A Striking Property of Genetic Code-Like
Transformations

Hillol Kargupta

Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County

Baltimore, MD 21250, USA

hillol@cs.umbc.edu

The gene expression process in nature plays a key role in evaluating the fitness
of DNA through the production of different proteins in different cells. The pro-
duction of proteins from DNA goes through different stages. Among others, the
transcription stage produces the mRNA from the DNA and translation produces
the amino acid sequence in protein from the mRNA. The translation process is
accomplished by mapping the mRNA sequence using a transformation called the
genetic code. This code considers every consequent triplet (codon) of nucleic acids
in the mRNA sequence and maps it to a corresponding amino acid. This paper
shows that genetic code-like transformations introduce very interesting properties
to the representation of a genetic fitness function. It presents a Fourier! analysis
of genetic code-like transformations. It points out that such transformations can
convert some function representations of exponential description in Fourier basis to
a description that is highly suitable for polynomial complexity approximation. More
precisely, such transformations can construct a Fourier representation with only a
polynomial number of terms that are exponentially more significant than the rest.
Polynomial-complexity approximation of functions from data is a fundamental prob-
lem in inductive learning, data mining, search, and optimization. Therefore the work
has important implications in these areas. It is unlikely that such representations
can be constructed for all functions. However, since such transformations appear to
work well in nature, the class of such functions may not be trivial and we should
explore it further.
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IThe analysis is identical to that using Walsh basis [4, 45]; however, the the term Fourier is
chosen because of its historical [32, 18] use in function approximation literature.
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| 1. Introduction

Learning functions from data is important in many fields such as inductive learning,
statistics, and data mining. It may also be important for non-enumerative optimiza-
tion in absence of sufficient domain knowledge; this is because such optimization
may require inductive detection of structure of the objective function for intelligent
guessing about the desired solution.

Representation plays an important role in learning functions. For example, if
the function has an exponentially large (in the number of variables defining the
function) description in the chosen representation then its polynomial-time com-
putation is not possible. On the other hand, a representation with polynomially
bounded size is amenable to efficient computation. A function with an exponen-
tially large description may be efficiently computed when it can be approximated
using a function that has a polynomially bounded description size. This may be
possible when the target function has an exponentially large representation with
only a polynomial number of “significant” components. In that case, we may be
able to neglect the “insignificant” components and still enjoy a high degree of ac-
curacy. Therefore, constructing function representations with a “small” number of
“significant” components is important for efficient function induction.

This paper considers Fourier basis representation of some well known functions
and shows that there exists a class of transformations that offers this property in
the Fourier space under some practical conditions. The transformations are similar
to the genetic code that transforms the genetic fitness function defined over the
protein sequences to the mRNA representation in a living organism.

A living body starts its life from the DNA, the primary information career in
genetics. Almost every critical activity of the organism is accomplished by proteins
constructed from the DNA. The efficacy of the organism, i.e. the genetic fitness,
depends on the proteins. For some reason our body chooses different representations
of the information stored in the proteins. It uses the mRNA and the DNA sequences
to represent the proteins. It first transforms the DNA to the mRNA representation
and subsequently to the protein before evaluating the fitness of the genome. This
process of representation transformations is called gene expression. Representation
transformations are often used in many fields like Physics, Engineering, Machine
Learning, and Mathematics for transforming difficult problems into suitable forms
that are easier to solve. Therefore representation transformations in gene expression
allude intriguing possibilities.

This paper investigates the possible role of the gene expression in making genetic
search efficient. It considers one important part of gene expression, the translation,
that transforms the mRNA sequence to protein. Translation is governed by the
genetic code. This paper presents a Fourier analysis of genetic code-like transfor-
mations in the binary sequence space and demonstrates a quite interesting property
of such representation transformations. It points out that there exists some genetic
code-like transformations that can convert some functions with exponentially long
description in Fourier basis to a representation where only a polynomial number of
terms are exponentially more significant than the rest when fitter proteins are given
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Figure 1. Different steps of gene expression.

more copies through redundant and equivalent representation.

Section 2 describes the gene expression process in nature. Section 3 briefly re-
views the previous work on the computation in gene expression. Section 4 reviews
the basics of Fourier representation. Section 5 analyzes the effect of genetic code-
like transformations on the representation of the genetic fitness function and proves
the main results of this paper. Finally Section 6 concludes this paper.

I 2. Gene Expression and the Genetic Code

The DNA is the primary carrier of the genetic information that is transmitted
from one generation to another. DNA molecules consist of two long complementary
chains held together by base pairs. DNA consists of four kinds of bases joined to
a sugar-phosphate backbone. The four bases in DNA are adenine (A), guanine
(G), thymine (T) and cytosine (C). Chromosomes are made of DNA double helices.
Bases in DNA helices obey the complementary base pairing rule. T and G pair with
A and C respectively. In other words, if the base at a particular position of a helix
is T then the corresponding base in the other helix should be A. The information
coded in the DNA is extracted during the process of gene expression.

Expression of genetic information coded in DNA requires construction of the
mRNA sequence, followed by that of proteins. The main steps are,

= transcription: formation of mRNA (messenger ribonucleic acid) from DNA
= translation: formation of protein from mRNA
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Protein feature | mRNA codons

Alanine GCA GCC GCG GCU

Cysteine UGC UGU

Aspartic acid GAC GAU

Glutamic acid GAA GAG

Phenylalanine | UUC UUU

Glycine GGA GGC GGG GGU

Histidine CAC CAU

Isoleucine AUA AUC AUU

Lysine AAA AAG

Leucine UUA UUG CUA CUC CUG CUU
Methionine AUG

Asparagine AAC AAU

Proline CCA CCC CCG CcCu

Glutamine CAA CAG

Arginine AGA AGG CGA CGC CGG CGU
Serine AGC AGU UCA UCC UCG UCU
Threonine ACA ACC ACG ACU

Valine GUA GUC GUG GUU
Tryptophan UGG

Tyrosine UAC UAU

STOP UAA UAG UGA

Table 1. The universal genetic code.

