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Abstract

This paper offers a linear representation-based approach for advanced meta-analysis of
data mining models. The contribution is particularly relevant to data mining applications
that produce ensemble of dynamically changing classifiers, clusters, and other models.
Mining data streams, distributed data, and privacy-sensitive data are some examples where
we often face this scenario. These ensembles are usually difficult to interpret and translate
into useful knowledge. Even if the mining algorithm produces a single model, dynamically
changing environments like data streams often produce a temporally varying model that
needs to analyzed and understood in the context of past models. This may help in detecting
changes in the underlying data distribution, checking the stability of the monitoring/mining
system, identifying operating regimes, and triggering different monitoring models.

The paper offers a linear representation-based approach for representing and perform-
ing meta-analysis of discrete structure-based data mining models. It particularly considers
the Fourier representation of discrete structures like decision trees as an example. It points
out that Fourier spectrum of decision trees can be used to efficiently perform many useful
operations like principle component analysis-based visualization, aggregation, construction
of efficient redundancy-free representation of an ensemble of decision trees and detecting
unstable behavior of the models, that are currently very difficult to perform, if not impos-
sible.

1 Introduction

Many data mining applications that deal with environments like data streams, distributed
data, and privacy-sensitive data, produce either an ensemble of models or a temporally varying
model. The difference and similarities among the models may help in identifying changes in
different properties of the data such as underlying distribution, regime, outliers, and many
other aspects. Therefore, understanding the dynamics of the models is important in many
data mining applications. There are also many techniques like Boosting [6, 4], Bagging[2],
Stacking [25], and random forests [3] that produce an ensemble of classifiers and they are
regularly applied to static data sets for increasing classifier accuracy.

This paper offers a methodology to perform advanced meta-analysis of discrete model
structures generated by data mining techniques. It explores construction of an embedding of
such structures in linear representation and provides a mechanism to perform a rich variety



of algebraic operations on a collection of these data mining models. Today, the state-of-the-
art in dealing with collection of models is primarily restricted to combining only the outputs
(e.g. class label assigned by the classifier, cluster membership in case of a clustering problem)
using various methods like the Bagging [2], Stacking [25], order statistics-based techniques [24],
voting [21], mutual information-maximization [23].

This paper claims that we need to go beyond treating the model-ensembles as a blackbox.
We need to analyze and understand the characteristics of the models in a common framework.
This philosophical motivation behind this work is also very important since most large-scale
practical data mining applications do tend to deploy various techniques that eventually pro-
duces a collection of heterogeneous models.

This paper considers a small but important component of the problem. It considers en-
semble of decision trees [15]. Decision trees are very popular and are widely used in many
data mining applications for classification. The paper develops a Fourier representation-based
approach that is suitable for analyzing the dynamically changing single or ensemble of decision
trees. However, the paper discusses only the later case explicitly since an ensemble of multiple
time varying models can be viewed as a generalization of a single time varying model. This
paper offers a methodology that allows us to perform many useful operations on a collection
of decision trees for aggregating, understanding, and manipulating the ensemble. The specific
contributions of this particular paper include the following;:

1. a similarity-preserving transformation of an ensemble of decision trees,
2. principle component analysis-based visualization of an ensemble,

3. aggregation, and construction of efficient redundancy-free representation of an ensemble,
and

4. detecting unstable behavior of the models.

Section 2 offers a framework for aggregating and manipulating ensemble of decision trees
using Fourier basis. Section 3 describes a novel scheme for PCA-based visualization of an
ensemble of decision trees. Section 4 presents an efficient eigenanalysis-based scheme for re-
moving redundancy in a decision tree-ensemble. Section 5 discusses a technique to monitor the
stability of the functional behavior of an ensemble using matrix perturbation theory. Section
6 presents some experimental results. Finally, Section 7 concludes the paper.

