keys SA, SB ,
respectively, to a central site, where the intersection S = SA ∩ SB is computed.
The observations corresponding to the set of keys in S are then obtained from
each of the local sites by the central site.

The following argument justifies our selection strategy. Using the rules of
probability, and the assumed conditional independence in the BN of Figure 1, it
is easy to show that:

P (V) = P (A,B) = P (A | B)P (B) = P (A | nb(A))P (B), (4)

where nb(A) = {B,L} is the set of variables in B, which have a link connecting
it to a variable in A. In particular,

P (A | nb(A)) = P (A)P (T | A)P (X | E)P (E | T,L)P (D | E,B). (5)

Note that, the first three terms in the right-hand side of (5) involve variables
local to site A, whereas the last two terms are the so-called cross terms, involving
variables from sites A and B. Similarly, it can be shown that

P (V) = P (A,B) = P (B | A)P (A) = P (B | nb(B))P (A), (6)

where nb(B) = {E,D} and

P (B | nb(B)) = P (S)P (B | S)P (L | S)P (E | T,L)P (D | E,B). (7)

Therefore, an observation {A = a, T = t, E = e,X = x,D = d, S = s, L =
l, B = b} with low likelihood at both sites A and B; i.e. for which both P (A)
and P (B) are small, is an indication that both P (A | nb(A)) and P (B | nb(B))
are large for that observation (since observations with small P (V) are less likely
to occur). Notice from (5) and (7) that the terms common to both P (A | nb(A))
and P (B | nb(B)) are precisely the conditional probabilities that involve variables
from both sites A and B. In other words, this is an observation that indicates a
coupling of variables between sites A and B and should hence be transmitted to
a central site to identify the specific coupling links and the associated conditional
probabilities.

In a sense, our approach to learning the cross terms in the BN involves a
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selective sampling of the given dataset that is most relevant to the identification
of coupling between the sites. This is a type of importance sampling, where we
select the observations that have high conditional probabilities corresponding
to the terms involving variables from both sites. Naturally, when the values of
the different variables (features) from the different sites, corresponding to these
selected observations are pooled together at the central site, we can learn the
coupling links as well as estimate the associated conditional distributions. These
selected observations will, by design, not be useful to identify the links in the BN
that are local to the individual sites. This has been verified in our experiments
(see Section 4).

3.4. Performance Analysis

In the following, we present a brief theoretical analysis of the performance of the
proposed collective learning method. We compare the performance of our collec-
tive BN with that of a Bayesian network learned using a centralized approach
(referred to as centralized BN in the sequel).

There are two types of errors involved in learning a BN: (a) Error in BN
structure and (b) Error in parameters (probabilities) of the BN. The structure
error is defined as the sum of the number of correct edges missed and the number
of incorrect edges detected. For parameter error, we need to quantify the “dis-
tance” between two probability distributions. We only consider learning error in
the parameters, assuming that the structure of the BN has been correctly deter-
mined (or is given). A widely used metric is the Kullback-Leibler (KL) distance
(cross-entropy measure) dKL(p, q) between two discrete probabilities, {pi}, {qi},
i = 1, 2, . . . , N

dKL(p, q) =
N∑

i=1

pi ln(
pi

qi

) (8)

where N is the number of possible outcomes.
Indeed, if p∗ is the empirically observed distribution for data samples {si, 1 ≤

i ≤ M} and h is a hypothesis (candidate probability distribution for the under-
lying true distribution), then (Abe, Takeuchi and Warmuth, 1991)

dKL(p∗, h) =

M∑

i=1

p∗(si) ln(
p∗(si)

h(si)
) =

M∑

i=1

1

M
ln

1

M
−

M∑

i=1

1

M
ln(h(si))

= ln
1

M
−

1

M

M∑

i=1

ln(h(si)).