= protein folding

In a particular cell, transcription produces the mRNA from a small portion of the
DNA. The mRNA defines another level of representation of the genetic information.
It consists of four types of bases joined to a ribose-sugar-phosphodiester backbone.
The four bases are adenine (A), uracil (U), guanine (G), and cytosine (C). All the
bases defining the mRNA are same as those in DNA sequences, except that T is
replaced by U. The mRNA is produced from the DNA by RNA Polymerase and the
regulatory proteins following the complementary base-pairing rules similar to those
in DNA. The RNA Polymerase initiates the transcription at a place of the DNA
marked by the promoter region (start site). It splits the DNA double helix and
continues generating the mRNA using one of the DNA strands as a template. The
RNA Polymerase stops when it finds a termination signal sequence (stop site)in the
DNA strand. Note that only a small portion of the DNA strand is transcribed and
different cells may transcribe different regions of the DNA for producing proteins.
The mRNA acts as the template for protein synthesis. A protein is defined by a
sequence of amino acids, joined by peptide bonds. The mRNA is transported to the
cell cytoplasm for producing protein in the ribosome. There exists a set of rules that
defines the correspondence between nucleotide triplets (known as codons) and the
amino acids in proteins. This is known as the genetic code. Each codon is comprised
of three adjacent nucleotides in a DNA chain and it produces a unique amino
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acid. With a few exceptions the genetic code for most eukaryotic and prokaryotic
organisms is the same. Amino acid sequence defines a new representation of the
information coded in mRNA.

The final level of representation of genetic information is defined by the three
dimensional structure of folded proteins. Although amino acid sequences funda-
mentally define proteins, formation of the three dimensional structure of proteins
involves a complex process, often called protein folding. This process involves in-
teraction between multiple amino acid subsequences, resulting in the emergence in
a folded structure from the sequence.

Figure 1 shows the different steps of the gene expression process. Although
proteins play a key role in determining the genetic fitness, the purpose of the two
additional layers of representations (mRNA and DNA) for representing the fitness
function is not clear. Representation transformations are often used in physics,
engineering, and machine learning for solving problems efficiently. Therefore, the
role of gene expression in efficient genetic search is really intriguing. This paper
investigates gene expression from this perspective. First, let us review the existing
related literature.

| 3. Previous Work

The importance of gene expression in genetic search was realized in the early days
of the field of genetic algorithms. Holland [15] described the dominance operator
as a possible way to model the effect of gene expression in diploid chromosomes.
He also noted the importance of the process of protein synthesis from DNA in the
computational model of genetics. Despite the fact that, traditionally dominance
maps are explained from the Mendelian perspective, Holland made an interesting
leap by connecting it to the synthesis of protein by gene signals, which today is
universally recognized as gene expression. He realized the relation between the
dominance operator with the “operon” model of the functioning of the chromosome
[19] in evolution and pointed out the possible computational role of gene signaling
in evolution [15].

Several other efforts have been made to model some aspects of gene expression.
Diploidy and dominance have also been used elsewhere [1, 7, 16, 38, 40]. Most
of them took their inspiration from the Mendelian view of genetics. The under-
specification and over-specification decoding operator of messy GA has been viewed
as a mechanism similar to gene signaling [13]. The structured genetic algorithm [8]
also shares motivations from the gene expression; it uses a structured hierarchical
representation in which genes are collectively switched on and off. This provides
the search algorithm with a richer representation and helps capturing properties of
the landscape better. An empirical study of genetic programming using artificial
genetic code is presented in [31]. Kauffman [30] offered an interesting perspective
of the natural evolution that realizes the importance for gene expression. However,
Kauffman’s work does not explain the process in basic computational terms on an-
alytical grounds and does not relate the issue to the complexity of search. The
complex nature of the representation in the DNA itself created interest among the
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researchers. The eukaryotic DNA typically contains many segments that are not
used in the gene expression process for producing proteins. An empirical investi-
gation of the role of such “non-coding” segments (introns) in genetic search can be
found in [46]. A survey of evolutionary algorithms with intron-based representations
is presented in [47].

The “neutral network” theory [36, 39] also considers sequence-to-structure map-
ping from the perspective of random graph construction. This work approaches
gene expression from the perspective of random graph construction and points out
existence of the fitness invariant neutral networks. The translation process maps
multiple mRNA sequences to the same protein sequence. As a result, it creates a
genetic space that contains multiple genomes with same fitness, termed as neutral
networks. This work provides interesting insights into the effect of such neutral
networks in genetic search. However, its contribution towards polynomial-time rep-
resentation construction of genetic fitness function is not clear.

Another related effort to understand the properties of the fitness landscape de-
fined by the mRNA can be found in [37]. This work presents a Fourier analysis of
the landscapes derived from the RNAs using Fast Fourier Transformation (FFT).
Although the time complexity of the FFT is better than the regular Fourier Trans-
formation, it still grows exponentially with respect to the number of feature variables
defining the domain of the fitness function. This paper suggests that the genetic
code that transforms the RNA to protein itself may help designing a polynomial
time algorithm for the construction of the Fourier representation which the FFT
cannot offer.

There also exists a body of literature that investigates the evolution of the genetic
code. An algebraic model of the evolution of the genetic code is presented in [17].
This work searches for symmetries in the genetic code and points out the existence
of a unique approximate symmetry group compatible with the codon assignments.
The main idea behind this work is to view the evolution of the genetic code as an
iterative process of representation decomposition. The genetic code is viewed as a
64-dimensional representation decomposed into several sub-representations with re-
spect to different subgroups. The number of amino acids correspond to the number
of sub-representations and the number of codons for any amino acid corresponds
to the dimension of that subrepresentation. An extension of this work using Lie
superalgebra is presented in [3]. Additional work on the different biological theories
on the evolution of the genetic code can be found elsewhere [5, 10].