2 Linear Representations for Aggregating, and Understanding
Ensemble of Models

An ensemble-classifier is a collection of classifiers that work together in order to perform the
classification tasks. The member classifiers of an ensemble are called base classifiers. This
section considers ensemble of classifiers represented using discrete structures and proposes a
framework to aggregate, understand, and manipulate them using formal algebraic operations.
It particularly considers linear representations of decision trees (e.g., CART[1], ID3[16], and
C4.5 [17]) for demonstrating the possibility of going beyond the traditional ensembles that just
combine the outputs of the models. This section considers decision trees since it is a popular
technique to learn classifiers from data and it is represented by a discrete structure. Learning
decision trees from distributed and stream data often produces large ensembles [5, 13, 18, 22].
The rest of this paper considers the Fourier representation of decision trees which allows efficient
representation, aggregation, and manipulation of tree-ensembles.



2.1 Decision Trees as Numeric Functions

A decision tree defined over a domain of categorical attributes can be treated as a numeric
function. First note that a decision tree is a function that maps its domain members to a
range of class labels. Sometimes, it is a symbolic function where features take symbolic (non-
numeric) values. However, a symbolic function can be easily converted to a numeric function
by simply replacing the symbols with numeric values in a consistent manner.

Once the tree is converted to a discrete numeric function, we can also apply any appro-
priate analytical transformation as necessary. Fourier transformation is one such interesting
possibility. Fourier representation of a function is a linear combination of the Fourier basis
functions. The weights, called Fourier coefficients, completely define the representation. Fach
coefficient is associated with a Fourier basis function that depends on a certain subset of fea-
tures defining the domain. This section reviews the Fourier representation of decision tree
ensembles, introduced elsewhere [8, 10].

2.2 A Brief Review of the Fourier Basis

Fourier bases are orthogonal functions that can be used to represent any discrete function. In
other words, it is a functionally complete representation. Consider the set of all £-dimensional
feature vectors where the i-th feature can take \; different categorical values. The Fourier basis
set that spans this space is comprised of Hf:())\i basis functions. Each Fourier basis function
is defined as,
A — 1 Hl iiimmjm
P5'(x) = ——=—==II},; exp’n
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where j and x are strings of length ¢; z,, and j,, are m-th attribute-value in x and j, respec-
tively; T, jm € {0,1,---X\;} and X represents the feature-cardinality vector, g, - - - Ag; zpj\(x)
is called the j-th basis function. The vector j is called a partition, and the order of a partition
j is the number of non-zero feature values it contains. A Fourier basis function depends on
some x; only when the corresponding j; # 0. If a partition j has exactly a number of non-zeros
values, then we say the partition is of order « since the corresponding Fourier basis function
depends only on those a number of variables that take non-zero values in the partition j.

A function f : Xf — R, that maps an £ -dimensional discrete domain to a real-valued
range, can be represented using the Fourier basis functions:

HEEDITAC)

where wj; is the Fourier Coefficient (FC) corresponding to the partition j and Ej(x) is the

complex conjugate of %-X(x);
wy =Y P (x) f (x).

The Fourier coefficient w; can be viewed as the relative contribution of the partition j to the
function value of f(x). Therefore, the absolute value of w; can be used as the “significance”
of the corresponding partition j. If the magnitude of some wj is very small compared to other
coefficients, we may consider the j-th partition to be insignificant and neglect its contribution.



The order of a Fourier coefficient is nothing but the order of the corresponding partition.
We shall often use terms like high order or low order coefficients to refer to a set of Fourier
coeflicients whose orders are relatively large or small respectively. Energy of a spectrum is
defined by the summation ) ; wJ?. Let us also define the inner product between two spectra wyy)
and w(g) where w;) = [w(;) 1w(;) 2, - w(i),m]T is the column matrix of all Fourier coefficients
in an arbitrary but fixed order. Superscript 7' denotes the transpose operation and |.J| denotes

the total number of coefficients in the spectrum. The inner product,

S W), W(g) >= EWn,jwem-
J

We will also use the definition of the inner product between a pair of real-valued functions
defined over some domain 2. This is defined as

< f1(x), f2(%) >= ) fi(x) fa(x).

xeN

The following section considers the Fourier spectrum of decision trees and discusses some
of its useful properties.