(9)

Therefore, minimizing the KL distance with respect to the empirically observed

distribution is equivalent to finding the maximum likelihood solution h∗ of
∑M

i=1

ln(h(si)).
Since the BN provides a natural factorization of the joint probability in terms

of the conditional probabilities at each node (see (2)), it is convenient to express
the KL distance between two joint distributions in terms of the corresponding
conditional distributions. Let h and c be two possible (joint) distributions of
the variables in a BN. For i = 1, 2, . . . , n, let hi(xi | πi), ci(xi | πi) be the
corresponding conditional distribution at node i, where xi is the variable at
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node i and πi is the set of parents of node i. Following Dasgupta (1997), define
a distance dCP (P, ci, hi) between hi and ci with respect to the true distribution
P :

dCP (P, ci, hi) =
∑

πi

P (πi)
∑

xi

P (xi | πi) ln(
ci(xi | πi)

hi(xi | πi)
). (10)

It is then easy to show that

dKL(P, h) − dKL(P, c) =

n∑

i=1

dCP (P, ci, hi). (11)

Equations (10) and (11) provide a useful decomposition of the KL distance be-
tween the true distribution P and two different hypotheses c, h. This will be
useful in our analysis of sample complexity in the following sub-section.

3.5. Sample Complexity

We now derive a relationship between the accuracy of collective BN and the
number of samples transmitted to the central site. We consider the unrestricted
multinomial class BN, where all the node variables are Boolean. The hypothesis
class H is determined by the set of possible conditional distributions for the
different nodes. Given a BN of n variables and a hypothesis class H, we need to
choose a hypothesis h ∈ H which is close to a unknown distribution P . Given an
error threshold ε and a confidence threshold δ, we are interested in constructing
a function N(ε, δ), such that if the number of samples M is larger than N(ε, δ)

Prob(dKL(P, h) < dKL(P, hopt) + ε) > 1 − δ, (12)

where hopt ∈ H is the hypothesis that minimizes dKL(P, h). If smallest value
of N(ε, δ) that satisfies this requirement is called the sample complexity. This
is usually referred to as the probably approximately correct (PAC) framework.
Friedman and Yakhini (1996) have examined the sample complexity of the max-
imum description length principle (MDL) based learning procedure for BNs.

Dasgupta (1997) gave a thorough analysis for the multinomial model with
Boolean variables. Suppose the BN has n nodes and each node has at most k
parents. Given ε and δ, an upper bound of sample complexity is

N(ε, δ) =
288n22k

ε2
ln2(1 +

3n

ε
ln

18n22k ln(1 + 3n/ε)

εδ
). (13)

Equation (13) gives a relation between the sample size and the (ε, δ) bound. For
the conditional probability hi(xi | πi) = P (Xi = xi | Πi = πi), we have (see
(10))

dCP (P, hopt, h) ≤
ε

n
(14)

We now use the above ideas to compare the performance of the collective
learning method with the centralized method. We fix the confidence δ and sup-
pose that an εcen can be found for the centralized method, for a given sample
size M using (13). Then, following the analysis by Dasgupta (1997),

dCP (P, hcen
opt , hcen) ≤

εcen

n
, (15)
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where hcen
opt is the optimal hypothesis and hcen is the hypothesis obtained based

on a centralized approach. Then from (11)

dKL(P, hcen)− dKL(P, hcen
opt ) =

n∑

i=1

dCP (P, hcen
i,opt, h

cen
i ) ≤

n∑

i=1

εcen

n
= εcen. (16)

For the collective BN learning method, the set of nodes can be split into
two parts. Let Vl be the set of nodes, which have all their parent nodes at the
same local site, and Vc be the set of nodes, which have at least one parent
node belonging to a site different than the node itself. For ASIA model, Vl =
{A,S, T, L,B,X} and Vc = {E,D}. We use nl and nc to denote the cardinality
of the sets Vl and Vc. If a node x ∈ Vl, the collective method can learn the
conditional probability P (x | pa(x)) using all data because this depends only on
the local variables. Therefore, for x ∈ Vl,

dCP (P, hcol
opt, h

col) ≤
εcol
1

n
=

εcen

n
, (17)

where, for the local terms, εcol
1

= εcen. For the nodes in Vc, only the data trans-
mitted to the central site can be used to learn its conditional probability. Suppose
Mc data samples are transmitted to the central site, and the error threshold εcol

