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Abstract

The gene expression process in nature produces different proteins in different cells
from different portions of the DNA. Since proteins control almost every important
activity in a living organism, at an abstract level gene expression can be viewed as a
process that evaluates the merit or “fitness” of the DNA. This distributed evaluation
of the DNA would not be possible without a decomposed representation of the fitness
function defined over the DNAs. This paper argues that unless the living body was
provided with such a representation, we have every reason to believe that it must
have an efficient mechanism to construct this distributed representation. This paper
demonstrates polynomial-time computability of such representation by proposing a
class of efficient algorithms. The main contribution of this paper is two-fold. On
the algorithmic side it offers a way to scale up evolutionary search by detecting the
underlying structure of the search space. On the biological side, it proves that the
distributed representation of the evolutionary fitness function in gene expression can
be computed in polynomial-time. It advances our understanding about the repre-
sentation construction in gene expression from the perspective of computing. It also
presents experimental results supporting the theoretical performance of the proposed
algorithms.
Keywords
Gene expression, representation construction, Walsh analysis, linkage learning.

1 Introduction

The last fifty years of this century witnessed the gradual development of different adap-
tive search algorithms that use motivations from natural evolution. The Genetic algo-
rithms (GAs) [27], evolutionstrategie (ES) [62], evolutionary programming (EPs) [13],
and genetic programming (GPs) [47] are some examples that found many successful
applications in search, optimization, and machine learning. These algorithms are pri-
marily motivated by the passage of evolutionary information from generation to gen-
eration through selection, crossover, and mutation operations. Evaluation of fitness in
GAs, ES, EPs, and GPs is often a simple one step process of computing the objective
function (with some exceptions [67]). However, this is not quite that simple in nature.
This process (often called the gene expression) can be arguably viewed as a process
that significantly contributes towards evaluating the evolutionary fitness of a genome
through a sequence of representation transformations (DNA—mRNA—Protein). This
paper questions the simplistic and centralized one-step event of the objective function
evaluation often adopted in the practice of evolutionary algorithms. It draws atten-
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tion to the gene expression process and argues that this complex process may have a
non-trivial role in controlling the efficiency of the evolutionary search.

Although, today we have reasonable idea about the main biological steps of gene
expression, we know very little about its role in evolutionary search. This paper takes a
modest step in unraveling this mystery. It explores the computability of the decomposed
representation of the evolutionary fitness function exploited during gene expression in
the light of our existing understanding about inductive construction of function struc-
ture. It is not a paper on GAs or GPs or any other popular paradigm of evolutionary
algorithms. However, it may have important implication in the future of evolutionary
computation.

Gene expression involves construction of proteins from the DNA sequence. Since
proteins play an important role in almost every major activity of a living body, the
efficacy of the produced proteins determines its overall “fitness”. So at a very abstract
level gene expression can be viewed as a process that evaluates the evolutionary fitness.
Interestingly enough, it does so in a very distributed fashion. Different portions of the
DNA, the evolutionary information carrier, are evaluated in different cells through the
production of different proteins. This paper suggests that the distributed evaluation of
evolutionary fitness may have deeper implications. Distributed evaluation is possible
only when the underlying fitness function can be represented in a decomposed form.
Such representations also expose the underlying decomposability of the fitness function
and therefore it is important for the scalability of any search algorithm, including evo-
lutionary search [40]. Therefore, one must wonder if the gene expression process has
a hidden mechanism to construct such representations. However, we must address a
more fundamental question before exploring that intriguing possibility. We should first
show that such a construction is feasible using our basic understanding of computation.
This paper shows that this is indeed possible in polynomial-time when the number of
mutually interacting genes is bounded regardless of the length of the genome.

Section 2 discusses the role of function induction in learning, adaptation, and op-
timization. Section 3 discusses the distributed fitness evaluation in the natural gene
expression process and argues the need for an efficient function induction mechanism
in our model of evolutionary computation. Section 4 discusses the previous work in
evolutionary computation that considered gene expression. Section 5 briefly overviews
the basics of orthonormal basis representation. Section 6 presents two algorithms to
compute a distributed representation using orthonormal basis in polynomial time. Sec-
tion 7 discusses the application of the proposed algorithms in detecting the search space
structure. Section 8 presents experimental results of applying this algorithm to detect
the underlying structure of different, difficult optimization problems. Section 9 discusses
the future and on-going work and Section 10 concludes this paper.

2 Function Induction in Learning, Adaptation, and Optimization

Function induction plays an important role in machine learning, adaptation, and non-
enumerative black-box optimization. In function induction the goal is to learn a function
f: X" =Y from the data set Q = {(x(1), ¥(1)), (X(2),¥2)), " (X(x),Y(x))} generated
by some underlying function f : X™ — Y, such that f approximates f. Any member
of the domain x = 1,2, ---x¢ is an ¢-tuple and z;-s correspond to individual feature
variables of the domain. Learning a function in a chosen form or representation is
relevant to many important problem domains.

Empirical machine learning [52] is directly related to function induction. Given a
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set of observed behaviors, the goal of empirical machine learning is to learn a function
that closely approximates those behaviors, which is essentially the function induction
problem itself when the behavior is viewed as a function defined over the domain of
different situations.

Function induction also plays an important role in natural and artificial adapta-
tion. The word adaptation literally means “to fit to” (ad + aptare). In general we call
a system adaptive when it can exhibit appropriate behavioral dynamics in response to
changes in an uncertain environment. Inductive function learning has a close relation
with adaptation [27]. Adaptation in uncertain environments typically requires learn-
ing probabilistic behavior, learning to predict uncertain future, learning strategies to
outsmart competitors, learning to co-operate, and others. All these learning problems
typically involve empirical function induction from observed data.

Optimization in the absence of sufficient prior domain knowledge to guide search
directions is often called black-box optimization (BBO). Typical BBO algorithms like
evolutionary algorithms [27], simulated annealing [46] sample the search space and make
inductive decisions in order to explore the promising parts of the search space. The op-
timization algorithms need to guess intelligently about the landscape using the samples
taken from the search domain. This requires inductive detection of function structure.