An alternate approach has been developed by Kargupta and his colleagues [2,
20, 29, 21, 22, 26, 23, 25, 24, 28]. This approach is mainly motivated by a perspec-
tive of the gene expression as a mechanism to make genetic search more efficient.
This approach notes that the traditional model of evolutionary computation (based
on selection, crossover, and mutation)[15] appears to have some serious scalabil-
ity problems [42] for reasonably difficult problems. There is also little theoretical
result available that proves guaranteed polynomial time performance of existing
evolutionary algorithms for reasonably difficult classes of problems. Since the ex-
isting models of evolutionary computation do not address the gene expression issue
very well and gene expression changes the genetic representation, it may become
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a natural candidate for exploring the unknown mechanism that makes the genetic
search in nature so efficient and scalable.

The early exploration of gene expression-like mechanisms for efficient inductive
detection of function structure resulted in a class of heuristics-based techniques,
known as the gene expression messy GA (GEMGA) [22]. In the recent past, more
rigorous approaches using Fourier basis representations are suggested. Fourier Rep-
resentations exposes the underlying function structure and it is functionally com-
plete. Therefore, if we can learn such representations quickly, the purpose of func-
tion induction is served. A randomized algorithm is presented in [28, 27] that
can induce a representation in Fourier basis in polynomial time for problems with
bounded variable interaction (BVI). The assumption of BVI makes sure that among
¢ features defining the search domain, only at most some k (a constant) number of
variables can interact with each other. In other words, the overall fitness function
can be decomposed into a collection of either overlapping or non-overlapping sub-
functions where each of the sub-functions can depend on at most k variables. This
condition guarantees a polynomial size description of the target function in Fourier
representation. An alternate technique for estimating the Fourier representations is
proposed elsewhere [18, 32]. An extension of this technique for detecting function
structure in genetic algorithms is reported in [41].

Although there exists many functions with a polynomial-size canonical represen-
tation, it is not clear why the natural genetic fitness function should have such a
property. This paper suggests a possible direction to answer this question. It shows
that genetic code-like transformations can construct a Fourier representations of at
least some fitness functions where the contribution of Fourier coefficients involving
some q features decreases exponentially with ¢g. This may allow us to approximate
the genetic fitness function with a Fourier representation that neglects the effect
of Fourier coefficients associated with some k or higher features. In other words
the approximation will satisfy the BVI property. If that is the case, then we can
induce such functions efficiently in polynomial time. The following section reviews
the fundamentals of Fourier representation.

I 4. Fourier Representation and Function Induction

The role of the genetic code in the evaluation of the fitness can be understood in
the context of an appropriately chosen set of basis functions. This paper uses the
Fourier basis functions to do that. The representation is very similar to the Walsh
basis [4, 45], frequently used by the genetic algorithm community. How this paper
uses the Fourier representation because of its history in function induction literature
[32, 18]. The following section presents a brief review of the Fourier basis and its
relation with the problem of inducing functions from data.

1 4.1 A brief review of the Fourier basis

Fourier bases are orthogonal functions that can be used to represent any function.
In this paper we shall consider functions of binary variables. Consider the function
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space over the set of all £-bit strings. The Fourier basis set that spans this space is
comprised of 2¢ functions. Each Fourier basis function is defined as follows:

Yi(x) = (1) (1)

Where j and x are binary strings of length £. In other words j = ji,Ja,- - Js,
X = 21,%2,-- 77 and j,x € {0,1}%; x - j denotes the inner product of x and j which
is nothing but Ele xiji- ¥j(x) can either be equal to 1 or -1. The string j is
called a partition. The order of a partition j is the number of 1-s in j. A Fourier
basis function depends on some z; only when j; = 1. Therefore a partition can
also be viewed as a representation of a certain subset of x;-s; every unique partition
corresponds to a unique subset of x;-s. If a partition j has exactly a number of
1-s then we say the partition is of order « since the corresponding Fourier function
depends on only those @ number of variables corresponding to the 1-s in the partition
Jj. Fourier bases are orthonormal. Therefore,

S ) = 1 when i
=0 when i#]j

A function f : X! — R, that maps an /-dimensional space of binary strings to a
real-valued range, can be represented using the Fourier basis functions.

F) =) wy(x) (2)
J
where wj is the Fourier Coefficient (FC) corresponding to the partition j.
1
w5 = 5 3 FRIUs() 3)

We note from Equation 2 that a function can be expressed as a linear sum of
the Fourier functions, each weighed by the corresponding Fourier coefficient. The
Fourier coefficient w; can be viewed as the relative contribution of the partition j
to the function value of f(x). Therefore, the absolute value of w; can be used as
the “significance” of the corresponding partition j. If the magnitude of some wj is
very small compared to other coefficients then we may consider the j-th partition
to be insignificant and neglect its contribution.

Fourier bases and their close relatives Walsh bases are frequently used to study
the behavior of genetic algorithms. Walsh bases [4] were first used by Bethke [6] for
analyzing genetic algorithms. Further investigation of this approach can be found
elsewhere [9, 11, 12, 14, 33, 34, 35, 43, 44].

1 4.2 Function induction from data and Fourier basis

Function induction from data plays an important role in adaptation, machine learn-
ing, and non-enumerative black-box optimization. In function induction, the goal is
to learn a function f : X — Y from the data set Q = {(x(1), y1)), (X(2),¥(2))> - -
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(X(k), Y(k))} generated by some underlying target function f : X" — Y, such that

the f approximates f. Since Fourier basis is functionally complete, any function
can represented in Fourier basis. Therefore, learning a function f can be posed as
the problem of approximating the Fourier representation of f. If we can accurately
estimate the significant coefficients (coefficients with relatively large magnitude) of
the Fourier representation of f then we can use those coefficients to define f The
complexity of inducing a function in Fourier representation is directly proportional
to the number of such coefficients.