2

satisfies (13), for the same fixed confidence 1− δ. Therefore, for x ∈ Vc, we have

from (14) that dCP (P, hcol
opt, h

col) ≤
εcol

2

n
, where εcol

2
≥ εcen, in general, since the

in the collective learning method, only Mc ≤ M samples are available at the
central site. Then from (11) and (17)

dKL(P, hcol
opt) − dKL(P, hcol) =

n∑

i=1

dCP (P, hcol
i,opt, h

col
i )

=
∑

i∈Vl

dCP (P, hcol
i,opt, h

col
i ) +

∑

i∈Vc

dCP (P, hcol
i,opt, h

col
i )

=
nl

n
εcen +

nc

n
εcol
2

(18)

Comparing (16) and (18), it is easy to see that the error threshold of the collective
method is εcol = nl

n
εcen + nc

n
εcol
2

. The difference of the error threshold between
the collective and the centralized method is

εcol − εcen =
nc

n
(εcol

2
− εcen) (19)

Equation (19) shows two important properties of the collective method. First,
the difference in performance is independent of the variables in Vl. This means
the performance of the collective method for the parameters of local variables
is same as that of the centralized method. Second, the collective method is a
tradeoff between accuracy and the communication overhead. The more data we
communicate, more closely εcol

2
will be to εcen. When Mc = M , εcol

2
= εcen, and

εcol − εcen = 0.
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Server Client

selecting samples for transmission structure learning of local term
detecting cross-terms parameter learning of local term
parameter learning for cross-terms likelihood computation
collective BN assembling
data transmission control

Table 5. Functionality of client/server in DistrBN

4. Experimental Results

We tested our approach on three different datasets — ASIA model, real web log
data, and ALARM network. We present our results for the three cases in the
following subsections. A software package called DistrBN has been developed to
implement our proposed algorithm. The software is based on a BN C++ library
called SMILE3. It has a client/server architecture, where a client program runs
at each local site. The server can be at a central site or one of the local sites. The
functionality of client/server is given in Table 5. When we start a distributed
BN learning task using DistrBN, the clients in local sites take charge of the
local BN learning and likelihood computing. Based on the indices of the low
likelihood samples at each site, the server determines the indices of samples
needed for detecting cross-links. The samples corresponding to these indices are
the transmitted from each of the local sites to the server, along with the local
BN model. The server learns the cross-terms and incorporates the local models
along with the cross-terms to obtain a collective BN.

4.1. ASIA Model

This experiment illustrates the ability of the proposed collective learning ap-
proach to correctly obtain the structure of the BN (including the cross-links)
as well as the parameters of the BN. Our experiments were performed on a
dataset that was generated from the BN depicted in Figure 1 (ASIA Model).
The conditional probability of a variable is a multidimensional array, where
the dimensions are arranged in the same order as ordering of the variables,
viz. {A,S, T, L,B,E,X,D}. Table 6 (top) depicts the conditional probability of
node E. It is laid out such that the first dimension toggles fastest. From Table 6,
we can write the conditional probability of node E as a single vector as follows:
[0.9, 0.1, 0.1, 0.01, 0.1, 0.9, 0.9, 0.99]. The conditional probabilities (parameters) of
ASIA model are given in Table 6 (bottom) following this ordering scheme. We
generated n = 6000 observations from this model, which were split into two sites
as illustrated in Figure 1 (site A with variables A, T,E,X,D and site B with
variables S,L,B). The split of variables into two sites was arbitrary and done in
such a fashion to yield two cross-terms. In practice, we do not have control over
the distribution of variables among different sites — this is dictated by what
variables are observed (and stored) at each site. Note that there are two edges
(L → E and B → D) that connect variables from site A to site B, the rest of
the six edges being local.