Learning a function from data is indeed a common problem in many other domains
like data mining, software engineering, pattern recognition, signal processing. Like all
these problem domains, the emergence of adaptive living organisms through evolution-
ary search critically depends on function induction. Natural evolution can be viewed
as a search for evolving systems that can adapt and survive the competition of natural
selection. If this perspective is correct then the living organisms must have an efficient
mechanism to learn functions from observed data. Indeed, there exist many facts that
corroborate this observation. The role of neural networks in our brain is now widely
recognized to be an important mechanism for learning functions from observed data
[65]. This paper suggests that there may be an alternate mechanism for inducing func-
tion structure in the evolutionary operators of living organisms. The following section
argues this possibility.

3 Fitness Evaluation Through Gene Expression

In nature the evaluation of the “fitness” of an organism is believed to take place through
the expression of the DNA through the construction of proteins. This paper suggests
that this process can be viewed from the perspective of function induction. It further
advances the line of thought by pointing out that the construction of the representation
of the genetic fitness may reveal a unique approach for inducing function structures
from observed data. In order to fully appreciate this we need to understand the biology
to some extent. The following discussion presents a brief exposure to the natural gene
expression process.

DNA is the primary carrier of the evolutionary information that is transmitted
from one generation to another. DNA molecules consist of two long complementary
chains held together by base pairs. DNA consists of four kinds of bases joined to
a sugar-phosphate backbone. The four bases in DNA are adenine (A), guanine (G),
thymine (T) and cytosine (C). Chromosomes are made of DNA double helices. Bases
in DNA helices obey the complementary base pairing rule. T and G pair with A and C
respectively. In other words, if the base at a particular position of a helix is T then the
corresponding base in the other helix should be A.
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Figure 1: Transcription.

Evaluation of the fitness of a DNA takes place through a process called gene ex-
pression. Expression of genetic information coded in DNA involves construction of the
mRNA sequence, followed by that of proteins. The main steps are,

e transcription: formation of mRNA (messenger ribonucleic acid) from DNA
e translation: formation of protein from mRNA
e protein folding

In a particular cell, transcription produces the mRNA from a small portion of the DNA.
The mRNA defines another level of representation of the genetic information. It consists
of four types of bases joined to a ribose-sugar-phosphodiester backbone. The four bases
are adenine (A), uracil (U), guanine (G), and cytosine (C). All the bases defining the
mRNA are same as those in DNA sequences, except that T is replaced by U. As shown in
Figure 1, the mRNA is produced from the DNA by RNA Polymerase and the regulatory
proteins following the complementary base-pairing rules similar to those in DNA. The
RNA Polymerase initiates the transcription at a place of the DNA marked by the
promoter region (start site). It splits the DNA double helix and continue generating
the mRNA using one of the DNA strands as a template. The RNA Polymerase stops
when it finds a termination signal sequence (stop site) in the DNA strand. Note that
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Figure 2: Different steps of gene expression.

only a small portion of the DNA strand is transcribed and different cells may transcribe
different regions of the DNA for producing proteins. Figure 1 presents a schematic
diagram of the transcription process.

The mRNA acts as the template for protein synthesis. A protein is defined by a
sequence of amino acids, joined by peptide bonds. The mRNA is transported to the
cell cytoplasm for producing protein in the ribosome. There exists a unique set of rules
that defines the correspondence between nucleotide triplets (known as codons) and the
amino acids in proteins. This is known as the genetic code. Each codon is comprised of
three adjacent nucleotides in a DNA chain and it produces a unique amino acid. Amino
acid sequence defines a new representation of the information coded in mRNA.

The next level of representation of genetic information is defined by the three di-
mensional structure of folded proteins. Although amino acid sequences fundamentally
define proteins, formation of the three dimensional structure of proteins involves a com-
plex process, often called protein folding. This process involves interaction between
multiple amino acid subsequences. Figure 2 shows the different steps of the gene ex-
pression process.

Since proteins control almost every important activity in a living organism, at
an abstract level gene expression can be viewed as a process that evaluates the merit
or “fitness” of the DNA. Since different proteins are generated at different cells from
different portions of the DNA, fitness evaluation in natural gene expression appears to
take place in a distributed fashion. In other words, the fitness evaluation seems to be
decomposed into different sub-function evaluations. Figure 3 illustrates this distributed,
decomposed evaluation of the evolutionary fitness. Such distributed fitness evaluation
is possible under either of the two following conditions:

1. the distributed representation of the fitness function was available to evolutionary
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Figure 3: Distributed, decomposed evaluation of the evolutionary fitness through con-
struction of different proteins in different cells.

mechanism a priori;

2. the distributed representation of the function is inductively constructed from the
sample DNAs and their respective fitnesses, observed in nature.

In the following sections we shall adopt the latter possibility and explore it in the context
of our basic understanding about function induction. However, first let us review the
existing literature in evolutionary computation that considers the computational role of
gene expression.

4 Gene Expression in Existing Models of Evolutionary
Computation

Although today gene expression is not emphasized very much in most of the popular
models of evolutionary computation, several researchers realized its importance. The
importance of the computational role of gene expression was realized by Holland. He
described [27] the dominance operator as a possible way to model the effect of gene
expression in diploid chromosomes. He also noted the importance of the process of
protein synthesis from DNA in the computational model of evolution. Despite the
fact that, traditionally, dominance maps are explained from the Mendelian perspective,
Holland made an interesting leap by connecting it to the synthesis of protein by gene
signals, which today is universally recognized as gene expression. He realized the relation
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between the dominance operator with the “operon” model of the functioning of the
chromosome [30] in evolution and pointed out the possible computational role of gene
signaling in evolution [27].