Note that the Fourier representation in the binary domain can potentially have
2¢ coefficients and estimating all of them will require an exponential time. However,
we may be able to get away with polynomial time computation if there is a way
to accurately approximate the function with an exponentially long description by
a function with only a polynomially long description. For example, if the function
has only a polynomial number of significant FCs then we may be able to construct
an approximation by considering only those significant coefficients and neglecting
the rest. In that case we can write f =} w;-' ¥5(x), where w;-' = wj when |wj| > 6

and w:i' = 0 otherwise. |wj| denotes the magnitude of w; and 6 represents the

chosen threshold. If the number of FCs in f is polynomially bound then its Fourier
representation can be computed in polynomial time [18, 28, 27, 32, 41].

Unfortunately, function representations may not always come with such a nice
property. The following section points out that there exists some genetic code-
like transformations that can construct representations of functions with this very
desirable property.

I 5. Exploring Genetic Code-like Transformations

The genetic code transforms the mRNA sequence to the protein sequence by as-
signing one protein feature for every codon in the mRNA sequence. Although the
cardinalities of the alphabet sets of the mRNAs and proteins are more than two,
understanding the underlying computation may require abstraction. In this section
we will do so by assuming that the protein and the mRNA sequences are binary
strings. Our objective is to explore the effect of the genetic code-like representation
transformations in the binary domain using Fourier analysis. In order to do that
first we need to define what we mean by genetic code-like transformations.

I 5.1 The notion of genetic code-like transformations

The genetic code defines the correspondence between an mRNA codon and a protein
feature value. Although in nature the codons are defined by three mRNA feature
values, the implication of the choice of number “three” is yet to be explained.
Therefore, the current analysis will treat this as a parameter and the results of this
paper can be specialized for any size of codons including three. As noted earlier, the
analysis considers the effect of such transformations in the binary space. Although
strings are binary, we will continue to use the terms mRNA, protein, and genetic
code accordingly for maintaining the link between biology and the current analysis.
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Protein feature | mRNA codon
100
000
001
010
111
101
110
011

OO OO = =

Table 2. Code A: A genetic code-like transformation for binary representation. Single bit
in the protein space maps to 3-bit codons in the mRNA space.

Protein feature | mRNA codon
100
000
001
010
111
101
110
011

HO OO OO oo

Table 3. Code B: Another genetic code-like transformation for binary representation. Note
that seven unique mRNA codons map to the protein feature value of zero.

Let us use r and p to represent the mRNA and the protein sequences respectively.
Let £, and £, be their respective lengths. Just like the natural translation process,
our artificial translation maps the mRNA sequence to the corresponding protein
sequence using the genetic code. The mapping in Translation will be denoted by 7,
where the subscript ¢ denotes the number of mRNA features that define a codon. If
three features are used like natural codons, ¢ = 3; 7, can be defined as 7, : R — Pb.
R% and P% denote the ¢, and ¢, dimensional space of all mRNAs and proteins
respectively. Note that ¢, = ¢, and for binary representation R = P = {0,1}.

Consider the genetic code-like transformations presented in Tables 2 and 3. Note
that the genetic code may be redundant. In other words, a unique protein feature
value may be produced by several mRNA codons. This is also true for natural
genetic code (Table 1). As a result, there exist many equivalent mRNA sequences
that produce the same protein sequence. All these mRNA sequences have the
same genetic fitness since they all map to the same protein sequence. So we can
view the space of mRNAs grouped into different equivalence classes. We shall call
this characteristic Translation Introduced Equivalence (TTE) and these groups of
equivalent mRNAs will be called the TIE classes. Let R, be the TIE class for the

protein sequence p. We can also define R, in the following manner: R, = {r;|r; S
p}. The cardinality of the set R, depends on the genetic code and the protein
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sequence p. Let agp and a; be the total number of codons that map to a protein
feature value of 0 and 1 respectively. Let £, and £,; be the number of 0-s and 1-s
in p respectively. Then the cardinality of the TIE class is |R,| = aa".

Since one feature in the protein sequence maps to ¢ mRNA features, partitions
defined in the mRNA and the protein spaces can be associated with each other. Let
j and j' be partitions in the mRNA and the protein spaces respectively. We will call
j', the reflection of j in the protein space when j; = 1 if and only if j takes a value of
1 at the location(s) corresponding to at least one of the mRNA features associated
with J; If j has zeroes at all the locations corresponding to j; then j;- =0.

For example, the reflection of the partition j = 101000 using a genetic code of
codon size three is j’ = 10. The left three bits of j are associated with the leftmost
bit of j'. Since two of those three bits are set to 1, jé) = 1. However, none of the
rightmost three bits in j takes the value 1. So the corresponding j'1 = 0. Note that
the reflection of 100000 is also 10 since j;) =1 as long as at least one of the leftmost
three bits is set to 1. Similarly the reflection of 100110 under a genetic code of
codon size three is 11.

Note that different mRNA partitions may have the same reflection in the protein
space. If ¢ is the number of ones in j' then it is the reflection of (2¢ — 1)? different
partitions in the mRNA space. The number of 1-s in j’ will be called the absolute
order of partition j.

Once the protein sequence is constructed from the mRNA sequence, the protein
folds into a three dimensional structure and its shape determines its fitness. Let us
use f : P% — R+ for denoting this fitness function that maps the protein sequence
to a non-negative real-valued range. Since the protein sequences are produced from
the mRNA sequences, we can also define the fitness over the domain of mRNA
sequences. Let ¢ : R — R* be this fitness function defined over the mRNA
representation. Therefore, ¢(r) = f(p) = f(n.(r)). Therefore, ¢(r) can be viewed
as a different representation of the genetic fitness function f(p).

In this section we shall study the representations of f(p) and ¢(r). We will be
particularly interested in the effect of the representation transformation 7, on the
complexity of inducing the function. In other words, we would like to know if ¢(r)
has a more efficient description compared to that of f(p). For example, if the size
of the new representation is smaller by a considerable factor then its learning will
be computationally easier. So it will be desirable over the original representation.

The rest of this paper will use two toy functions to illustrate the analytical
observations. These functions are defined in the following. Let x be a boolean
string of length £ and ones(x) returns the number of ones in x.