3 homepage: http://www2.sis.pitt.edu/~genie/



14 R. Chen et al

No. T L E Probability

1 F F F 0.9
2 T F F 0.1
3 F T F 0.1
4 T T F 0.01
5 F F T 0.1
6 T F T 0.9
7 F T T 0.9
8 T T T 0.99

A 0.99 0.01
S 0.5 0.5
T 0.1 0.9 0.9 0.1
L 0.3 0.6 0.7 0.4
B 0.1 0.8 0.9 0.2
E 0.9 0.1 0.1 0.01 0.1 0.9 0.9 0.99
X 0.2 0.6 0.8 0.4
D 0.9 0.1 0.1 0.01 0.1 0.9 0.9 0.99

Table 6. (Top) The conditional probability of node E and (Bottom) All condi-
tional probabilities for the ASIA model

Local A

A 0.99 0.01
T 0.10 0.84 0.90 0.16
E 0.50 0.05 0.50 0.95
X 0.20 0.60 0.80 0.40
D 0.55 0.05 0.45 0.95

Local B

S 0.49 0.51
L 0.30 0.59 0.70 0.41
B 0.10 0.81 0.90 0.19

Table 7. The conditional probabilities of local site A and local site B

Local Bayesian networks were constructed using a conditional independence
test based algorithm (Cheng, Bell and Liu, 1997), for learning the BN structure
and a maximum likelihood based method for estimating the conditional proba-
bilities. The local networks were exact as far as the edges involving only the local
variables. We then tested the ability of the collective approach to detect the two
non-local edges. The estimated parameters of these two local Bayesian network
is depicted in Table 7. Clearly, the estimated probabilities at all nodes, except
nodes E and D, are close to the true probabilities given in Table 6. In other
words, the parameters that involve only local variables have been successfully
learnt at the local sites.

A fraction of the samples, whose likelihood are smaller than a selected thresh-
old T , were identified at each site. In our experiments, we set

Ti = µi + ασi, i ∈ {A,B}, (20)
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Fig. 2. Performance of collective BN: (left) structure learning error (right) pa-
rameter learning error.

for some constant α, where µi is the (empirical) mean of the local likelihood
values and σi is the (empirical) standard deviation of the local likelihood values.
The samples with likelihood less than the threshold (TA at site A TB at site B)
at both sites were sent to a central site. The central site learns a global BN based
on these samples. Finally, a collective BN is formed by taking the union of edges
detected locally and those detected at the central site. The error in structure
learning of the collective Bayesian network is defined as the sum of the number
of correct edges missed and the number of incorrect edges detected. This is done
for different values of α. Figure 2 (left) depicts this error as a function of the
number of samples communicated (which is determined by α). It is clear that the
exact structure can be obtained by transmitting about 5% of the total samples.

Next we assessed the accuracy of the estimated conditional probabilities.
For the collective BN, we used the conditional probabilities from local BN for
the local terms and the ones estimated at the global site for the cross terms.
This was compared with the performance of a BN learnt using a centralized
approach (by aggregating all data at a single site). Figure 2 (right) depicts the
KL distance D(pcntr(V), pcoll(V)) between the joint probabilities computed using
our collective approach and the one computed using a centralized approach.
Clearly, even with a small communication overhead, the estimated conditional
probabilities based on our collective approach is quite close to that obtained from
a centralized approach.

A more important test of our approach is the error in estimating the con-
ditional probabilities of the cross terms, estimated at the global site, based on
a selective subset of data. In this paper, a metric called conditional KL (CKL)
distance is defined as follows:

DCKL(i, Bcntr, Bcoll) =
∑

j

pcntr(j) · DKL(pij
cntr, p

ij
coll). (21)