Several other efforts have been made to model some aspects of gene expression.
Diploidy and dominance have also been used elsewhere [2, 10, 28, 64, 69]. Most of them
took their inspiration from the Mendelian view of genetics. The under-specification and
over-specification decoding operator of messy GA has been viewed as a mechanism sim-
ilar to gene signaling [23]. The structured genetic algorithm [11] also shares motivations
from the gene expression; it uses a structured hierarchical representation in which genes
are collectively switched on and off. This provides the search algorithm with a richer
representation and helps capturing properties of the landscape better. Kauffman [42]
offered an interesting perspective of the natural evolution that realizes the importance
for gene expression. However, Kauffman’s work does not explain the process in basic
computational terms on analytical grounds and does not relate the issue to the complex-
ity of search process. The “neutral network” theory [63] considers sequence-to-structure
mapping from the perspective of random graph construction. This work investigates the
phase transition properties of biomolecules and their implications in the evolutionary
optimization in biopolymers. This role of random genotype-to-phenotype mappings in
reducing the chance of being trapped in the suboptimal regions of the search space is
explored in [67]. Experimental approaches to construct genetic regulatory networks are
presented in [53].

The following section lays the foundation of the contribution of this paper. It
presents a short review of orthonormal basis functions in the function space that will
be useful in developing the proposed algorithms.

5 Distributed and Decomposed Representation of Functions

Describing a function first requires choosing a representation. Therefore, learning a
function description also requires selecting a representation. In this paper we will con-
sider representing functions using a weighted summation of certain kind of functions,
called basis functions. Let = be a set of basis functions. Let us index the basis functions
in Z and denote the k-th basis function in = by ¥,. Let I be the set of all such indices
of the basis functions. A function f(x) can be represented as,

Fx) = we ¥y (x) 1)

kel

Where ¥ (x) denotes the k-th basis function and wy, denotes the corresponding coeffi-
cient. Although the structure of such functions may appear “simple”, a properly chosen
set of basis function should be able to represent any given function in the above form.

The objective of function induction can now be viewed as the task to generate
a function, f(x) = > kei Wk¥r(x), that approximates f(x) from a given data set; I
denotes a subset of I; Wy denotes the approximate estimation of the coeflicients wy.
For a given basis representation, the underlying inductive task can be viewed as the
problem to compute the non-zero, significant (not negligible) coefficients, wg-s. Let us
illustrate this using a simple example. Consider a function of boolean variables, x1, z2,
and z3. We can write,

f(z1,22,23) = wo+wi¥q(z1) + wePa(xe) +
w33 (x3) + waPy(z122) +
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w5l115(a:1m3) + welIle(.’L'QCLB) +
wrUr(x1,22,73)

Where, w;-s are constant coefficients; ¥;(.)-s are monomial basis functions like Walsh
functions [5, 76] to be defined later. At this point all we need to note is that we can write
f as a linear sum of a set of basis functions, weighted by the corresponding basis coef-
ficients. In other words, computation of f(x1,%2,23) can be performed by computing
different sub-functions that require only a subset of the feature set z1,x2,z3. Although
computation of ¥7(z1,za,x3) requires information about all the three variables, if the
value of wr is close to zero then we can decompose the computation of f(z1,xza,x3) into
different components that require only partial information about the feature set.

Distributed evaluation of fitness function is possible only when we have its rep-
resentation using a set of basis functions and their corresponding coefficients. The
distributed fitness evaluation in gene expression should be no exception. The efficacy
of a certain portion of the DNA depends on the 3-dimensional structure of the protein
it produces; since the shape of proteins depends on different physical factors such as
energy, bond properties and others, the set of basis functions used in nature are likely
to be functions of these physical factors. However, the exact mathematical structure of
these basis functions is not yet known. The algorithms presented in the following part
of this paper can be easily extended to any functionally complete basis set that satisfy
some common closure properties that are satisfied by most of the common basis that
we often deal with.

However, in the following discussion we choose to work with Walsh basis functions
because of its existing connections to the field of genetic algorithms [8, 9, 14, 16, 17, 18,
26, 45, 58, 61]. Walsh basis is functionally complete over the space of all boolean strings.
In other words it can represent any function that can be defined over the space of boolean
strings. The following discussion offers a brief overview of Walsh representation.

Walsh functions [5, 76] are orthogonal functions that found applications in many
different fields such as signal processing, image analysis, and others. Like Fourier,
Laplace, and other transformations, Walsh functions are often used to represent a prob-
lem solving task in a convenient form. Application of Walsh transformation (WT) in
understanding Genetic Algorithms was first noted by Bethke [7]. Further investigation
of this approach can be found elsewhere [14, 16, 17, 26, 50, 61, 74, 75]. Traditionally,
the Walsh functions are used for representing real valued functions of binary variables.
However, they can be easily extended to higher cardinality representation, as shown
elsewhere [58]. Although the main arguments of the following discussion can be ex-
tended for higher cardinality representations, in this paper we shall restrict ourselves to
binary variables.

The Walsh basis set is comprised of 2¢ Walsh functions, where each basis function
is defined as follows:

Yi(x) = (=) (2)

Where j and x are binary strings of length £. In other words j = ji,J2, - Jje, X =
T1,T2,- -z and j,x € {0,1}¢. 4;(x) can either be 1 or -1. The string j is called a
partition. The order of partition j is the number of 1-s in j. A Walsh function depends
on only those z;-s only when j; = 1. Therefore a partition can also be viewed as
a representation of a certain subset of x;-s; every unique partition corresponds to a
unique subset of z;-s. If a partition j has exactly a number of 1-s then we say partition
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is of order « since the corresponding Walsh function is a function of only those variables
corresponding to the 1-s in the partition j. A function f(x) can be written using the
Walsh basis functions as follows:

fx) = Z w;jY5(%) ®3)

where wj is the Walsh Coefficient (WC) corresponding to the partition j. We can easily
derive the following expression for WCs exploiting the orthonormality property of Walsh
basis functions:

w5 = o 3 FG00) @)

We note from Equation 3 that a function can be expressed as a linear sum of the Walsh
functions, each weighed by the corresponding Walsh coefficients. The Walsh coefficient
wj can be viewed as the relative contribution of the partition j to the function value
of f(x). Therefore, the absolute value of w; can be used as the “significance” of the
corresponding partition j.