2.3 Properties of Decision Trees in the Fourier Domain

This section considers the Fourier spectrum of decision trees with finite depths, bounded by
some constant. The underlying functions in such decision trees can be represented by a constant
depth Boolean AND and OR circuit (or equivalently AC? circuit). Linial et al. [11] noted that
the Fourier spectrum of AC? circuit has very interesting properties and proved the following
lemma.

Lemma 1 (Linial, 1993) Let M and d be the size and depth of an AC° circuit. Then

S wP <Myt
{i [ o(i)>t}

where o(j) denotes the order of the partition j and ¢ is a non-negative integer. The term
on the left hand side of the inequality represents the energy of the spectrum captured by the
coefficients with order greater than a given constant ¢.

Lemma 1 essentially states the following property about decision trees: The energy cap-
tured by all high order Fourier coefficients is small. This is because the energy of the Fourier
coefficients of higher order decays exponentially. This observation suggests that the spectrum
of a Boolean decision tree (or equivalently bounded depth function) can be approximated by
computing only a small number of low order Fourier coefficients. So Fourier basis offers an
efficient numeric representation of a decision tree in the form of a linear function that can be
easily stored and manipulated. The exponential decay property of Fourier spectrum also holds
for non-Boolean decision trees. The complete proof is available elsewhere [14].

There are two additional important characteristics of the Fourier spectrum of a decision
tree:

1. The Fourier spectrum of a decision tree can be efficiently computed [10].

2. The Fourier spectrum can be directly used for constructing the tree [14].



Figure 1: Inner product matrices: Computed using the (Left) output of the decision trees and
(Right) the Fourier spectra of the respective trees.

In other words, we can go back and forth between the tree and its spectrum. This is philo-
sophically similar to the switching between the time and frequency domains in the traditional
application of Fourier analysis for signal processing.

Fourier transformation of decision trees also preserves inner product. The functional be-
havior of a decision tree is defined by the class labels it assigns. Therefore, if {x1,%2,--- x|/}
are the members of the domain € then the functional behavior of a decision tree f(x) can be
captured by the vector [flzeq = [f(x1)f(x2) - f(x)q)]T, where the superscript T’ denotes the
transpose operation. The following lemma proves that the inner product between two such
vectors is identical to the same in between their respective Fourier spectra.

Lemma 2 Given two functions fi(x) = w(l),j%)‘(x) and fo(x) = > w(Q),jEj)‘(x) in
Fourier representation. Then < fi(x), f2(x) >=< w(1), w(g) >.

Proof:

<hE), 0> = D fix)fa(x)

x€QN

= > w(l)dw_jx(x)w@),i%x(x)

xEN j,i
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= < W(1), W(2) > .
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Figure 2: Visualization of an ensemble of decision trees using PCA. Each point represents a
single decision tree.

The fourth step is true since Fourier basis functions are orthonormal. The Fourier spectrum
of a decision tree offers a real valued representation that allows a wide range of different data
analysis techniques for analyzing and understanding the ensemble of decision trees. The rest
of this paper considers several such possibilities.

3 Visualizing Ensemble of Decision Trees

Visual inspection of ensemble models for identifying their relative similarities and dissimilarities
is one of the basic needs for better understanding of an ensemble. This section offers a technique
for visualizing decision tree-ensembles using the Principal Component Analysis (PCA) [7].