DCKL(i, Bcntr, Bcoll) is the distance between two conditional probability tables
of node xi. Note that each row of CPT is a distribution with fixed parent config-
uration pa(i) = j. So DKL(pij

cntr, p
ij
coll) is the KL distance of variable xi with a
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Fig. 3. KL distance between conditional probabilities

specific parent configuration j. CKL distance is derived from equation 10. True
distribution P in equation 10 is replaced by pcntr since we can not get P in
real world application. The KL distance between the conditional probabilities
is computed based on our collective BN and a BN obtained using a centralized
approach (by transmitting all data to one site), for the cross terms: p(E | T,L)
and p(D | E,B). Figure 3 (top left) depicts the CKL distance of node E and
figure 3 (top right) depicts the CKL distance of node D. Clearly, even with a
small data communication, the estimates of the conditional probabilities of the
cross-terms, based on our collective approach, is quite close to that obtained
by the centralized approach. To further verify the validity of our approach, the
transmitted data at the central site was used to estimate two local terms, node
S and node B. The corresponding CKL distances are depicted in the bottom
row of Figure 3 (left: node S and right: node B). It is clear that the estimates of
these probabilities is quite poor. This clearly demonstrates that our technique
can be used to perform a biased sampling for discovering relationships between
variables across sites.

4.2. Webserver Log Data

In the second set of experiments, we used data from a real world domain —
a web server log data. This experiment illustrates the ability of the proposed
collective learning approach to learn the parameters of a BN from real world
web log data. A web server log contains records of user interactions when a
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request for the resources in the servers is received. Web log mining can provide
useful information about different user profiles. This in turn can be used to offer
personalized services as well as to better design and organize the web resources
based on usage history.

In our application, the raw web log file was obtained from the web server of the
School of EECS at Washington State University — http://www.eecs.wsu.edu.
There are three steps in our processing. First we preprocess the raw web log file
to transform it to a session form which is useful to our application. Before we
do the transform, we should clean the web log file. There are many redundant
records in the web log file. For example, a page may contain several pictures. So
when someone accesses this page, the web log file will have records for accessing
these pictures. But only the record for accessing that page is enough so we remove
all other records. This step can reduce the web log file size dramatically. Then we
transform the web log file to a session form. This involves identifying a sequence
of logs as a single session, based on the IP address (or cookies if available) and
time of access. Each session corresponds to the logs from a single user in a single
web session. We consider each session as a data sample. Then we categorize the
resource (html, video, audio etc.) requested from the server into eight categories:
E-Admission, F-Course, G-EECS Home, and H-Research. E-EE Faculty, C-CS
Faculty, L-Lab and facilities, T-Contact Information, A-Admission Information,
U-Course Information, H-EECS Home, and R-Research. These categories are our
features. In general, we would have several tens (or perhaps a couple of hundred)
of categories, depending on the webserver. This categorization has to be done
carefully, and would have to be automated for a large web server. Finally, Each
feature value in a session is set to one or zero, depending on whether the user
requested resources corresponding to that category. An 8-feature, binary dataset
was thus obtained, which was used to learn a BN. Figure 4 illustrates this process
schematically.

A central BN was first obtained using the whole dataset. Figure 5 depicts
the structure of this centralized BN. We then split the features into two sets,
corresponding to a scenario where the resources are split into two different web
servers. Site A has features E, C, T, and U and site B has features L, A, H, and
R. We assumed that the BN structure was known, and estimated the parameters
(probability distribution) of the BN using our collective BN learning approach.
Figure 6 shows the KL distance between the central BN and the collective BN as
a function of the fraction of observations communicated. Clearly the parameters
of collective BN is close to that of central BN even with a small fraction of data
communication.

4.3. ALARM Network

This experiment illustrates the scalability of our approach with respect to num-
ber of (a) sites, (b) features, and (c) observations. We test only the scalability
of BN parameter learning, assuming that the network structure is given. We
used a real world BN application called ALARM network, which has 37 nodes
and 46 edges. It is a successful application of BN in the medical diagnosis area.
ALARM network is a widely used benchmark network to evaluate the algorithm.
The ALARM network has been developed for on-line monitoring of patients
in intensive care units and generously contributed to the community by Bein-
lich, Suermondt, Chavez and Cooper (1989). The structure of ALARM network
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is shown in figure 7. Each nodes takes discrete values, but not necessarily bi-
nary. The node variables of the ALARM network is as follows: 1-Anaphylaxis, 2-
Intubation, 3-KinkedTube, 4-Disconnect, 5-MinVolSet, 6-VentMach,7-VentTube,
8-VentLung, 9-VentAlv, 10-ArtCO2, 11-TPR, 12-Hypovolemia, 13-Lvfailure, 14-
StrokeVolume, 15-InsuffAnesth, 16-Pulm-Embolus, 17-Shunt, 18-FiO2, 19-PVSat,
20-SaO2, 21-Catechol, 22-HR, 23-CO, 24-BP, 25-LVEDVolume, 26-CVP, 27-
ErrCauter, 28-ErrLowOutput, 29-ExpCO2, 30-HRBP, 31-HREKG, 32-HRSat,
33-History, 34-MinVol, 35-PAP, 36-PCWP, 37-Press.