Partitions with non-zero Walsh coefficients capture the underlying structure of
the given problem. For example, consider a function f(z1,z2,23,24) = fi(z1,22) +
f2(z3,z4). In the Walsh representation the values of wi111, w1110 and any such other
Walsh coefficient corresponding to partitions involving a pair of variables, one each
from the two linearly decomposable partitions, are zero. Walsh functions can be used
for representing any functions of boolean variables. If a function has dependencies
among the features then its Walsh representation will reflect that and the function can
be evaluated by computing the Walsh functions corresponding to the non-zero Walsh
coefficients. If every variable in a function depends on every other variable then in the
general case the Walsh representation will have all the 2¢ terms. On the other hand if at
most some k variables interacts with each other, all the Walsh coefficients corresponding
to partitions with more than k£ number of 1-s will be zero. This class of problems will be
called problems with order-k level of interaction. Detection of such interaction among
the genes is traditionally called linkage learning in the genetic algorithms literature. A
perspective of linkage learning using Walsh representation has been proposed elsewhere
[39, 71].

If the distributed fitness evaluation of the DNA through gene expression is a result
of evolutionary search, then evolution must have a mechanism for constructing such a
distributed representation of the fitness function. Walsh basis functions offer one way to
decompose and distribute the fitness evaluation. Construction of such a representation
in a relatively small period of time (in the evolutionary scale) is unlikely to happen unless
it is fundamentally possible to do so in rigorous computational ground. The following
section identifies a class of algorithms to efficiently construct such a representation.

6 Polynomial-Time Construction of Decomposed Representation

As we saw in the previous section (Equation 4) computation of a single Walsh Coefficient
requires information about all the 2¢ domain members. Clearly this cannot be done in
time, polynomial in £. In order to make the problem tractable we are going to assume
that the problem has bounded variable interaction of order-k. This is a reasonable as-
sumption for many practical domains. This results in a sparse Walsh representation. In
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general, function induction is fundamentally difficult if the orthonormal representation
is not sparse [48]. Even if the problem has bounded order of interaction, explicit com-
putation of WCs using Equation 4 requires exponential time. Another possibility is to
generate m = Y ¢_, (¢) different members from the domain and solve a large (m x m)
linear system of equations in order to compute the m possibly non-zero terms in the
Walsh representation. Although it is theoretically possible in polynomial time, it is not
clear how and if at all the evolutionary search is equipped with any mechanism to do it
this way. In the following discussion we explore an alternate way to compute individual
WCs in an efficient manner.
From Equation 3 we can write,

fEi(x) = ijwj(x)wi(x)

Let i be a partition and S(i) be the set of all strings that satisfies the following conditions:
(1) every member of S(i) has same values at all positions where there is a 0 in i and
(2) the substring defined by the positions corresponding to 1-s in i is unique in every
member of S(i). Let us denote the invariant values at the positions, corresponding to
0-s in i by T and call it the template 1. For example, if i = 001100 then one possible
choice of S may be {000000,001000,000100,001100}. |S(i)| is the size of the set S(i)
and |S(i)| = 2*F when the partition i is of order-k. In this case the template T = 00__00.
Since there exists different such S(i)-s depending on the choice of T, we choose to use
the symbol St(i) to denote the set S(i) with respect to certain template T, wherever
needed. Now we can write,

> fRni(x) = ij > ¢i()(x)

xeSr(i) x€ST(i)
doowp Y dieix)
J€I)  xesz()

dowi Y tiei®) Y fx0x) (5)

jeJ(i)  xeSx() x€ST (i)

Where J(i) denotes the set of all partitions that completely subsumes partition i. In
other words, every partition in J(i) must have an 1 at every location where there is an
1in i. j @i denotes the partition defined by the boolean XOR between j and i.

The following section presents a simple, deterministic algorithm to compute the
Walsh representation in polynomial time for problems with bounded non-linear depen-
dencies among the search variables.

6.1 DR1: A Simple Deterministic Algorithm

Since we can choose any invariant set of values for the template, let us consider a special
case where all the required values of the template are set to 0. Let us denote the Sr(i)
corresponding to this special case template T = 0 by Sg(i). Note that the example that
we gave earlier follows this case. Equation 5 can be specialized for this case as follows.

1
D w= g 2 Fen) (6)
je () O xeso(i)
IThe idea of using templates in the current context drew motivations from the messy GA literature

[23].
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Equation 6 can be used to efficiently detect the significant Walsh coefficients of the
function with bounded non-linearity. Recall that for functions with at most k variables
non-linearly interacting with each other, all the WCs corresponding to partitions with
more than k number of 1-s will be zero. Therefore, for all partitions i with more than &
number of 1-s, the total number of non-zero coefficients in J(3i) is zero. For any partition
with the order equal or more to k, we can write,

= ¥ 106 ™)

x€So(i)

Note that the computation of w; requires only 2* evaluations of f(x). The bounded
non-linearity property can therefore be exploited to compute the WCs using only a
small number of evaluations (2¥) compared to the usual 2¢ evaluations needed using the
regular approach. Once we compute all the k-th order non-zero WCs using Equation 7,
lower order coefficients can be computed using the known higher order coefficients and
Equation 5. The main algorithmic steps of this technique can be summarized as,

1. select k < £, some constant that bounds the highest order non-linearity of the given
problem;

2. compute the order-k WCs using Equation 7;

3. use Equation 5 and the already evaluated order-k WCs in order to compute order-
(k — 1) WCs; continue this process iteratively for (k — 1), (k — 2),- - - 1-order WCs;
note that no additional function evaluation is needed after the order-k WCs are
computed.

This technique can find all the non-zero WCs of a problem with order-k non-linearity
in polynomial time using 2*({) function evaluations. The computation of individual
WCs simply requires computing the average of 2* fitness values and a few addition and
subtraction. Although the complexity of this algorithm is polynomial in £ for problems
with constant k, it is fairly expensive for many practical problems. The following section
presents a very efficient, non-deterministic algorithm.