Consider a set of decision trees 7(1), T(2), =+ , T(m) ; let W(1), W(2), - - - W(y,) be their respective
spectra. In order to visualize the functional behavior of any given tree 7(;) we need to somehow
represent the vector [7(;)]. The inner product between [7(1)] and [7(2)] provides a measure of
their similarities. Therefore, the inner product matrix can be something useful for studying
the ensemble. Unfortunately, for most real-life applications explicit operations using [7(;)] are
not practical since the domain of 7(;) is usually very large. However, Lemma 2 offers a practical
way to solve this problem. Since Fourier spectrum preserves inner product we can operate in
the Fourier domain efficiently without explicitly dealing with the [7(;]-s.

The inner product matrix is useful for measuring pair-wise similarity between trees. How-
ever sometimes we may need to represent the trees in a new embedding. PCA is a popular
technique to construct a smaller dimensional representation of high dimensional data. Al-
though PCA may not be directly applicable to the discrete structures—trees, the technique
works fine with the representation of decision trees in the Fourier domain.

Let J be the union of all partitions with non-zero coefficients from all the m spectra under
consideration and | J| is the cardinality of the set J. Consider an arbitrary but fixed ordering
of all the members of J. Let us now define the matrix A such that 4;; = w; ), where
Ww(i),(j) denotes the Fourier coefficient corresponding to the j-th partition in the ordering from
the spectrum of the tree 7;. After translating the column-means of the matrix A to zero, we
get the new matrix A. Therefore, A; ; = A; ; — p;, where py; is the mean of the j-th column



of matrix A. This is a real valued m X |J| matrix.

The covariance matrix of A is therefore AT A . This is a symmetric matrix with an eigen-
value decomposition. A straight forward application of PCA on A and its subsequent projec-
tion along the dominant eigenvectors can be used to create a compact, smaller dimensional
representation of the trees. Figure 2 shows a two-dimensional representation of an ensemble
of trees using the two most dominant eigenvectors.

Visualization of trees is not the only thing we can do using the Fourier representation of
trees. It also offers us a way to create linear combinations the trees and develop the notion of
redundancy-free orthogonal trees. The following section outlines these possibilities.

4 Removing Redundancies from Ensembles

Combining the output of base models is the central issue in ensemble learning. There exist
several well known techniques [2, 19, 25, 24] to do that. All of these techniques combine the
output of the base classifiers in different ways. They do not structurally combine the classifiers
themselves. The Fourier representation offers a unique way to do that.

The Fourier spectrum of a linear combination of decision tree classifiers can be computed by
first computing the Fourier spectrum of every tree and then aggregating them using the chosen
scheme for constructing the ensemble. Let f.(x) be the underlying function representing the
ensemble of m different decision trees where the output is a weighted linear combination of the
outputs of the base classifiers. Then we can write,

fe(x) = a7y (x) + ae72)(x) + - + amT(m) (%)

Where «; is the weight of the i** decision tree and Z; is the set of all partitions with non-zero
Fourier coefficients in its spectrum. Therefore,

Z w e),J¢J

JjET

where w(g); = Y 1" QW) 5 and J = U2, J;. Therefore, the Fourier spectrum of fe(x) (an
linear ensemble classifier) is simply the weighted sum of the spectra of the member trees.

The base models of an ensemble often share redundancy resulting from similar observations
noted at different sites. Continuous data stream environments may also introduce redundancy
in the generated models because of the underlying periodicity in the data. Therefore, removing
redundancy from the base models may be useful for creating the ensemble. The following part
of this section explores a Fourier spectrum-based approach to do that.

Consider the matrix D where D; ; = 7(;)(x;), where 7(;)(x;) is the output of the tree 7;
for input x; € Q. D is an || x m matrix where || is the size of the input domain and m is
the total number of trees in the ensemble.

