100

Revisiting The GEMGA: Scalable Evolutionary
Optimization Through Linkage Learning

Sanghamitra Bandyopadhyay, Hillol Kargupta, and Gang Wang

Abstract— The Gene expression messy genetic algorithm
(GEMGA) is a new generation of messy genetic algorithms
(GAs) that pays careful attention to linkage learning and in
a broader context the search for appropriate relations [6].
This paper revisits the earlier work on the GEMGA [8], [9],
[7] and proposes a new version of the algorithm that brings
back the time complexity to O(A*(£)), where £ is the problem
length, A is the alphabet set of the representation, and k is
the order of delineability [6] of the problem. This paper also
reports the scalable linear performance of the GEMGA for
various difficult, large optimization problems.

Keywords— GEMGA, linkage learning, messy GAs.

I. INTRODUCTION

Inducing relations that capture the local symmetries of
the fitness landscape is important for making a blackbox
search transcend random enumeration. The gene expres-
sion messy GA (GEMGA) is a class of evolutionary algo-
rithms that pays careful attention to this process. Founda-
tion of the GEMGA is built on the decomposition of black
box optimization (BBO) into three spaces (proposed by
the SEARCH framework [6]): (1) relation, (2) class, and
(3) sample spaces. The relation space introduces classes
which in turn define the set of symmetries that the BBO
algorithm tries to induce from the search space. This is
essentially defined by the representation, operators, and
other biases of the algorithm. Like many other GAs, the
GEMGA uses the representation to define this prior bias
for the set of symmetries (a set of relations in set theoretic
terms) to look for. In the current version of the GEMGA
this set of relations is actually a set of partitions defined
over the canonical basis of the chosen representation. The
GEMGA makes an attempt to solve the so called order-k
delineable problems, the class of problems in which parti-
tions, defined by a constant (k) number of dimensions of the
canonical basis set are sufficient for capturing fitness sym-
metries. The GEMGA is also a descendent of the messy
GA breed [2], [4], [3], [6]. The GEMGA shares the philos-
ophy of linkage learning in messy GAs and emphasizes it
to even broader context of learning relations.

Although the initial version of the GEMGA [9], [7] was
linear in sample complexity (growth of number of func-
tion evaluations along problem size), better performance in
terms of the relation search required introducing quadratic
experimentation [11]. This paper presents a new version of

S. Bandyopadhyay is with the Machine Intelligence Unit, Indian
Statistical Institute, Calcutta.

H. Kargupta is with the Dept. of Computer Science, Washing-
ton State University, Pullman; all correspondences should be sent to
hillol@eecs.wsu.edu

G. Wang is with the Dept. of Computer Science, Michigan State
University at East Lansing.

GEMGA, where linkage learning (a special case of learn-
ing relations using canonical basis of the representation) is
significantly modified, bringing back the GEMGA to the
domain of linear sample complexity without sacrificing the
performance.

Section 2 describes different aspects of GEMGA. Sec-
tion IIT presents the test results for several large, multi-
modal, order-k delineable problems. Finally, Section IV
concludes this paper.

II. THE GENE EXPRESSION MESSY GA

This section introduces a modified version of the
GEMGA and shows that the overall sample complexity
is linear. Section II-A discusses the representation in
GEMGA. Section II-B explains the population sizing in
GEMGA. This is followed by Section II-C that describes
the main operators, Transcription and RecombinationEx-
pression. Section II-D presents of the overall mechanisms.