1. Needle-in-a-haystack (NH) function:

f(x, xopt) =t if x=xqpt,
=0 otherwise. (4)

Where x4t is the domain member with the maximum function value. Different NH
functions can be defined using different choices for xqp¢.
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2. Trap function:
f(x) =1¢ if ones(x) =1¢

={ —ones(x) —1 otherwise

The following section explores the change in the properties of the Fourier coefficients
under the genetic code-like representation transformations.

1 5.2 Exponential decay of individual Fourier coefficients

The j-th Fourier coefficient in the mRNA space can be defined as,

wy= 5 3 6

e Y1) Y i) )

r;€R,

Il

The magnitude of the second summation in the above expression may take a value
in between 0 and aé”’oai”’l (cardinality of R,) depending upon the nature of the
set R,. This imposes a scaling factor to the contribution of every unique protein
sequence to the j-th FC. Let us explore the effect of such scaling on the magnitude
of an FC.

As noted earlier, the value of v;(r) depends only on those features of r corre-
sponding to the 1-s in the partition j. The mRNA features corresponding to the
positions with 1-s in the partition j may belong to the (1) same mRNA codon,
(2) different codons, and (3) a combination of both. In other words they originate
from the (1) the same protein feature (since one feature in the protein sequence
maps to ¢ features in the mRNA sequence) or (2) different protein features or (3)
a combination of both respectively. Next, we are going to represent j using a col-
lection of partitions {jo,Jji,---Jq} Where jo represents the null partition with all
0-s and every jizo represents a sub-partition of the 1l-contributing positions of j
that contains only those features that belong to the same protein feature. Note
that the reflection of any ji+o in the protein space has only one 1. The null parti-
tion always contribute a value of 1 and it is introduced only for taking care of the
case when the partition j is a sequence of all 0-s. For example, consider a two-bit
protein space that maps to a six-bit mRNA space. The partition 110001 in the
mRNA space can be represented in terms of the sub-partitions 000000, 110000,
and 000001. Note that ¢110001 (I‘) = ’Lb(]()o()o() (I‘)i/)n()o()o (I‘)’Lb(]()o()(n (I‘) We can write,
¥i(r) = [lo=01...., ¥i. (r). Therefore, we can rewrite Equation 5 as follows:

R NIOD Y| AT 6
p ri€R, o0=01,¢

All the defining bits (with partition value of 1) of some j, belong to only one
protein feature by definition. Therefore, the value of [[,_; ..., ¥j.(ri) depends only
on the portion of r; defined by those ¢ protein features. For any given combination
of ¢ protein feature values, we can define a subspace of mRNA sub-sequences.
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If p, is the protein feature value in a given p corresponding to the reflection of
the a-partition in the mRNA space, then let R, be the set of all nRNA codons that
maps to p,. Let Rj , be the Cartesian product of R, -s for o = 1,2,---q. Every
member of Rj , has cq mRNA features. For example consider p = 110 and j =
110000010. So jo = 000000000, j; = 110000000 and j» = 000000010; j; = 100 and
j’2 =001; p1 =1, p» =0, and j’ = 101. In case of code A, R,, = {100, 000,001,010}
and sz = {].].]., 101, 110,011} Therefore R1017110 = Rp1 X sz.

Note that the basis function v, (r;,) is well defined for any r;, € Rj: , for any o
since the feature values of r;, are defined for every defining location of the partition
Jo- This is indeed a slight abuse of the symbols since the length of j, and r;, are
not same. However, we take that liberty since even if we pad r;, with 1-s and 0-s
in order to make the lengths same, the outcome will be identical. This is because
the corresponding values in j, are 0-s by definition.

Let g, 0 and gy ;1 be the number of 0-s and 1-s in p that are covered by the
fixed bits of j', the reflection of j in the protein space; gpj 0 + gpj1 = ¢. In other
words ¢ is the total number of 1-s in j'. Now note that every r;, € Rj , there are
ag”'o_q”’j"oai"’l_q”‘j"l number of strings in the corresponding Rj:,. So we can write
from equation 6,

1 £p0—ay ; lp1—q,;
Wi = 507, D f®) ag® Moapt N I (i)
P

rjv,,ele'p a=0,1,---q

1 bo—p 110 Lpi—py 1
Zﬂzf(l’) ag® " Cal T Y i(ryy) (M)
P

a=0,1,---q rj,pERpa

Let ej, , and oj, , be the number of members in R,, that have an even and odd
number ones respectively over the partition j,. For example, if j, = 110000 and
p = 10 then €110000,10 = 2 and 0110000,10 = 2 for code A shown in Table 2. Now
using Equation 7 we can write,

1 £p,0—q, ; p1—a,;
wi = o> f®) ag’ 00" ] leis — 01,0l (8)
P

a=0,1,---q

Where x € {—1,1} and |ej, , — 0}, p| denotes the magnitude of (e;, , — 0j, ) for all
a # 0. The value of |ej, , — 0, »| can be determined directly from the genetic code.
By definition, for the null partition a = 0, we set |ej, , — 0, 5| = 1 As before, this
is done to take care of the case where j is comprised of only 0-s resulting in ¢ = 0.

Now let us specialize this equation for code A. For this code |e;, , — 0j, ,| is either
2 or 0 for all the partitions (except the partition with all zeros). If |e;, , — 0}, p| is
equal to zero for any given a and the corresponding protein feature value in p then
the overall contribution of p to wj is zero. Also note that since p is a binary string,
any feature in p can take only two values—0 and 1. Therefore, if |e;, ,—o0;, ,| is O for
a certain feature entry in p (corresponding to j, in the mRNA space) |ej,p — 0j.pl
must be 0 for the complementary feature value of p at the same location. As a
result, the corresponding coeflicient wj will be zero. Therefore for all non-zero wj-s,
except the coefficient wo, the value of |e;, , — 0, | must be equal to 2; wy is the
Fourier coefficient for the partition with all entries set to zero.
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So for all non-zero coeflicients except wg in the representation using the code A
we can write,

1 _
wy = oo >k f(p) 4570 2
P

= ﬁzm f(p)
P
1 w,
Sm¥f(l))§2—2 9)

Note that wo = 2%17 > p f(p). This equation shows an exponential decay in the
magnitude of the coefficients as the partition index of the coefficients involve more
and more defining bits. As we increase the value of ¢ (the number of 1-s in j', the
reflection of the partition j) the upper bound on magnitude of the coefficient wj
decreases exponentially.