6.2 DR2: An Efficient, Non-Deterministic Algorithm

This section presents an algorithm to construct the distributed orthonormal represen-
tation by evaluating Equation 5 for a set of randomly generated templates. A random
choice of template generates a particular assignment of signs of the corresponding Walsh
term in Equation 5. For the special case T = 0, every 9;i(x) = 1. If all the coefficients
corresponding to partitions that subsume a given partition i are zero then the left hand
side of Equation 5 must produce a zero for any choice of templates. If it returns a
non-zero value then at least one of the coefficients in St (i) is non-zero. The proposed
algorithm makes use of this observation.

The algorithms searches for significant coeflicients in the lattice of all partitions.
The main steps are as follows:

1. Consider the lattice of all partitions, partially ordered based on the order of the
partitions.

2. Start from the partition with zero order, i.e. the one with no fixed bit.
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3. Traverse the lattice using a chosen order (e.g. depth-first or breadth-first). Initialize
a = 0. At each node do the following m number of times:

(a) Randomly generate a template.

(b) Compute 3, s, ) f(x)1hi(x) at each node; if it returns a non-zero significant
number then exit loop.

(c) Otherwise, set @ = a + 1.
4. If o < m continue traversing new nodes using the chosen search strategy.

5. If &« == m discard all the nodes subsumed by the current node from the scope of
future search for nodes with significant coefficients.

The parameter m is user given. When m is large enough such that every possible
template is considered for the test, Equation 5 is guaranteed to detect any non-zero
coefficient corresponding to partitions that subsume the partition i. The reason behind
this is the following. Note that for an £-bit problem and an order-k partition i, there are
2¢=F possible choices of templates. On the other hand there are 2¢=* different partitions
that subsume the partition 7 and therefore there are that many WCs. Clearly, we have
2¢~% unknown Walsh coefficients and 2¢~* different templates can generate that many
equations. If all the tests or all the different templates return zero then we have a set of
2¢—* homogeneous equations. In that case the unknown WCs must take only the trivial
solution i.e. all of them are zeros. Although the deterministically correct solution can
be obtained only when we enumerate all the templates, a small value of m appears to
suffice for many practical cases because of the following reason. Let v be the proportion
of templates at a given node for which }°, o ) f(x)¢i(x) = 0 despite the existence of
non-zero contributing coefficients in the summation. Therefore the probability that all
of the m experiments will return zero and thereby discard the node is v™. If v < 1 then
the probability of such mistakes goes down exponentially with m. So a small value of
m should be sufficient for all practical purposes. In fact, randomized sampling of a few
templates was sufficient for all the experimental results presented later in this paper.
The next section illustrates this algorithm using an example.

Consider the lattice of all sixteen partitions for a four-bit problem as shown in
Figure 4. We are interested in a function for which only the partitions, encircled with
solid lines, have non-zero WCs. The proposed algorithm first performs the significance
test at all nodes for order-1 partitions. For this case, the test is expected to produce
non-zero value at each of these nodes, indicating that the partition is subsumed by
some partitions with non-zero WC. Next the algorithm considers the nodes at the third
level from top in Figure 4. Since all the order-2 partitions subsume some set of order-1
partitions and all the order-1 partitions returned non-zero value for our test, we need to
apply our test at every node corresponding to the order-2 partitions. Our test is expected
to return non-zero values only for 1100, 1001, and 0101. Next we consider every unique
order-3 partition that subsumes at least one of the partitions 1100, 1001, and 0101 but
do not subsume any of the partitions 1010, 0110, and 0011. There is only one such
partition and that is 1101. We again apply our test at this node and expect to observe
that the test returns a zero value. Next we backtrack to the order-2 partition level and
note that the outcomes of the tests that we performed earlier at each of these nodes are
essentially the WC of the corresponding node since the coefficient of the partition 1101
is zero. Similarly, we continue to backtrack and compute the coefficients of every non-
zero partition. This technique requires O(2%r) objective function evaluations, where
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1110 1011, 1101, 0111

1111

Figure 4: Efficient detection of Walsh Coeflicients.

r is the total number of non-zero WCs in its Walsh representation. The algorithm
needs to evaluate all the nodes corresponding to the order-2 partitions. Therefore, the
complexity of the should be at least quadratic in £. For problems where r is O(¢2) and
k is a constant, the total number of objective function evaluations is O(£2).

Induction of a function in distributed representation is important in many domains
like machine learning, optimization, data mining and many others. The algorithms
proposed in this section can be applied to each of these application domains. The
following section considers its application in optimization.

7 Application of DR2 in Linkage Learning

Evolutionary algorithms are widely used for optimization applications. Scalable op-
timization in absence of adequate knowledge about the search space requires efficient
detection of the regularity and the underlying structure of the search space. The pro-
posed algorithm can be efficiently used for this purpose. Detection of such structure
has been traditionally called linkage learning [39] in the genetic algorithms literature.

Linkage learning algorithms try to detect the structure of the search space using
similarity-based equivalence relations or partitions. If a set of search-variables together
contribute significantly to the objective function, then the quality of the solution will
also largely depend on the values set to the these variables. Therefore detection of
such mutually interacting cluster of variables (i.e. the linkage among the variables)
is important in optimization. Genetic algorithms-based optimization is no exception.
Since the space of all such subset of variables or partitions is typically exponential
in problem size (£), efficient detection of such significant variable interaction is very
important for the scalability of the genetic algorithm.

For hard problems simple GA may not provide scalable performance because of this.
It has been shown elsewhere [72, 70] that the time needed for the convergence to the
optimal solution grows exponentially with the problem-size in absence of the knowledge
regarding the important partitions. The genetic algorithm community have realized the
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importance of linkage learning in the scalability of the genetic algorithm. A growing
number of linkage-learning techniques [3, 4, 12, 23, 20, 24, 32, 31, 41, 54, 55, 56, 70] are
becoming available. The following part of this section presents a brief review of some
of the earlier efforts in linkage learning.