In order to test the scalability of our approach with respect to number of
nodes and observations, a dataset with 15000 samples was generated. These 37
nodes were split into 4 sites as follows – site 1: {3, 4, 5, 6, 7, 8, 15}, site2: {2,
9, 10, 18, 19, 29, 29, 34, 37}, site3: {16, 17, 20, 21, 22, 27, 30, 31, 32, 35}, and
site4: {1, 11, 12, 13, 14, 23, 24, 25, 26, 28, 33, 36}. Note there are 13 cross edges.

We assumed that the structure of the Bayesian network was given, and tested
our approach for estimating the conditional probabilities. The KL distance be-
tween the conditional probabilities (see Equation (21)) estimated based on our
collective BN and a BN obtained using a centralized approach was computed. In
particular, we illustrate the results for the conditional probabilities at two differ-
ent nodes: 20, 21, both of which are cross terms. Figure 8 (left) depicts the CKL
distance of node 20 between the two estimates. Figure 8 (right) depicts a similar
CKL distance for node 21. Clearly, even with a small data communication, the
estimates of the conditional probabilities of the cross-terms, based on our collec-
tive approach, is quite close to that obtained by the centralized approach. Note
that node 21 has 4 parents — one of them being local (in the same site as node
21) with the other three being in a different sites. Also the conditional probability
table of node 21 has 54 parameters, corresponding to the possible configurations
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Fig. 7. ALARM Network

of node 21 and its four parents. Consequently, learning the parameters of this
node is a non-trivial task. Our experiments clearly demonstrates that our tech-
nique can be used to perform a biased sampling for discovering relationships
between variables across sites. This simulation also illustrates the fact that the
proposed approach scales well with respect to number of nodes and samples.

Next, we test the scalability of our approach with respect to number of sites.
As the number of sites increases, there are more cross edges. This means that,
there are more nodes, whose parameters are to be learnt at the central site,
using a limited portion of the data. Moreover, distribution of variables among
more sites would affect the local models, likelihood computation at local sites,
and consequently the samples selected for transmission. We successively split the
variables across two, three, four, and five sites and in each case, illustrate the
performance using the conditional probability of two fixed — nodes 20 and 21.
Table 8 depicts the location of the parents of nodes 20 and 21 in each case (nodes
20 and 21 were always assigned to site 1).

By increasing the number of sites and distributing the parents of node 21
among more sites, the learning problem has been deliberately made more diffi-
cult. Figure 9 depicts the CKL distance for nodes 20 and 21, for the different
cases. Clearly, the increasing of number of sites does make the collective learning
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parents of n20 parents of n21

2 sites n16: site 1, n2: site 2 n20: site 1, n11, n15, n29: site 2

3 sites n16: site 1, n2: site 2 n20: site 1, n11, n15: site 2, n29: site 3

4 sites n16: site 1, n2: site 2 n20: site 1, n11: site 2, n15: site 3, n29: site 4

5 sites n16: site 1, n2: site 2 n20: site 1, n11: site 2, n15: site 3, n29: site 4

Table 8. Location of parents of nodes 20, 21 for different cases

more difficult and the performance with smaller number of sites is better than
that with larger number of sites. However, the CKL distance decreases rapidly
even for large number of sites. Moreover, the performance of our approach is
similar with increasing number of sites, after a relative small portion of samples
are transmitted (from figure 9, about 35% samples transmitted). This clearly
illustrates that our approach scales well with respect to number of sites.