We can also specialize Equation 8 for the genetic code B. Note that |e;, ,—0j, »| =
1 for all & and p. Also a; = 1 and ag = 7. Therefore,

1 - !
= g 5 @) T
P

Figure 2(Top) shows the effect of codes A and B on the Fourier representation
of function NH. The figure also shows the magnitude of the coefficients of the origi-
nal Fourier representation without using the representation transformation where all
the coefficients have the same magnitude. However, the magnitude decays exponen-
tially with respect to the absolute order of the mRNA partitions for representations
generated using code A and B. Note that the magnitude of the non-zero coefficients
corresponding to partitions with same absolute order are same. Figure 2(Bottom)
shows similar results for the Trap function.

Magnitudes of the individual coefficients do not tell the complete story. Con-
struction of an efficient representation requires consideration of properties of all the
coefficients together. This is particularly important for the current case since these
transformations expand the domain and introduce many new partitions. Even if
the magnitudes of individual coefficients decrease, increased number of coefficients
(recall that the mRNA representation use more features) may result in no benefit
towards reducing the description size of the overall function representation. In other
words, a large number of small coefficients together may contribute significantly to
the output of the function. The following section explores this issue. It points out
that although code A offers little benefit from this perspective, properties of code
B are quite encouraging.

1 5.3 Energy of the Fourier spectrum

The energy of the Fourier spectrum can be defined as,
E=>) w} (10)
J
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Figure 2. (Top) Variation of the magnitude of the Fourier coeflicients with respect to the
order (¢) of the partitions in the original and transformed representations of the NH
function. It shows the result using code A, code B, and no transformation. Note that the
magnitude is invariant in the representation with no transformation. On the other hand
it decays exponentially when the transformations are applied. (Bottom) Similar result for
the Trap function. Note that all coefficients of the same order have the same magnitude
for both NH and Trap functions.

Let us now study the change in the overall energy of the spectrum due to the
genetic code-like representation transformations. Using Equation 5 and noting that
¥5(x) = ¥« (j) we can write,

W= o SIS Y dslrse)

ri€R,, T ER;
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Overall energy

o ots i 1t5 é 2.5 3 3.5 :
Number of 1-s in the string with non-zero function value
Figure 3. Variation of the overall energy with increasing number of 1-s in the string (xqpt)
with non-zero function value for the function NH. Code B is used.

Zw _— Zf )Y Y tnl)enl)

r; ERp,l‘k €ER, j

Exploiting the orthonormality condition we can write,
¢
Z“’ 204 Z f*(P)ag s (11)

Let us now specialize this result for code A. For this code, ag = a; = 4 and ¢=3.
Substituting these values in Equation 11 we get,

Er = %ZF(P)—
P

Where Er and Ep are the energies of the mRNA and the protein spaces. The
overall energy remains invariant under the transformation code A.

Code B however changes the overall energy. Figure 3 shows the different values
of the energy for different choices of the string with non-zero function value (xqpy)
in the function NH using code B. The overall energy of the Fourier representation
of the Trap function with four variables using code B is approximately 2.2778 Ep.

Although the overall energy is an interesting property to observe, the most critical
properties are the number of coefficients that significantly contribute to the overall
energy of the representation and the location of those significant coefficients. If
the number is small and the contribution from the rest is negligible, then we know
that the function can be approximated using a small number of coefficients. If we
also know the partitions that are associated with those significant coefficients then
we should be able to efficiently compute the representation. The following section
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shows that both of these requirements can be satisfied by a class of genetic code-like
transformations.

I 5.4 Distribution of the energy in partitions of different order

The distribution of the energy among the coefficients of different order is a very
interesting property of a representation. For example, if we know that a represen-
tation has a small number of significant coefficients and they are associated with a
certain order of partitions then it will be easier to compute such a representation.
In this section we shall study such properties of the Fourier representation produced
by the genetic code-like transformations.

Recall that the order of a partition j is the number of ones in j; in other words
it is the number of features that define the corresponding basis function ;(x).
Let us define the order-k energy, E®) = E ones(j)=k W We can compute this
for both the protein and the mRNA space. 1\}0te that an order-k partition in the
mRNA space may correspond (through reflection) to a lower order partition in the
protein space since multiple mRNA features are associated with the same protein
feature. A careful study of the effect of the representation transformations on the
order-k energy in the mRNA space may require understanding the properties of
the coefficients in the mRNA space that correspond to exactly k features in the
protein space. We are going to use the term absolute order-k energy, defined as
AR Zj\ones(j'):k wj2; as defined earlier, j' is the reflection of j in the protein
space. Just like the association between the partitions in the protein and the mRNA
spaces through the concept of reflection, the distribution of energies in these two
representations can be linked through the concept of absolute order-k energy.

Using Equation 7 we can write,

’11}2— f pO @y 05047 0 Zpl @it 1 Hs1— %G1
A 220[ Z

II Y ()Y (tis)

a=0,--qr;,ERp, tjs ER,

= 7 ) .
22¢ky

1T Yo i), (k) +
a=0 1,~-~q

rjp€Ry, tipERp,

W > /@) S e ) (12)

P#s rzERpurk ERs

Now summing both sides of Equation 12 over all partitions and noting that the sec-
ond term of the right hand side disappears because of the orthonormality property,
we can write,

Zw 220[ Zf2 Z 2(¢po— qm’o) 2“1)1 qm’l)

J
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D )ity

a=0,1,-:-q rjpERy, ,tj, ERp,

Comparing this with Equation 11 we note that,
1 po—2a,51 o €p1—2q,
T L A | | Yo Ui (t,) =1 (13)
J

a=0,1,---qrjp,€Rp, ,tjpERp,

Now let us explore the rate of convergence of expression in the left hand side to 1.
If it approaches 1 very quickly with respect to increasing order of the coefficients
(¢ = gpjr0 + gpj 1) then we know that only a small number low order coefficients
mainly contribute to the overall energy of the Fourier representation.