The history of linkage learning efforts dates back to Bagley’s dissertation [2]. Bagley
used a flexible representation and the so called inversion operator for adaptively cluster-
ing the related genes. Bagley did not conclude in favor of the use of inversion for linkage
learning. Rosenberg [64] also investigated the possibility of learning linkage by evolving
the probability of choosing a location for crossover. Frantz [15] also investigated the
utility of the inversion operator and confirmed that inversion is too slow and not very
effective. Schaffer and Morishima [66] introduced a set of flags in the representation.
These flags were used for identifying the set of genes to be used for crossover points.
They noted the formation of certain favorite crossover points in the population, that
corroborated their hypothesis regarding the need for detecting gene linkage. Goldberg
and Bridges [19] confirmed that lack of linkage knowledge can lead to failure of GAs for
difficult classes of problems, such as deceptive problems. Additional efforts on linkage
learning GAs can be found elsewhere [49, 59].

The messy GAs (mGAs) [12, 23, 21] tries to detect linkage by explicitly evaluating
schemata [27] using a template (a solution string that is used for filling up the miss-
ing values corresponding to the wild card characters of a schema) and selecting good
schemata through a selection-only primordial stage. This is a heuristic-based approach
and often, its application is computationally expensive. The fast messy GA [22] offered
some reduction in computational cost of linkage learning. As noted earlier, the idea of
templates in the algorithms proposed in the current paper draws motivation from the
templates in messy GAs.

Several new techniques have come up in the recent past. The gene expression
messy GA (GEMGA) introduced elsewhere [4, 32, 31, 38] offered a technique for linkage
learning. The GEMGA makes use of a local perturbation technique to identify the genes
that are critical for high fitness. Once the genes are identified in the local context, they
are put together in clusters and tested for global performance. Good clusters define
the genetic linkage. This class of algorithms is also based on the local-perturbation
heuristics. However the authors reported scalable O(£?) performance.

Harik introduced the Linkage Learning GA (LLGA) [25, 24]. The LLGA tries
to learn linkage by exploiting the exchange crossover operator and the probabilistic
ezxpression based representation. The LLGA appears to work nicely particularly for
problems in which construction of a linear ordering among the partitions is not so
difficult. In a recent work [51] relations between compressed introns and the LLGA
representation is discussed. Smith and Fogarty [68] reported a technique for evolving
genetic linkage and to exploit it for adapting the recombination strategy. They reported
superior performance of their linkage learning evolutionary algorithm over traditional
GA.

A linkage learning approach similar to the GEMGA can be found elsewhere [44].
This approach makes use of a GEMGA-like filtering approach to detect the good parti-
tions and schemata. In a recent work [57] a new linkage learning algorithm LINC is pro-
posed. The LINC algorithm works by checking second order non-linearity. It considers
feature pairs and performs O(£2) experiments. Let us define § f; = f(...Z;...) — f(...z;...),
of; = f(...@;..) — f(...xj..), and 0 f;; = (.. %% ..) — f(...x;z;..); where z; is a boolean
variable and Z; = 1 — z;. The LINC algorithm detects linkage by exploiting the fact
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that if two features ¢ and j have pair-wise non-linearity then |df;; — 0 fi — 0 f;| > €, where
€ is a constant.

A principal component analysis based construction of representation for performing
evolutionary optimization has been developed elsewhere [73]. Kazadi [43] proposed
a similar approach to explicitly detect generalized schemata, that he calls conjugate
schemata. His approach proposed a second order non-linearity detection technique in
the continuous space, similar to what the recently proposed LINC algorithm uses in the
discrete boolean space. A different technique for detecting the significant relations using
a dependency tree-based approach has been proposed elsewhere [3]. This approach also
exploits the second order non-linearity and estimates a second order approximation of
the underlying relations; they reported superior performance of their algorithm over
other techniques that do not explicitly try to search and exploit relations.

The approach proposed elsewhere [54, 55] is based on estimation of the underlying
distribution function. However, since distribution estimation is a hard problem faced
in many domains, their approach assumes prior knowledge about the structure of the
distribution and reduces the task to estimation of the distribution parameters with
known structure. However, their recent effort [ in this area addressed the issue of
learning the search-space structure.

The possibility of linkage learning using Walsh coefficients was first noted elsewhere
[35, 39]. Recently [70] also investigated the possibility of using the KM algorithms [48]
for estimating the Walsh coefficients. However, the author reported scaling problem of
the KM approach since it requires large number of function evaluations for correctly
estimating the coefficients. The DR2 algorithm proposed in this paper share similarities
with the KM-approach. Both of them explore the space of all partitions in a kind of
divide-and-conquer approach; both of them are randomized algorithms. However, DR2
imposes a different lattice structure in the space of all partitions that draws motivations
from the traditional notion of schema and templates. Unlike the KM-based approach,
DR2-based linkage learning simply tries to detect existence of any non-zero coefficient
down the path rooted at the current node.

The randomized algorithm DR2 can be directly used for constructing the Walsh
representation in O(2*r) time. Once the representation is constructed we can easily i-
dentify the linkage among the genes by noting the relative magnitude of the coefficients.
If a partition has a large magnitude the corresponding variables are strongly linked and
they contribute to the objective function in a significant manner. On the other hand
if a partition has a zero or relatively negligible coefficient then it does not contribute
significantly to the objective function. Therefore, we can first run the proposed algo-
rithm to detect the linkage and then make use of the linkage information to guide the
genetic search in a fashion similar to earlier techniques [4, 32, 31, 33, 34, 35, 38]. In
this paper we focus only on the former part since that is the primary challenge in front
of the linkage-learning genetic algorithms. We have applied the proposed algorithm
for detecting the linkage for several test functions. The following section reports the
experimental results.

8 Experimental Results

The experimental results presented here report only the cost of detecting the underlying
structure since it has already been shown elsewhere [4, 32, 31, 33, 34, 35, 38] that we
can solve such problems using recombination and selection-like operators easily once
the structure is correctly detected. These papers reported that the scalability of these
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techniques critically depends on the complexity of the linkage learning algorithm. The
results presented in the following sections demonstrate that the proposed randomized
algorithm can be successfully used for linkage learning in any genetic algorithms for
solving many optimization problems with bounded dependency in O(£2) time.