A. Representation

The GEMGA uses a sequence representation. Each se-
quence is called a chromosome. Every member of this se-
quence is called a gene. A gene is a data structure, which
contains the locus, value, and capacity. The chromosome
also contains a dynamic list of lists called the linkage set.
The locus determines the position of the member in the
sequence. The GEMGA uses position independent coding
of genes introduced elsewhere [2], [4]. A gene also contains
the wvalue, which determines the value of the gene, which
could be any member of the alphabet set, A. The capacity
associated with every gene takes a positive real value. The
linkage set of a chromosome is a list of weighted lists. Each
member of this sequence consists of a list, termed locuslist
which defines the set of genes that are related, and three
factors, the weight, goodness and trials. The weight is a
measure of the number of times that the genes in locuslist
are found to be related in the population. The goodness
value indicates how good the linkage of the genes is in terms
of its contribution to the fitness. This value is normalized
between 0 and 1, and is initialized to 0. The trial field in-
dicates the number of times this linkage set has been tried.
(Note that if the trial of any element of the linkage set is
zero, then its goodness is temporarily assumed to be 1, un-
less proved otherwise.) The linkage set space over all genes
defines the relation space of the GEMGA. Figure 1 shows
the structure of a chromosome in GEMGA. Unlike the orig-
inal messy GA [2], [4] no under or over-specifications are
allowed. A population in GEMGA is a collection of such
chromosomes.

Chromosome i
’Gene Gene | @ @ @ |Gene Link | Link ® ® O |Link
0 1-1 0 1 i-1
Genes Linkage Set
Gene j
Locus Value Capacity
Link j
Locus | Locus [N N J Locus | weight goodnaﬁ‘ trial
0 1 k-1
locuslist
Fig. 1. Structure of a chromosome in GEMGA.

B. Population sizing

In GEMGA symmetries of the fitness are searched for
using equivalence classes called schemata [5] defined by the
partitions over canonical basis set. The GEMGA requires
at least one instance of the optimal order-£ schemata in the
population. For a sequence representation with alphabet A,
a randomly generated population of size A* is expected to
contain one instance of an optimal order-k schemata. The
population size in GEMGA is therefore, n = cA¥, where ¢ is
a constant. Although we treat ¢ as a constant, ¢ is likely to
depend on the variation of fitness values of the members of
schema. The GEMGA only searches for schemata defined
by only order-k delineable partitions. In practice the order
of delineability [6] is often unknown. Therefore, the choice
of population size in turn determines what order of rela-
tions will be processed. For a population size of n, the order
of relations processed by GEMGA is, k = log(n/c)/log|Al.
Since, the current version of GEMGA does not construct
new basis set, if GEMGA cannot solve the problem for a
given population size, a higher population size should be
used to address possible higher order delineability.

C. Operators

GEMGA has two primary operators, namely: (1) Tran-
scription, (2) RecombinationExpression. Each of them is
described in the following.

C.1 Transcription

In nature the transcription operator may apparently look
quite different from the GEMGA transcription operator.
However, there are fundamental similarities and in the fu-
ture GEMGA transcription may look quite similar to its
natural counter part. We view natural transcription as
a representation transformation defined over the alphabet
set of the DNA. We also view the gene expression pro-
cess as a process of representation construction for defining
new basis set. However, although the GEMGA research
is motivated by gene expression, the research agenda is
decomposed into two stages namely (1) solving problems
accurately and reliably that are order-k delineable in the
given canonical basis set and (2) construction of new basis
set. The current version of GEMGA reported in this paper

101

makes not attempt to address the second stage. However,
our research directions for the next stage is discussed else-
where [10]. Since, current GEMGA deals with only the
given canonical representation, unlike natural transcrip-
tion, the GEMGA makes use of transformations over the
canonical basis to detect search space symmetries. This is
the fundamental reason behind using the name transcrip-
tion for the operator described below. The transcription
operator applies a random subset of all alphabet transfor-
mations to every gene one at a time. The value of the
gene is flipped and the change in fitness value is noted.
The objective is to note the “local” symmetry of the fit-
ness landscape in a statistical sense. For a minimization
problem, if that change causes an improvement in the fit-
ness (i.e. fitness decreases) then the original instance of the
gene certainly does not belong to the instance of the best
schema, since fitness can be further improved. Transcrip-
tion sets the corresponding capacity of the gene to one (for
binary problems, indicating that the gene has a capacity to
change by one). On the other hand if the fitness worsens
(i.e. fitness increases) then the original gene may belong to
a good class; at least that observation does not say it other-
wise. The corresponding capacity of the gene is set to zero,
indicating that the value at that gene position cannot be
changed. Finally, the value of that gene is set to the orig-
inal value and the fitness of the chromosome is set to the
original fitness. All the genes whose capacities are reduced
to zeroes are collected in one set, called the initial linkage
set. This is stored as the first element of the linkage set
associated with the chromosome. Its weight, goodness, and
trial factors are initialized to 1, 0, and 0 respectively. The
transcription operator does not change anything in a chro-
mosome except the capacities and initiates the formation
of the linkage sets. For a maximization problem the condi-
tions for the capacity change are just reversed. The same
process is continued deterministically for all the ¢ genes in
every chromosome of the population. Figure 2 shows the
Transcription operator. The following section describes the
RecombinationExpression operator in GEMGA.