Using Equations 8 and 13 we can write,

1 _og. _2g
W Z aép,o 24p.,5,0 aip,l 2gp,j,1 H (lej,,,p _ ijp|)2 =1 (14)
J

a=0,1,q

Although (lej, p—0j. »|)? = (€j,p —0j.p)? we have left the |.| symbol in place since
earlier we defined that |e;, , — 0j,p| = 1 for the partition with all 0-s (i.e. ¢ = 0).
Equation 14 essentially controls the distribution of the eneregy with respect to the
order of the partitions. GCT-s that can provide a exponential convergence of the
left-hand-side of this equation to 1 with respect to increasing order, will also offer
an exponential decay in the energy. .

Let us now specialize Equation 14 for code A. Since ap = a; = 4 and ¢ = 3 for
code A,

1 _
23 I (e —on?=1 (15)
J

a:0717...q

This can be further simplified by counting the number of partitions of absolute order
g that are associated with non-zero coefficients and noting that |e;, , — 0j, | = 2

for all of them. There are (é”) order-q partitions and by studying the genetic code

A we observe that any protein feature corresponds to four choices (note that the
null partition is not a choice) in the mRNA partition-space that can have non-zero
coefficients. In other words, there are only four choices of partitions over a particular
codon that can have non-zero coefficients. In a partition of absolute order equal to
q there are 47 such partitions. Therefore,

2

1 P
SOREES

q=0
ZI/'
2 2 (F) =1 (16)
=

Note that the case for null partition (¢ = 0) is taken care of since 4° = 1. So the
absolute order-k energy for the code A is,

&9 = o () v 7)
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Figure 4. (Top) Distribution of the absolute order energy using code A and the function
NH with xopt = 0000. (Bottom) Distribution of the energy in the protein space (i.e. with
no representation transformation).

This equation clearly shows that the distribution of the energy among different
orders is controlled by only the total number of partitions in the protein space with
the same order. This is identical to the distribution of order-k energy in the protein
space. In other words, code A does not really change the distribution of the energy
among different orders. The magnitudes of the individual coefficients decay only
because the order-k energy is distributed among an increased number of partitions.
This also means that code A does not necessarily offer a better representation that
is easier to approximate using a smaller number of coefficients.

The theoretical observations are also supported by the experimentally computed
values of the Fourier coefficients. Figure 4 (Top) shows the distribution of absolute
order-k energy for the function NH using code A. Figure 4 (Bottom) shows the
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distribution of the energy in the protein space for the same function NH. As we see,
both the distributions are identical.

Let us now specialize Equation 14 for code B. First note that |ej, , — 0j, 5] = 1
for code B. Therefore,

1 L0204, 0 Lp1—2q,
»0 44,0 tp1—24dp it 1
octp Z o ay =1
J

This can be further simplified by counting the number of partitions in the mRNA
space for each absolute order value of ones(j'),

min(l],[p,(])

£
1 ¢ [/ fp—t £y0—2q, ;
25 2 > (2.) (e ) @ = 1ag ™0 =1 (19)

4=0  g,;0=mMax(0,g—l,+0)

Where q is essentially ones(j'). The term with a; disappeared since a; = 1 for code
B. Note that the left hand side (LHS) of Equation 18 contains a summation over
different values of ¢ from zero through £,. We are interested in the convergence of
the LHS to 1 as we continue to add the contributions for different values of ¢. In
order to study that let us define,

1 k min(q,fpyo) [ 2
_ £p0 fp—Lp0 c g, 0“0
g(emgp’()’ k) B ¢ty Z Z (qpvj’,o) (q_qp,j',o (2 - 1) )
=0 g, o=max(0,g—lp+1lp0)

Where 0 < k < £,. We would like to study the convergence of g(£p, £p0, k) to 1
as k increases from 0 through £,. Note that g(€p,{p0, k) is also a function of £,
the number of 0-s in a sequence p. Since we are dealing with boolean sequences,
£y is sufficient to define any particular p.

Figure 5 shows the variation of g(4,£fpp,k) with respect to increasing k and
different £,-s. Since the convergence characteristic depends only on the number
of 0-s in p, not their exact locations in the string, the variations are shown for the
four different types (note that ¢, = 4) of p-s. Figure 6 presents the variation of
9(300, 2,0, k) for two boundary cases £, = 0, £, = 300, and the intermediate case
4,0 = 150.

Both Figures 5 and 6 convey an important message. Note that in both cases,
9(€y, €0, k) approaches 1 faster (with respect to k) when £, is large. This is simply
because code B assigns seven mRNA codons for the protein feature 0. Now let us
write the overall energy of the representation constructed using code B,

ERZZ’ij

J

1 ¢
26[[) Z f2 (p)aopvog(é,m ep,07 ep) (19)
P

Note that the protein sequences with high genetic fitness contribute significantly
to the overall energy Eg since f2(p) will be large for them. Moreover, the effect
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Figure 5. Variation of the g(4, {,0, k) with respect to increasing k. The variation is shown
for different types of p-s. ¢, = 4 and the code B is used.

of f?(p) on the energy gets scaled up by the factor af]”’o. This essentially means
that fitter protein sequences with large number of 0-s will mainly contribute to Eg.
Now note that for proteins with large number of 0-s (i.e. relatively large £,0) the
function g(€p, £,0, k) approaches 1 very fast. In other words, the main portion of
the overall energy comes from the highly fit proteins that have more number of
equivalent mRNA representations (implied by large value of £, and bias of code B
towards the protein feature 0).