An ensemble classifier that combines the outputs of the base classifiers can be viewed as
a function defined over the set of all rows in D. If D, ; denotes the j-th column matrix of
D then the ensemble classifier can be viewed as a function of Dy 1, Dy 2, Dy ;. When the



ensemble classifier is a linear combination of the outputs of the base classifiers we have F =
a1Dy 1+ aoDy o + -+ - ayp Dy 1y, where F' is the column matrix of the overall ensemble-output.
Since the base classifiers may have redundancy, we would like to construct a compact low-
dimensional representation of the matrix D . However, explicit construction and manipulation
of the matrix D is difficult, since most practical applications deal with a very large domain.
We can try to construct an approximation of D using only the available training data. One
such approximation of D and its Principal Component Analysis-based projection is reported
elsewhere [12]. Their technique performs PCA of the matrix D, projects the data in the
representation defined by the eigenvectors of the covariance matrix of D, and then performs
linear regression for computing the coefficients a1, as, -+, and ayp,.

While the approach is interesting, it has a serious problem. First of all, the construction
of an approximation of D even for the training data is computationally prohibiting for most
large scale data mining applications. Moreover, this is an approximation since the matrix is
computed only over the observed data set of the entire domain. In the following we demonstrate
a novel way to perform a PCA of the matrix D, defined over the entire domain. The approach
uses the Fourier spectra of the trees, Lemma 2, and works without explicitly generating the
matrix D.

The following analysis will assume that the columns of the matrix D are mean-zero. This
restriction can be easily removed with a simple extension of the analysis. Note that the
covariance of the matrix D is DT D. Let us denote this covariance matrix by C. The (i, j)-th
entry of the matrix,

Ci,j = <D(*ai)’D(*aj) >
= < 'r(i)(x),'r(j)(x) >
= Z W(i),pW(5),p
P
= < W), W) > (1)

The third step is true by Lemma 2. Now let us the consider the matrix W where W, ; =
w(j),(i)» 1-e- the coeflicient corresponding to the i-th member of the partition set J from the
spectrum of the tree 7(;). Equation 1 implies that the covariance matrices of D and W are
identical. Note that W is an |J| x m dimensional matrix. For most practical applications
|J| << |$2|. Therefore analyzing W using techniques like PCA is significantly easier. The
following discourse outlines a PCA-based approach.

PCA of the matrix W produces a set of eigenvectors which in turn defines a set of Principal
Components, V1, Vs, - Vi. Let ), be the j-th component of the g-th eigenvector of the
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Figure 3: A collection of fifteen decision trees represented as a linear combination of the three
orthogonal functions (V-s).
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Where aiq = Z?:l Y(j),qW),i- The eigenvalue decomposition constructs a new represen-

tation of the underlying domain where the feature corresponding to column vector V; is

—A . . . . . .
vg = Y. 0i g5 (X) ie., Vg = [vg],cq- Note that v, is a linear combination of a set of Fourier
spectra and therefore it is also a Fourier spectrum. Also note that Vi -s are orthogonal which
is proved in the following.



The inner product between V; and V; for ¢ # r is,

< VQ,V;" > = < [Uq]xa[UT]x >

= Z aj qQj,r Z ,(/)i (X)’(ﬁj (X)
i,j X
= Z aj,q%i,r

= <aga, >
= 0.

Therefore, we conclude that the spectra corresponding to the orthonormal basis vectors
Vy and V,. are themselves orthonormal. Let f;, and f, be the functions corresponding to the
spectra a; and a,. In other words, f,(x) = ) ;aiq%i(x) and f.(x) = >; ai,9i(x). Then by
Lemma 2 we can also conclude that, < Vg, V, >=< ag,a, >=< fy(x), fr(x) >. This implies
that the inner product between the output vectors of the corresponding functions are also
orthonormal to each other.

The above analysis offers a way to construct the Fourier spectra of a set of functions that
are orthogonal to each other and therefore redundancy-free. These functions also define a basis
and can be used to represent any given decision tree in the ensemble in the form of a linear
combination.