C.2 RecombinationExpression

Figure 3 shows the mechanism of the Recombination-
Expression operator in GEMGA. It primarily consists of
two phases - the PreRecombinationExpression phase and
the GEMGA Recombination phase. Please note that the
recombination operator as described here is different from
the conventional notions of recombination in GAs. Careful
study of this operator will reveal many similarities with the
overall process of recombination in nature.

The PreRecombinationExpression operator determines
the clusters of genes precisely defining the relations among
those instances of genes. This is applied several times, spec-
ified by NoOfLinkageExpt, during the first generation for
the chromosomes. First, a pair of chromosomes is selected
and one of them is marked. Of the genes present in the ini-
tial linkage set of the marked chromosome (and included as
the first element of its linkage set), only those that have the
same value and capacities in the other are extracted and

pick is the currently considered gene
Transcription(CHROMOSOME chrom,
int pick)

double phi, delta;
int dummy;
double dcap;

dcap = chrom[pick].Capacity();
phi = chrom.Fitness();
dummy = chrom[pick].Value();
// Change the value randomly
chrom[pick] .PerturbValue() ;
// Compute new fitness
chrom[pick] .EvaluateFitness();
// Compute the change in fitness
delta = chrom[pick].Fitness()-phi;
// For minimization problem
if(delta > 0.0)
chrom[pick] .SetCapacity(0.0);
else
chrom[pick].SetCapacity(1.0);
// Set the value to the original value
chrom[pick] .SetValue(dummy) ;
// Set the original fitness
chrom[pick] .SetFitness(phi);
if (chrom[pick].capacity == 0)
chrom.LinkageSet [0].Add(pick) ;
chrom.LinkageSet [0].Init();

}

Fig. 2. Transcription operator for minimization problem. For maxi-
mization problem, if delta< 0 then the capacity is set to 0. Func-
tion Add() adds element pick to the locuslist of LinkageSet[0] and
Init() initializes the other factors.

RecombinationExpression(Pop, gen)
POPULATION Pop;
int gen; //the generation number

int i,sel;
if (gen == 0){
for (i=0;i<=NoOfLinkageExpt;i++)
PreRecombinationExp(Pop,i)

else Recombination(Pop)

}

Fig. 3. RecombinationExpression operator in GEMGA.

grouped as a separate set. If this set is already present in
the linkage set of the marked chromosome, then the corre-
sponding weight is incremented by INCR_WEIGHT. Oth-
erwise, it is included as a new linkage set and the different
factors are initialized. The operator is outlined in Figure
4.

At the end of the requisite number of experiments
(NoOfLinkageExpt), an £x £ conditional probability matrix
is formed, (Figure 5), whose entry i, j indicates the proba-
bility of the occurrence of gene i, when gene j is present in
a linkage set. Finally, the final linkage sets are computed
using the GetFinalLinkage operator. For each row ¢ of the
Conditional matrix, its maximum value is computed, and
the genes that have their probability values within an EP-
SILON of the maximum are included in the linkage set for
i. Its weight is set to the average value of the conditional
probabilities of every gene in the set. Figure 6 shows the
pseudo code for this operator.

