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This paper presents a method for distributed multivariate regression using wavelet-

based Collective Data Mining (CDM). The method seamlessly blends machine

learning and the theory of communication with the statistical methods employed

in parametric multivariate regression to provide an effective data mining technique

for use in a distributed data and computation environment. The technique is ap-

plied to two benchmark data sets, producing results that are consistent with those

obtained by applying standard parametric regression techniques to centralized data

sets. Evaluation of the method in terms of model accuracy as a function of appropri-

ateness of the selected wavelet function, relative number of non-linear cross-terms,

and sample size demonstrates that accurate parametric multivariate regression mod-

els can be generated from distributed, heterogeneous, data sets with minimal data

communication overhead compared to that required to aggregate a distributed data

set. Application of this method to Linear Discriminant Analysis, which is related

to parametric multivariate regression, produced classification results on the Iris data

set that are comparable to those obtained with centralized data analysis.
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1. INTRODUCTION

This paper presents an approach to distributed multivariate regression using wavelet-
based Collective Data Mining (CDM) [25]. CDM is an approach to Distributed Data
Mining (DDM) that addresses difficulties introduced when distributed data sites observe
heterogeneous sets of features.

Distributed data mining deals with methods of finding data patterns in a distributed data
and computation environment. DDM methods allow distributed data to be analyzed with
minimal data communication. Generally, DDM algorithms start with local data analysis
followed by generation of a global model based on combining the results of the local
analysis. In the general case, where different sites observe different sets of features, naive
approaches to local analysis may be ambiguous and incorrect, resulting in incorrect global
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models. CDM provides a well-grounded methodology to address this general case, offering
an approach to the analysis of distributed, heterogeneous databases with distinct feature
spaces.

The foundation of CDM is the observation that any function may be represented in
distributed fashion by using an appropriate set of basis functions. Communication theory
provides that efficient transmission of information is facilitated through the use of orthogo-
nal functions [17]. Wavelet analysis techniques [37] provide a powerful tool for generating
orthogonal basis function sets for use in CDM.

Parametric Multivariate Regression (MR) is a widely used statistical data analysis tech-
nique that can also be viewed as a supervised learning algorithm. The distributed MR
technique presented here learns local information in terms of the coefficients of an orthog-
onal basis function representation, transmits a small (relative to the sample size) number of
significant coefficients to a central site, and then generates a global model directly from that
small set of significant coefficients. The method seamlessly blends machine learning and
the theory of communication with the statistical methods employed in MR to provide an
effective data mining technique for use in a distributed data and computation environment.

Section 2 begins with a description of the general DDM problem of heterogeneous data
sets. This is followed by a review of related DDM work and an overview of MR. The
section concludes with an example of the specific problem of naive data analysis within
the context of parametric regression models in a DDM environment. Section 3 provides an
overview of the foundations of CDM and a description of the wavelet techniques used for
the distributed MR model. An algorithm for distributed MR using wavelet-based CDM is
presented in Section 4. The performance of this CDM-MR method is then characterized
using real “benchmark” data sets and larger synthetic data sets. Section 5 describes the
application of the CDM regression model to Linear Discriminant Analysis (LDA) which
is related to parametric multivariate regression. Section 6 summarizes the CDM work
presented here for MR models and LDA, and discusses future research directions.

2. BACKGROUND

This section presents background material related to MR models using wavelet-based
CDM. A simple model of distributed, heterogeneous, data sites is explained first. This is
followed by a review of related DDM research. Next a brief overview of MR is provided
and finally an example that demonstrates the incorrect results that may be obtained by naive
application of parametric regression techniques to distributed data is presented.
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FIG. 1. Distributed data sites with a vertically partitioned feature space.
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2.1. Motivation
DDM deals with the problem of finding data patterns in an environment with distributed

data and computation. A typical application domain of DDM either has inherently dis-
tributed data sources or centralized data partitioned at different sites. The data sites may be
homogeneous, i.e. each site stores data for exactly the same set of features. In the general
case, however, the data sites may be heterogeneous, each site maintaining databases with
different kinds of information. For example, financial institutions (banks, insurance com-
panies, credit-card issuers) wish to combat fraud and posses data that would be of use to
one another in this effort. However, customer privacy concerns prevent this data from being
combined into a single data base. CDM allows pertinent information and data patterns to be
extracted from the individual data bases without compromising customer privacy. Another
example of distributed heterogeneous data sets is the local data associated with a large set
of distributed sensors (either environmental or industrial) where the sensed parameters are
different. There may be no organizational barriers to centralizing this data but time and
processing constraints may give CDM an advantage over centralized techniques.