Figure 3 reports an experiment with an ensemble of fifteen different trees. Some of these
trees were generated in such a way that they share some functional similarities. In other
words, some of the trees come up with the same class labels for the same domain member.
This is very natural for most ensembles. We constructed the W matrix and performed the
analysis presented in this section. The most dominant eigenvector captures 85% of the variance.
The second and third most dominant eigenvectors capture 2.6% and 2.7% respectively of the
variance. Each of the fifteen base models of an ensemble is represented in the form of a linear
combination of those top three V,-s and shown in a three dimensional graph (Figure 3).

Also note that most ensemble-based classifier learning techniques create a linear combi-
nation of the trees. Since the Vj-s define a linear basis, any such ensemble classifier can be
constructed using a linear combination of V;-s. We can also compute the coefficients corre-
sponding to each V; by simply performing linear regression. Visualization and construction
of regression-based aggregation are not the only things that we can do using this approach.
It can be used for studying many interesting properties of the classifier, particularly in the
data stream and distributed data mining scenario. The following section considers yet another
application of the framework and explores the problem of monitoring the functional stability
of an ensemble classifier.

5 Stability Analysis of Ensembles

The stability issue of an ensemble presented in this section considers the changes in the func-
tional behavior of an ensemble-classifier introduced by changing its base classifiers. The dis-
cussion is particularly relevant to temporally varying applications like mining data streams.
Consider a scenario where decision tree learning techniques are applied on a continuous
stream of data resulting in the construction of a stream of different trees. At time ¢ we have
an ensemble of decision trees 7(1),T(2)," "+ ,T(m)- At time ¢ + 1 we get another tree 7(;;,41)-
We would like to consider including it in the ensemble. We have several possibilities. We can
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either simply grow the size of the ensemble by including it in the pool. On the other hand,
we can replace an existing base-classifier (7(,)) using 7(;,41). There are different schemes to
select the appropriate 7(,). For example the SEA technique reported elsewhere [22] replaces
the worst performing base-classifier by the new one. On the other hand Fan [5] uses a moving
window-based approach. For the sake of this discussion, let us assume that we replace some
model in ensemble 7,y by 7,11 since the model of infinitely growing ensemble does not work
well in practice.

Now we wonder what kind of changes in the functional behavior of the system we should
expect as a result of this change. In some applications, we may want to have a reasonably
stable, robust classifier once we have observed the stream for a reasonable period of time and
the underlying distribution is invariant. On the other hand, if the underlying distribution
has changed then we sure want to detect that quickly and modify the ensemble content as
necessary.

Since the overall ensemble classifier is a linear combination of the V;-s we can write the
classifier as follows:

fe(x) = [, VB.

V' is an orthogonal matrix where columns correspond to k different significant Vg-s and B is
the corresponding k X 1 coefficient matrix that defines the linear combination of V,-s. The
i-th entry of matrix B is nothing but the weight associated with V; which defines the overall
ensemble-classifier.

The matrix V directly depends on the eigenvectors of the matrix WZW. On the other
hand, the coefficient matrix B depends on the aggregation scheme. The matrix [¢;(x)]y; is
simply the column matrix of Fourier basis function values. Therefore, for a given specific
scheme to combine the base classifiers, the matrix V controls the functional behavior of the
ensemble-classifier. If the eigenvectors of W W change dramatically then the behavior may
change accordingly. Therefore, monitoring the changes in the dominant eigenvectors is very
important for detecting major changes in the ensemble behavior. The following discussion
presents a way to do that in a computationally efficient manner using matrix perturbation
theory.