Equation 18 can also be further specialized for the function NH. If the string
with all zeroes is the optimal solution then it is the only member of the domain that
contribute to the Fourier coefficients. Therefore we can eliminate the summation
over all p-s by only the string with all zeroes. Noting that £,0 = £p, gpj0 = g we
can write,

¢
IR 4,—2
7 2 (¢) @ - e =1 (20)
7=0

The theoretical observations are also supported by the experimentally computed
values of the Fourier coefficients. Figure 7 shows the distribution of absolute order-k
energy for the function NH using code B. As we see the contribution to the overall
energy from the coefficients of a certain order diminishes as the order increases
when the optimal solution contains all 0-s. The NH function is an extreme case
where everyone but one domain member has a zero function value. As a result the
distribution of the absolute order-k energy depends solely on the property of the
sequence Xopt- If we set xqpt to sequences with less number of 0-s the decay is
preceded by an increase in energy.

Now let us consider a different example using the Trap functions. Note that in

Complez Systems, 11 (2001) 1-1+



22

P J
=
***ﬂ

=
5\» | 0=0 ——<——
g I IPO=150 --->k-—-
= x IPO=300 ----------
!
*
|
|
-
|
S
!
*
<
*
o
° -
100 150 200 250 300

Figure 6. g(300, 4,0, k) with respect to increasing k for two boundary cases £,0 = 0, {,0 =
300, and the intermediate case £, = 150. This shows that convergence rate for larger

number of protein features using code B.

this case although the sequence with all 1-s has the highest function value, there
are other sequences that have non-zero function value. The sequences with more
number of 0-s have relatively high fitness values. This also matches with the bias
of the genetic code B. Therefore we should expect a good approximation using the
low order coefficients.

Figure 8(Top) shows the distribution of absolute order-k energy using the code
A, code B, and no transformation for a Trap function with £, = 4. Note that
the distribution of the energy using no transformation and that using code A are
identical as noted in Equation 17. Also note that the absolute order-k energy
decreases exponentially for code B. Figure 8(Bottom) shows the order-k energy
using both code A and B for the Trap function. Note that this is the order-k energy
of the mRNA representation not the absolute order-k energy and 4-bit protein
sequences map to 12-bit mRNA sequences.

It is important to realize that the match between the bias of the genetic code
and the representation of the fitter proteins may not be difficult to achieve. Fitter
proteins will have larger value of f2(p). If we assign more number of codons to the
most frequent feature value (either 1 or 0 in case of binary strings) used in the fitter
proteins, then the corresponding scaling factor (ag""’ in case of code B) will also be
large. For these proteins g(¢,,4p0,k) also approaches 1 very fast with respect to

k. In case of code B, the larger the value of £, in a protein, the higher the rate
of convergence and the larger the scaling factor. On the other hand, the proteins
with frequent feature values that have less number of codons assigned (1 in case
of code B) will have a slower convergence rate for g(¢,, 4,0, %) and smaller scaling
factor. In case of code B it will be protein sequences with smaller values for £,
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Figure 7. (Top) Distribution of the absolute order energy using Code B for function NH.
(Bottom) Distribution of the normalized value of the absolute order energy using Code B
for function NH.

(i.e. strings with relatively more number of 1-s). Although the convergence rate
will be slow, if the fitnesses of these proteins are relatively low, their contribution to
the overall energy will be low since the scaling factor will be small for them. Note
that if the fitness value is relatively small compared to the scaling factor, the latter
will play a more significant role. For binary representation, the issue is assigning a
codon distribution among two possible protein features 0 and 1. For representations
with higher cardinality, the code introduces richer transformations and we need to
further explore the implications.
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Figure 8. (Top) Distribution of the absolute order energy using Codes A and B for the Trap
function. (Bottom) Distribution of the order-k energy using Codes A and B for the Trap
function. Note that 4-bit protein space maps to 12-bit mRNA representation since the
codon size is three.

| 6. Conclusions

This paper offered some intriguing properties of genetic code-like transformations
that may be extremely useful for inducing a function from observed data. It showed
that there exist some genetic code-like transformations that can construct a Fourier
representation of some fitness functions where the low order coefficients are expo-
nentially more significant than the higher order coefficients. This is a very critical
property that allows a polynomial complexity approximation of an exponentially
long function representation.
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The paper demonstrated this by considering two GCT-s and a pair of functions
known to have exponentially long Fourier representations. It first showed that the
magnitude of individual Fourier coefficients decay at an exponential rate as the order
(the number of features associated with the coefficients) increases. However, such
decay in individual coefficients does not guarantee efficient representation. This is
because a large number of small coefficients together may contribute an insignificant
amount to the overall function value. So we needed to explore the variation of
the energy (sum of the square of the coefficients) of the spectrum with respect to
increasing order. We noted that one of the transformations (code B) generated
an exponentially decaying energy distribution. This guarantees that a low order
approximation of the function will be accurate since the cumulative contribution
from the higher order terms is neglegible.

Although the results are presented in the context of specific GCT-s, this paper
makes an effort to characterize the class of GCT-s that offer such useful properties.
Equation 14 essentially controls this property. GCT-s that can provide a exponential
convergence of the left-hand-side of this equation to 1 will also offer an exponential
decay in the energy with respect to increasing order. Code B does that; however
code A does not. This paper also outlines a physical conjecture for constructing
such transformations. It suggests that one possible way to construct such GCT-s
may be to assign more equivalent copies to protein sequences with higher genetic
fitness values by introducing redundancy in the genetic code.

The implication of this paper on the field of evolutionary computation is im-
portant. A technique for efficient and scalable induction of function representation
will be useful in almost every application of evolutionary algorithms. Examples
include evolving programs, learning classifiers, detecting patterns from data, and
optimization. This work also suggests that we should rethink our existing models
of evolutionary computation. We need to further explore the computational role of
gene expression. That may ultimately lead us toward unveiling the true power of
genetic search.
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