102

PreRecombinationExpression(chromi,
chrom2, counter)
CHROMOSOME chroml,chrom2;
int counter; // no of expt counter
{ int i,n,index,locus,ln,R[];
double Conditionall[][];
if (counter<NoOfLinkageExpt){
1n=chroml.LinkageSet[0].Length();
for (i=0;i<1ln;i++){
locus=chromi.LinkageSet[0] [i];
if ((chromi[locus].value==
chrom2[locus] .value) and
chrom2[locus].capacity == 0)
R.Add(locus);

if (PresentIn(R,chroml.LinkageSet,
index))
chroml.LinkageSet [index] .
weight+=INCR_WEIGHT;
else
chroml.LinkageSet.Add(R,INIT_WEIGHT) ;

}
else{ //at end of this phase
Compute_Conditional Matrix(Pop
i,Conditional);
GetFinalLinkage(Pop,i,Conditional);
}
}

Fig. 4. PreRecombination operator using the linkage set of chrom2 to
resolve the initial linkage set of chrom1. PresentIn(A,B,n) returns
true if A is present in list B, and the position in n. Otherwise it
returns false.

After the PreRecombinationExpression phase, the
GEMGA Recombination operator, Figure 7, is applied it-
eratively on pairs of chromosomes. First, copies of a given
pair is made, and one of them is marked. An element of
the linkage set of the marked chromosome is selected, based
on a linearly combined factor of its weight and goodness,
for swapping. The corresponding genes are swapped be-
tween the two chromosomes provided the goodness values
of the disrupted linkage sets of the unmarked chromosome
are less than that of the selected one. The linkage sets of
the two chromosomes are adjusted accordingly. Depend-
ing on whether the fitness of the unmarked chromosome
decreases or not, the goodness of the selected linkage set
element is decreased or increased. Finally, only two of the
four chromosomes (including the two original copies) are
retained based on several factors outlines in Figure 7.

The following section describes the overall mechanism of
the algorithm.

D. The algorithm

GEMGA has two distinct phases: (1) Transcription stage
and (2) RecombinationExpression stage. The transcription
operator is applied for £ generations, deterministically con-
sidering every gene in each generation. This is followed by
the application of the RecombinationExpression operator
which continues a number of times determined by some ter-
mination criterion. This stage also has two distinct phases:
an initial PreRecombinationexpression stage and GEMGA
Recombination stage.

During the PreRecombinationExpression stage the pop-

Compute_Conditional Matrix(chrom
Conditional[][])

CHROMOSOME chrom;

double Conditional[][];

int cntl,cnt2;

For every pair of genes (i,j) in
chrom.LinkageSet [0] {

cntl=No. of times (i,j) in
chrom.LinkageSet;
cnt2=No. of times (j) in

chrom.LinkageSet;
Conditional[i] [jl=cnt1/cnt2;

}

}

Fig. 5. Compute_Conditional_Matrix operator.

GetFinalLinkage (chrom,Conditional[][])
CHROMOSOME chrom;
double Conditionall[][];

int i,j,ln,cnt=0,Set[];
double max,wt=0;

1n = chrom.LinkageSet [0] .Length();

for (i=0;i<ln;i++)

//for each element in initial linkage
Set=chrom.LinkageSet=NULL;
max=Max(Conditional[i]);
for (j=0;j<1ln;j++) {

if (Conditionall[i][j]>
max-EPSILON) {
//j in Linkage Set for i
Set.Add(j);
wt = wt+Conditional[li][j];
cnt=cnt+1;

Set.Add(i); //Linkage set for i

wt = wt/cnt ;

if (wt>WEIGHT_THRESH)

//Linkage thresholding criterion
if (!PresentIn(Set,
chrom.LinkageSet))

chrom.LinkageSet.Add(Set,wt);

}
}

Fig. 6. GetFinalLinkage operator using the Conditional Matrix to
get final linkage sets of chrom. Add(Set,wt) adds ‘Set’ to the
linkage set of chrom and sets its weight to ‘wt’. The goodness
and trial values are set to zeros.