Let us note that W7 W is a symmetric matrix. Let 7; and \; be the i-th ranking eigenvector
and the corresponding eigenvalue such that Ay > Ay > --- A\;. Therefore ~; represents the most
dominant eigenvector, 2 represents the second-most dominant eigenvector, and so on. Let
W, be the spectra-matrix produced by replacing the spectrum of 7, by that of 7(;, 1) in the
matrix W. Let us define F = WnT W, — WTW. Note that F is symmetric. In other words, the
change in the corresponding covariance matrix W'W is symmetric. Let X} > A, > )\;c be
the dominant eigenvalues of the perturbed matrix W, ; let ’Y’1 > 7'2 > 7,; be the corresponding
eigenvectors. Using matrix perturbation theory [20] we can write,

: 4|E||r

I —ml] < —I=2E (2)
' 5 —V2||E||r

A=Al < V2|E|lR (3)

Where § is the difference between the \; and Ay of the matrix WIW, sometimes called its
eigengap. The Frobenius norm of a matrix E is defined as |[E||r = (32, >, E%)l/ 2. Equation

2 assumes that § > v/2||ATA|| 5.
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Now note that,

1Bl = (2D (< Wi, (Wo — Wing1) >)2+
1#£0
(K Wo, W > — < Wyt 1, Wit 1 >)2)1/2

(4)

We can extend the above analysis for second-most dominant eigenvector using a similar ap-
proach by considering the complementary eigenspace comprised of all the eigenvectors except
the most dominant one and then applying Equation 2. The approach can be further extended
to eigenvectors with subsequent rankings.

Therefore in order to monitor the changes in the underlying basis that spans the entire
classifier space, we simply need to do the following things:

1. Maintain the eigengap () information.

2. Every time we decide to replace tree 7(,) by another tree 7(,, 1) we simply compute || E||r
using Equation 4 and then check the bounds given by Equations 2 and 3.

This gives us an upper bound of the change in the eigenvectors. If the bound is high enough
then we may want to trigger necessary actions needed to deal with a change in the behavioral
regime. Note that the test does not require frequent expensive computation of eigenvectors
unless the tests predict a major change in the underlying basis. If the upper bound on the
change in the dominant eigenvectors is large only then we may need to recompute the new
basis and the eigengap information. This property is highly desirable for dealing with data
stream scenarios where response-time is particularly critical.

6 Experimental Results

This section presents results from experiments performed using NASDAQ 100 stock quote
data. The data set contains 20 features where each feature corresponds to a unique stock in
NASDAQ. The original real-valued data is pre-processed and transformed to discrete Boolean
data by encoding percentages of changes in stock quotes. We used the discretized value of
Yahoo stock as the class label. A test data set of 112,000 instances is used to simulate the
stream. A new decision tree is constructed from every 800 instances. The new tree replaces
the oldest tree in the ensemble. Our objective is to monitor the changes in the dominant
eigenvector of the ensemble. We can do that by continuously performing eigen analysis for
every new ensemble. However, as we noted earlier the theoretical bounds offered by Equations
2 and 3 can be used instead of computing the new eigenstates every time the ensemble is
changed. In this section we report the behavior of the bounds and also a relatively simple
estimator for the changes that seems to work accurately for the data set considered here.
Figures 4 and 5 were generated by an experiment starting with an ensemble of 55 decision
trees. Another 85 trees were used to replace one tree at a time in the ensemble for creating the
temporally varying ensemble generated from the stream. In the experiment, we first computed
the eigengap (6). Each time the spectrum of a new tree replaces an existing one in the ensemble,
we compute ||E|| according to Equation 4, and then get the upper bounds and the real values
of the perturbation in both dominant eigenvectors and eigenvalues using Equations 2 and 3.
At the end of the experiment, the two figures were produced to illustrate those bounds and
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Figure 4: The actual changes and the theoretical upper bounds of the changes in the dominant
eigenvalues corresponding to the eigenstates representing the ensemble at different times (tree
number). Note that the content of the ensemble is changing over time.

real values. As the figures show, the bounds as given by Equations 2 and 3 are correct but very
conservative. In real practice if we use these bounds then we will certainly be able to detect
large changes in the eigenstates; however, since the bounds are conservative we are likely to
trigger the eigenstate-recomputation process often even when the actual change is not that
large.