The experimental test-bed is comprised of problems with bounded dependency. All
the objective functions are decomposable to a set of overlapping and non-overlapping
sub-functions. For all test problems at most 5 variables can interact with each other.
For all functions with overlapping sub-functions, any given sub-function shares one
variable with one other sub-function. No prior knowledge about such decomposability
is provided to the linkage-learning algorithm. The proposed algorithm DR2 is used for
generating the decomposable representation. The experiments made use of two different
ways to pick up the template. In the first case the template for computing the test at
every node of the lattice was selected from prior preliminary experiments. In the second
case a randomly generated template was used. The objectives behind presenting the
results for these two different cases are: (1) to demonstrate that reducing a constant
number of tests at every node does not change the underlying complexity and (2) if
available, prior knowledge about the template can be incorporated into the algorithm
for reducing the cost by a constant factor. A template of all 1-s and all 0-s are chosen
for the former case. For the latter case, 10 randomly selected templates are used, which
turned out to be sufficient for all test functions. DR2 could detect linkages without any
mistake for all test functions using either one of these templates.

TRAP: A Deceptive Function

The deceptive trap [1] function is defined as, f(x) = k if w=%k; f(x) =k—-1-
u otherwise; where u is the unitation variable, or the number of 1-s in the string z,
and k is the length of the sub-function. If we carefully observe this trap function, we
shall note that it has two peaks. One of them corresponds to the string with all 1-s (the
global optima) and the other is the string with all 0-s (the suboptimal solution). The
objective function is constructed by concatenating several deceptive trap functions one
after another. The overall objective function is simply a weighted linear summation of
the individual subfunctions. For uniformly scaled problems all the weights are set to 1.
For non-uniformly scaled problems, weights vary through 1,2, - -- u, with the weight for
the leftmost subfunction set to 1 and rightmost one set to u. For £ = 200, and k& = 5,
the overall function contains 40 sub-functions; therefore, an order-5 bounded 200-bit
problem has 20 local optima, and among them, only one is globally optimal. As the
problem length increases the number of local optima exponentially increases. Figure
5 (Top) shows the growth of number of objective function evaluations with respect
to increasing number of search variables. Pre-selected templates are used for these
experiments.

MUH: The Muehlenbein Function

This function is defined in Table 1. The global optima is the string of all 0-s while all
the strings having a number of trailing 1-s constitute the local optima. Unlike the case
for Trap, here the building block corresponding to the global optima, has a significant
amount of overlap with the local optima. Figure 5 (Bottom) shows the growth of number
of objective function evaluations with respect to increasing number of search variables.
Pre-selected templates are used for these experiments.
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Figure 5: The number of function evaluation vs. problem size in detecting linkage in

case of (Top) uniformly scaled non-overlapping TRAP and (Bottom) overlapping MUH
using selected template. At most five variables can be mutually dependent.
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Miihlenbein GW2

f(x) =4 if x =00000 | f(x) =10 if u=0
=3 if x = 00001 =8 ifu=k
-2 ifx = 00011 — 7 ifu=1 and 0dd(0)
=1 ifx=00111 =2 if u=1 and even(1)
=0 ifx=01111 =4 if u=k-1 and odd(1)
=3.5 if x =11111 =3 if u=k-1 and even(1)
=0 otherwise. =0 otherwise.

Table 1: Functions odd(0) and even(0) return true if the number of 0-s in z are odd
and even respectively. odd(1) and even(1l) are analogously defined.

Multi-modal GW1

fx) =u+2 xP’(x) | fx) =4 f x=1#1#0

where, =8 if x=14#0#0

£’(x) = 1 if odd(u) =10 if x=0#1#0
= 0 otherwise =0 if x=0#1#0

Table 2: (left) Massively multi-modal function and (right) GW1; u denotes the number
of 1-s in the string. The symbol # denotes the don’t care position.

GW1: Goldberg-Wang Function 1

This function is defined in Table 2. Figure 6 (Top) shows the growth of number of
objective function evaluations with respect to increasing number of search variables.

GW2: Goldberg-Wang Function 2

This function is defined in Table 1. Figure 6 (Bottom) shows the growth of number of
objective function evaluations with respect to increasing number of search variables.

MULTI: A Massively Multi-Modal Function

This is a massively multi-modal function of unitation where the global optima is a string
of all 1’s (assuming that length of the sub-function is odd). It is defined in Table 2.
This function resembles a one-max function with “bumps”. Figure 7 shows the growth
of number of objective function evaluations with respect to increasing number of search
variables.

The experimental results presented here clearly demonstrates the scalable O(£2)
performance of the proposed randomized algorithm. Since the proposed approach is
based on a well-grounded theoretical foundation, it should be equally applicable to
other discrete objective functions. The following section discusses the future work and
its connections to the biology.

9 Future Research Directions

The proposed stochastic algorithm for decomposed representation construction scales up
when the number of mutually dependent genes is not greater than some small constant.
Although this may be true for many fitness functions, it is easy to construct functions
that do not satisfy this condition. Therefore, it is quite natural to ask the validity of
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Figure 6: The number of function evaluation vs. problem size in detecting linkage in case
of GW1 (Top) and GW2 (Bottom) with 10 randomized templates. Each graph represents
results of both uniformly and linearly scaled non-overlapping cases. No difference in
the number of function evaluation is noted between the uniformly and linearly scaled
cases. At most five variables can be mutually dependent. For linearly scaled problem,
the subfunctions are multiplied by 1,2,3---u with 1 being assigned to the leftmost
subfunction and p to the rightmost one..
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Figure 7: The number of function evaluation vs. problem size in detecting linkage in case
of both uniformly scaled non-overlapping and overlapping MULTT with 10 randomized
templates. No major difference in the number of function evaluation is noted between
the non-overlapping and overlapping cases. At most five variables can be mutually
dependent.

this assumption particularly in the context of gene expression. We need to justify this
and we have reasons to believe that the justification may come from the way the gene
expression process works. As noted earlier, this process involves several representation
transformations. The translation (transformation of mRNA to Protein) is one among
them. This transformation is controlled by the genetic code. Our recent work [36,
37] extended our approach by exploring the effect of genetic code-like representation
transformations in the domain of binary strings. This paper shows that genetic code-
like transformations introduce an interesting property in the representation of a genetic
fitness function. It points out that such adaptive transformations can convert some
functions with an exponentially large description in Walsh basis to one that is highly
suitable for polynomial-size approximation. Such transformations can construct a Walsh
representation with only a polynomial number of low-order terms that are exponentially
more significant than the rest when fitter chromosomes are given more copies through
a redundant, equivalent representation. This is a very desirable property [48, 29] for
efficient function-induction from data which is a fundamental problem in learning, data
mining, and optimization. This also means that in such representations higher order
interactions among the variables are negligible. We still need to identify the class of
functions for which such transformations will work. We also need to develop techniques
for constructing such transformations in an evolutionary algorithm.