ulation of chromosomes remains unchanged, except that
the capacities of the genes change and the linkage sets get
constructed. This is followed by the Recombination stage,
in which the detected linkage sets are combined based on
conditions of goodness, weight, trial, and fitness. Figure
8 shows the overall algorithm. The length of the tran-
scription phase application is £. In the PreRecombina-
tionExpression phase, no function evaluation is performed.
Since the population size is O(|A|*), the transcription phase
is applied for £ generations and no function evaluation is
performed in the PreRecombinationExpression phase, the
overall sample complexity of the phases during which the
linkages are learned is SC = O(|A|¥(¥)).

The following section presents the test results.

103

Recombination(chromi,chrom?2)
CHROMOSOME chroml, chrom?2;
{
//let chrom1 be the marked chromosome
CHROMOSOME t1,t2;
int maxtrial;
double maxwt,maxgood;
LinkageSet SelSet[];

//make copies of the chromosomes
tl=chroml; t2=chrom2;
//select linkage set from chroml based on
//linear combination of goodness € weight
SelSet=Select(chroml.LinkageSet) ;
// Get maz weight, goodness & trial among
//linkage sets disrupted in chrom?2 due
//to SelSet
chrom2.Disrupted(SelSet ,maxwt,
maxgood,maxtrial) ;
if (SelSet.goodness > maxgood) {
//the swap the genes in SelSet
// Adgjust linkage sets of chrom1 € chrom?2
//due to the swapping of SelSet
AdjustLinkage (chroml,chrom2,SelSet);
chroml.Fitness();
chrom2.Fitness();
if (chrom2.fitness > t2.fitness)
//SelSet good - increase its goodness
//in t1 and chrom2.
else
//SelSet bad - decrease ilts goodness
//in t1 and chrom2
//Incr. trial of SelSet in t1 and chrom2.
//Select 2 offspring among chroml,
//chrom?2, t1 and t2 as follows
if (goodness(chrom2,SelSet)) >
maxgood AND maxtrial > 0)
//More copies of SelSet -
//Select t1 and chrom2
if (chrom2.fitness == t2.fitness)
//Retain t1 and t2, but with changed
//goodness and trial of SelSet.
if (chrom2.fitness < t2.fitness)
//Keep chroml and t2.

}

Fig. 7. Recombination operator of GEMGA.

III. TEST RESULTS

The following sections document the performance of
the GEMGA for problems with massive multi-modality,
bounded delineability (approximated by bounded decep-
tion [4]), and large number of optimization variables.

A. Ezxperiment design

The performance of GEMGA is tested for five differ-
ent problems, namely i) Liepins-Vose deceptive (LVD),
i1) Muehlenbein, iii) Goldberg-Wang function 1 (GW1),
) Goldberg Wang function 2 (GW2) and v) Massively-
Multimodal function. Each of the functions is constructed
by concatenating order-5 subfunctions, so that the order
of delineability is bound by 5. The subfunctions are now

described in details:
i) LVD The following defines the deceptive trap [1]
function.

flz) = k if u=k
= k—1—u otherwise,

void GEMGA() {
POPULATION Pop;
int i, j, k, komax;

// Initialize the population at random

Initialize(Pop);

j=0;

Repeat {
// Identify better relations
Transcription(Pop, j);
// Increment generation counter
j=Ji+1

} Until(j == Problem_length)

k = 0;

Repeat {
// Select better classes and
do GEMGA recombination
RecombinationExpression(Pop,k);
// Increment generation counter
k=k+ 1;

} Until (k > kmax)

Fig. 8. Pseudo-code of GEMGA.

where u is the unitation variable, or the number of 1-s in
the string z, and % is the length of the subfunction. If we
carefully observe this trap function, we shall note that it
has two peaks. One of them corresponds to the string with
all 1-s and the other is the string with all 0-s. For £ = 200,
and k = 5, the overall function contains 40 subfunctions;
therefore, an order-5 bounded 200-bit problem has 24° local
optima, and among them, only one is globally optimal. As
the problem length increases the number of local optima

exponentially increases.
ii) Muehlenbein Each order-5 subfunction is defined
as follows :

f(z) 4 if z = 00000
flz) =3 if = 00001
flx) =2 if z=00011
flx) =1 if @ =00111
fz) =0 if z=01111
fx) =35 if z=11111
=0 otherwise.