Figures 6 and 7 illustrate the results of an experiment for mining over a stock data-stream
where we estimate the changes in the eigenvectors and eigenvalues using a linear function of
the upper bounds provided by Equations 2 and 3. The experimental set up was identical to
the one used for the previous set of experiments. The only thing that is different in this case
is the introduction of the scaling factors «; and ap. These two factors are multiplied with the
upper bounds provided by Equations 6 and 7 respectively.

In all the experiments reported here, we obtained these coefficients by simply dividing
the the actual change in the eigenvectors (or eigenvalues) by the corresponding theoretical
bound and averaging this over a few observations. In our experiments we always used the
first 10 observations to compute these scaling factors. This is a relatively simple technique
to estimate the scaling factors; but it seem to work very well for the data set we considered.
The resulting scaling factors for the eigenvector and eigenvalue upper-bounds are 0.1490 and
0.1290 respectively. Figure 6 and 7 show the estimated bounds of the perturbation in dominant
eigenvectors, and their actual perturbation values. As seen from the two graphs, our estimated
bounds quite precisely estimated the actual changes in the eigenstates. The following section
concludes this paper.
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Figure 5: The actual changes and the theoretical upper bounds of the changes in the dominant
eigenvectors corresponding to the eigenstates representing the ensemble at different times (tree
number). Note that the content of the ensemble is changing over time.

7 Conclusions

This paper explores a relatively new area—meta-level analysis of data mining models for ap-
plications that generate a collection of such models. Data stream mining, distributed data
mining, privacy-sensitive data mining are some of the common applications that usually face
this situation. Most of the available techniques to deal with ensemble of data mining models
treat the ensembles as a “blackbox” and do not go beyond providing a way to combine the
output behavior of the base models. However, this alone does not serve the purpose at least
for a data mining practitioner. Most real-life data mining applications require understanding
the real “meaning” of the models in the context of the application domain. Moreover, in ap-
plications where the ensemble is changing over time, it is imperative to be able to efficiently
represent, access, and monitor the models.

This paper pointed out that the Fourier basis is a very appropriate representation for deci-
sion trees that allows many interesting and useful operations on ensembles in a computationally
efficient manner. Earlier work of the author [9, 8] showed that the Fourier representation of
decision trees can be effectively used for physically aggregating multiple tree-structures into
a single spectrum using a non-heuristic-based approach. Our earlier work also showed that
the Fourier spectrum of a decision tree can be computed efficiently and it is also possible to
compute the tree back from its Fourier spectrum [14].

This paper further extends our previous work and shows many different applications of the
framework. It first showed that the Fourier transformation preserves the inner product between
a pair of decision trees. It also demonstrated that a PCA-based dimension reduction of the
Fourier representation of the ensemble may be suitable for low dimensional visualization of an
ensemble. Next it identified a way to remove redundancy from an ensemble for constructing a
basis set of orthogonal functions that spans the entire ensemble. This allows us to construct
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Figure 6: The changes in the most dominant eigenvector and its estimated upper bounds for
a time varying decision tree ensemble. The estimated Bound is computed by multiplying the
bound with an estimated scaling factor a; = 0.1490.

the overall ensemble classifier in much more efficient manner with little redundancy in the
representation. This offers an efficient representation of the ensemble, often needed for fast
response in many real-time data mining applications. This also allows a meaningful way to
visualize the trees in a low dimensional space. Finally, the paper considers the problem of
detecting significant changes in the performance of an ensemble due to changes in its content.
This is particularly important for the time varying applications like data stream mining. It
offers a computationally efficient way to detect significant changes in the underlying basis
without necessarily performing eigen-analysis every time.

Although, the paper considers the Fourier representation, this is clearly not the only avail-
able linear representation around. Data mining applications deal with many other discrete
structures (e.g. graphs) that can also benefit from appropriate linear decompositions. Eigen-
vectors and Wavelets are other interesting choices for representing ensembles that need further
investigations.
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