5. Discussions and Conclusions

We have presented an approach to learning BNs from distributed heterogenous
data. This is based on a collective learning strategy, where a local model is
obtained at each site and the global associations are determined by a selective
transmission of data to a central site. In our experiments, the performance of the
collective BN was quite comparable to that obtained from a centralized approach,
even for a small data communication. To our knowledge, this is the first approach
to learning BNs from distributed heterogenous data.

Our experiments suggest that the collective learning scales well with respect
to number of sites, samples, and features. Many interesting applications are pos-
sible from a BN model of the web log data. For example, specific structures
in the overall BN would indicate special user patterns. This could be used to
identify new user patterns and accordingly personalize offers and services pro-
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vided to such users. Another interesting application is to classify the users into
different groups based on their usage patterns. This can be thought of decom-
posing the overall BN (obtained from the log data by collective learning) into
a number of sub-BNs, each sub-BN representing a specific group having similar
preferences. We are actively pursuing these ideas and would report results in a
future publication.

We now discuss some limitations of our proposed approach, which suggest
possible directions for future work.

– Hidden node at local sites: For certain network structures, it may not be
possible to obtain the correct (local) links, based on local data at that site. For
example, consider the ASIA model shown in Figure 1, where the observations
corresponding to variables A, T , E, and X are available at site A and those
corresponding to variables S, L, B, and D are available at site B. In this case,
when we learn a local BN at site B, we would expect a (false) edge from node
L to node D, because of the edges L → E and E → D in the overall BN
and the fact that node E is “hidden” (unobserved) at site B. This was verified
experimentally as well. However, the cross-links L → E and E → D were still
detected correctly at the central site, using our “selectively sampled” data.
Therefore, it is necessary to re-examine the local links after discovering the
cross-links. In other words, some post-processing of the resulting overall BN is
required to eliminate such false local edges. This can be done by evaluating an
appropriate score metric on BN configurations with and without such suspect
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local links. We are currently pursuing this issue. Note, however, that we do
not encounter this problem in the examples presented in Section 4.

– Assumptions about the data: As mentioned earlier, we assume the ex-
istence of a key that links observations across sites. Moreover, we consider
a simple heterogenous partition of data, where the variable set at different
sites are non-overlapping. We also assume that our data is stationary (all data
points come from the same distribution) and free of outliers. These are sim-
plifying assumptions to derive a reasonable algorithm for distributed Bayesian
learning. Suitable learning strategies that would allow us to relax of some of
these assumptions would be an important area of research.

– Structure Learning: Even when the data is centralized, learning the struc-
ture of BN is considerably more involved than estimating the parameters or
probabilities associated with the network. In a distributed data scenario, the
problem of obtaining the correct network structure is even more pronounced.
The “hidden node” problem discussed earlier is one example of this. As in
the centralized case, prior domain knowledge at each local site, in the form
of probabilistic independence or direct causation, would be very helpful. Our
experiments on the ASIA model demonstrate that the proposed collective BN
learning approach to obtain the network structure is reasonable, at least for
simple cases. However, this is just a beginning and deserves careful investiga-
tion.

– Parameter Learning: The proposed collective method is designed for struc-
ture and parameter learning. The likelihood computation in local site is not a
trivial job and introduces some computational overhead. This may not be ac-
ceptable for real-time applications such as online monitoring of stock market
data. For real time or online learning applications, we need to considerably
reduce the amount of computation at the local sites. Towards that end, we
have proposed a new collective learning method (Chen and Sivakumar, 2002)
for learning the parameters of a BN (here we assumes that the structure of
the BN is known) which dramatically reduces the local computation time.

– Performance Bounds: Our approach to “selective sampling” of data that
maybe evidence of cross-terms is reasonable based on the discussion in Section
3 (see eq. (4)-(7)). This was verified experimentally for the three examples in
Section 4. Currently, we are working towards obtaining bounds for the perfor-
mance of our collective BN as compared to that obtained from a centralized
approach, as a function of the data communication involved.
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