Thus the global optima is the string of all 0-s while all
the strings having a number of trailing 1-s constitute the
local optima. Unlike the case for LVD, here the building
block corresponding to the global optima, has a significant

amount of overlap with the local optimas.
iii) GW1 Each order-5 subfunction is defined as follows

flz) =4 if = 14#1#0

flz) =38 if x = 14040

f(z) =10 if © = 0#14#0
=0 otherwise,

where # denotes the don’t care position.
iv) GW2 Each order-5 subfunction is defined as follows

=10 if u=0

)
f(x) =38 if u=k

104

flz) =7 if uw =1 and odd(0)

flz) =2 if uw =1 and even(0)
flz)y =4 if w=k—1andodd(l)
f(z) =3 if w=k—1andeven(l)

=0 otherwise,

where odd(0) and even(0) return true if the number of
0-s in z are odd and even respectively. odd(1) and even(1)

are analogously defined.

v) Massively multimodal This is a massively multi-
modal function of unitation where the global optima is a
string of all 1’s (assuming that length of the subfunction is
odd). It is defined as follows :

f@) =u+2x f(z).
f!(z) is defined as follows :
f'(=)

1 if odd(u)
= 0 otherwise.

It can be observed that this function resembles a one-max
function with “bumps”. The following section presents the
test results.

B. Results

Figures 9—13 show the average number of sample evalu-
ations from five independent runs needed to find the glob-
ally optimal solution for problem sizes ranging from 100
to 500. The population size is 200, chosen as described
earlier in this paper. It is kept constant for all the prob-
lem sizes. Selection probability is kept as zero. For the
LVD, Muehlenbein and GW1 problems, the NoOfLinkage-
Expt, WEIGHT_THRESHOLD and EPSILON values are
kept as 150, 0.7 and 0.1, while for the remaining two these
are 195, 0.4 and 0.1 respectively. The reason for this is
that the nature of the first three problems results in the
optimal buliding blocks being detected in the PreRecombi-
nationExpresion with very high weights, close to 1, while
those in the other two problems come up with low weights.
It is only when the the sub optimal building blocks are
tried, and they provide poor goodness values that the op-
timal building blocks get the opportunity to prove their
efficacy. In each case we see that the sample complexity, or
the number of function evaluations required for attaining
the optimal value, linearly depends on the problem size.

160000 T T T

GEMGA performance for LVD -x--
140000 -
120000 -

2

s

% 100000

§ 80000 [

60000 -

40000 -

20000 L L L L L L L
100 150 200 250 300 350 400 450 500
Problem size

Fig. 9. Growth of the number of function evaluations to attain the
optimum solution with problem size for LVD.

220000

GEMGA performance for Muehlenbein -z
200000 4

180000 -
160000 -
140000 -

120000 -

Function evaluations

100000 |-
80000 - e
60000 -

40000

20000 L L L
100 150 200 250

300 350 400 450 500
Problem size

Fig. 10. Growth of the number of function evaluations to attain the
optimum solution with problem size for Muehlenbein.

160000 T T T T

T T T
GEMGA performance for GW1 -X~

140000 -
120000 -
100000 -

80000 -

Function evaluations

a000 7

20000 L L L
100 150 200 250

300
Problem size

Fig. 11. Growth of the number of function evaluations to attain the
optimum solution with problem size for GW1.