One alternate approach to the randomized technique proposed here is to transform
the representation of the given objective function in such a way that all the Walsh coef-
ficients are non-negative. In that case the summation of any subset of such coeflicients
will be equal to zero only when the coefficients are individually zero. From Equation 4
we can write,

wi= Y G+ Y f)Y(x) (8)

xeQ+(j) x€Q~(j)
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where Q7 (j) and Q™ (j) define the set of all strings for which ;(x) is 1 and -1 respec-
tively. Clearly there exists a decomposition of any function f(x) = f1(x)— f2(x) in such
a way that both f; and f» have non-negative WCs. Note that this requires controlled
generation of x-s such that the corresponding basis functions for a given j return either
all positive or all negative. This simple construction shows that it is always possible
to transform a given function so that all the WCs are non-negative. A simple way to
do that is to translate the f(0) value by some large enough positive constant, p. Since
$;(0) = 1 such translation will translate every WC by the amount #7. If p is large
enough then all the WCs will be non-negative. Although this makes our algorithm
applicable, the problem is that this may destroy the underlying sparseness of the co-
efficients. In other words, coefficients that were originally zero will become non-zero
because of the translation. This may give rise to an exponential value of r and as a
result the algorithm may no longer remain computable in polynomial time.

An alternate approach to address this problem is to manipulate the representa-
tion in such a way that the coefficients become non-negative without destroying the
sparseness. It is not clear how to do that. However, it is interesting to observe that
complementary alphabet transformations (like what we see in transcription) offer some
control over the basis functions that may be useful.

Let x be a binary string and let 7 be a complementary operator that maps 1 to
0 and vice versa. Let 73(x) be the complementary transformation applied on the j-
partition of x. In other words, 73(x) complements only those positions of x where there
isa 1in f. Let us now consider the difference between the Walsh function ¢g(73(x))
and 9(x). Recall that 15(x) can be either -1 or 1. It turns out that ¢g(73(x)) = 15(x)
when the number of transcribed features is even; on the other hand 3(75(x)) = —9(x)
when the number of transcribed features is odd. This can be understood as follows. Let
g be the number of 1-s in §; g; and go be the numbers of 1-s and 0-s in T within the
partition defined by the 1-s in . The number of ones in Tz(x) within the partition £,
g1 = go = g — g1- Now if both g and g; are even numbers then g must be even. On
the other hand if g and g; are even and odd numbers respectively then g must be odd.
In other words the sign of ¢3(Z) does not change when Z is transformed to a different
string by applying 7 over an even number of bits. Consider ¥g110(1011) = —1. Now if
we apply T to the underscored bits we get 19110(1101) = —1. A similar rationale can
be developed for the case when g is odd.

Now consider a transformation of the representation of the domain in such a way
that every x is represented by 71 (x), where 1 is an £-bit string of 1-s. Such representation
flips the sign of the WC corresponding to every odd-order partition. However, it does not
destroy the sparseness; WCs with a value of zero, remain zero. We may be able to exploit
such complementation-based representation transformation techniques for computing
the summation of all non-negative coefficients. However, this is only our hypothesis
since this is similar to the physical representation transformations in transcription at
an abstract level.

The current implementation of the proposed algorithm works in a centralized fash-
ion. In other words it generates the distributed, decomposed representation by searching
in a centrally constructed lattice of partitions. Work on extending this algorithm to a
hierarchical, distributed computing-based approach is also on progress. In this ap-
proach the partitions defined by different subsets of features are explored in parallel.
This work is likely to make the proposed approach suitable for distributed computing
environments.
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10 Conclusions

This paper notes that fitness evaluation in natural evolution takes place in a distributed
fashion in different living cells through the process of gene expression. It argues that such
distributed evaluation of the fitness is only possible when the function can be correctly
decomposed into different sub-functions. Unless such a representation was available a
priori, we have every reason to believe that there must be an efficient mechanism to
compute such a distributed, decomposed representation. It develops techniques to do
that in polynomial time. It proposes an efficient randomized algorithm to construct
such representation of a function when the number of mutually interacting variables is
bounded by a constant. Although we could have presented the algorithms without any
reference to the gene expression process, we choose not to do so because of our continuing
effort to understand this process from the perspective of evolutionary search. We think a
presentation from a pure algorithm design perspective without any reference to biology
will unnecessarily restrict the scope of our research.

It is important to note that the requirement of bounded order of interaction has
deep implication in polynomial complexity search [48]; without that common machine
learning and optimization will be quite useless in the general case, as long as polynomial-
time computation is desired. For example, consider a decision tree [60]. Even such a pop-
ular inductive learning algorithm may engage in an exponential-time tree-construction
in absence of this requirement, in the worst case producing a tree that is no better than
table-look-up. Bounded order of dependence among the search variables guarantees
a tree of bounded depth and thereby a polynomial-time computability. This assump-
tion is reasonable and most importantly practical. However, as noted earlier genetic
code-like transformations may further extend the scope of the proposed algorithms by
constructing a representation of some functions where the higher order coefficients are
negligible. For problems that satisfy this condition, the proposed algorithm guarantees
linear-time performance with respect to r with a probabilistic notion of correctness.
Although this paper did not directly relate the proposed randomized approach to a
specific mechanisms of gene expression, this work and the previous papers along this
line have established that polynomial-time computation of the distributed representa-
tion of the objective function is possible under reasonable assumption. Now that we
have a strong foundation, the next step is to investigate the implications of the specific
transformations in gene expression.
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