IV. CONCLUSION

This paper introduces a significantly modified version of
GEMGA and the test results for a large problem with mil-
lions of local optima and bounded inappropriateness of the
representation. This version (v. 1.3) offers a linear sam-
ple complexity algorithm. The results of the investigation
presented here indicate that the algorithm can detect ap-
propriate relations efficiently for a large class of problems.
Currently it is being tested for problems with real variables,
larger problem size and variable fitness scaling. Problems
lacking very crisp and well defined building blocks have
been found to come up with very large number of elements
in the linkage sets, thereby increasing the computation time
of the algorithms. Improvements in this regard are also un-
der investigation. The work on advancing the GEMGA to
the second stage where it will construct new basis set is
also underway; more details about that effort can be found
elsewhere [10].

V. ACKNOWLEDGMENT

This work was supported by Los Alamos National Lab-
oratory, United States Department of Energy. We also ac-
knowledge many useful discussions with David E. Gold-
berg.

REFERENCES

[1] D. H. Ackley. A connectionist machine for genetic hill climbing.
Kluwer Academic, Boston, 1987.

[2] K. Deb. Binary and floating-point function optimization using
messy genetic algorithms. IIliGAL Report No. 91004, Univer-

105

180000

GEMGA performance for GL2 <"~

160000 -
140000 -
120000 -

100000 -

Function evaluations

80000 |-
60000 -

000 "

20000 L L L
100 150 200 250

300 350 400 450 500
Problem size

Fig. 12. Growth of the number of function evaluations to attain the
optimum solution with problem size for GW2.

240000

GEMGA performance for MULTIMODAL ¥~
220000 -

200000 -
180000 -
160000 -

140000 -

Function evaluations

120000 -
100000 -
80000 -

eoo0 [

40000
100

150 200 250 300 350 400 450 500
Problem size

Fig. 13. Growth of the number of function evaluations to attain the
optimum solution with problem size for Massively Multimodal.

sity of Illinois at Urbana-Champaign, Illinois Genetic Algorithms
Laboratory, Urbana, 1991.

[3] D. E. Goldberg, K. Deb, H. Kargupta, and G. Harik. Rapid,
accurate optimizaiton of difficult problems using fast messy ge-
netic algorithms. In S. Forrest, editor, Proceedings of the Fifth
International Conference on Genetic Algorithms, pages 56—64,
San Mateo, CA, 1993. Morgan Kaufmann.

[4] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic algo-
rithms: Motivation, analysis, and first results. Complez Systems,
3(5):493-530, 1989. (Also TCGA Report 89003).

[5] J. H. Holland. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, 1975.

[6] H.Kargupta. SEARCH, Polynomial Complezity, and The Fast
Messy Genetic Algorithm. PhD thesis, Department of Computer
Science, University of Illinois at Urbana-Champaign, Urbana, IL
61801, USA, October 1995. Also available as IlIliGAL Report
95008.

[7] H. Kargupta. Computational processes of evolution: The
SEARCH perspective. Presented in STAM Annual Meeting, 1996
as the winner of the 1996 STIAM Annual Best Student Paper
Prize, July 1996.

[8] H. Kargupta. The gene expression messy genetic algorithm. In
Proceedings of the IEEE International Conference on Evolution-
ary Computation, pages 814-819. IEEE Press, 1996.

[9] H. Kargupta. Performance of the gene expression messy genetic

algorithm on real test functions. In Proceedings of the IEEE

International Conference on FEwvolutionary Computation, pages

631-636, 1996. IEEE Press.

H. Kargupta. Gene Expression: The Missing Link Of Evolu-

tionary Computation. In C. Poloni D. Quagliarella, J. Periaux

and G. Winter, editors, Genetic Algorithms in Engineering and

Computer Science., page Chapter 4. John Wiley & Sons Ltd.,

1997.

H. Kargupta and D. E. Goldberg. SEARCH, blackbox optimiza-

tion, and sample complexity. In R. Belew and M. Vose, editors,

Foundations of Genetic Algorithms, pages 291-324, San Mateo,

CA, 1996. Morgan Kaufmann.

(10]

[11]