In the general case the feature sets observed at different sites are different. A simple
example of this is the case of a vertically partitioned data set. Figure 1 illustrates this
situation. While this paper considers the problem of developing MR models for this
simple case of vertically partitioned data sets, CDM is applicable to the general case of
heterogenous data sets and it is expected that CDM-MR may be extended to this general
case.

Given a set of observations representing discretely sampled continuous valued features,
the task is to use parametric regression techniques to learn a function that estimates the
unknown value of a dependent feature as a function of other observed independent features.
The given set of observed feature values is sometimes called the training data set. In Figure
1 the column for

�
denotes the feature value to be estimated; �
	��������������������������� and ���

denote the independent features that are used to estimate
�

. The data sets available at the
different sites are used as the data that the regression is performed on. If the

�
column is

not observed everywhere and it is required to learn the local models it is broadcasted to
every site.

One requirement for implementation of DDM algorithms with vertically partitioned data
sets is a method for properly aligning the feature pattern vectors in different partitions with
each other. This requirement introduces a certain amount of flexibility in defining relations
among feature sets. One possibility is to use an operation similar to the Join operation of
relational data bases. Note that in Figure 1 site A and B share feature � � while site A and
C share feature

�
. The alignment of the feature pattern vectors at sites A and B could be

accomplished by a Join based on � � followed by alignment with the pattern vectors at site
C using Join based on

�
. If no common feature exists then an association must be made

based on some prior knowledge or expectation regarding the model under development.
As Figure 1 shows each site may observe features such that a majority are unique to

that site and therefore the sites are called heterogeneous. There exists little work for this
general case of DDM. The following section reviews related work in DDM.

2.2. Related Work
This section briefly reviews some of the existing DDM work. This work may be

grouped into four basic categories, Meta-learning and Stacking, Collective Data Mining,
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Distributed Association Rule Learning,and other DDM techniques. Following these several
experimental DDM systems are reviewed.

Meta-learning [6, 5, 7] and Stacking [38] are examples of techniques for mining homo-
geneous distributed data. In the meta-learning approach supervised learning techniques are
first used to detect concepts at local data sites, then meta-level concepts are learned from
a data set generated using the locally learned concepts, resulting in a meta-classifier. Dif-
ferent inductive learning algorithms may be employed to learn the local concepts, and the
meta-level learning may be applied recursively, producing a hierarchy of meta-classifiers.
The JAM system [33] is a meta-learning base distributed data mining framework that has
been used for fraud detection in the banking domain [28].

Collective data mining [24, 25] address the issues associated with mining heterogeneous
data sites. At the foundation of CDM is the observation that any function may be represented
in a distributed manner using an appropriate set of basis functions. By using orthogonal
basis function, correct models of local information may be developed in terms of the basis
function coefficients. A global model may be generated by communicating a small fraction
of the local basis coefficients to a central site. Learning algorithms that have been applied to
CDM include decision trees and the parametric multivariate regression techniques presented
in this paper.

The mining of association rules in distributed data bases has been examined in [9]. In
this work the Distributed Mining of Association rules (DMA) algorithm is presented. This
algorithm takes advantage of the inherent parallel environment of a distributed database as
opposed to previous works that tended to be sequential in nature.

The fragmented approach to mining classifiers from distributed data sources is suggested
by [10]. In this method a single, best, rule is generated in each distributed data source.
These rules are then ranked using some criterion and some number of the top ranked rules
are selected to form the rule set. In [27] the authors extend efforts to automatically produce
a Bayesian belief network from discovered knowledge by developing a distributed approach
to this exponential time problem.

In [39] the author presents two models of distributed Bayesian learning. Both models
employ distributed agent learners each of which observes a sequence of examples and
produces an estimate of the parameter specifying the target distribution and a population
learner that combines the output of the agent learners in order to produce a significantly
better estimate of the parameter of the target distribution. One model applies to situations
in which the agent learners observe data sequences generated according to the identical
target distribution while the second model applies when the data sequences may not have
the identical target distribution over all agent learners.

The PADMA system [23, 22] achieves scalability by locating agents with the distributed
data sources. An agent coordinating facilitator gives user requests to local agents that then
access and analyze local data, returning analysis results to the facilitator which merges
the results. The high level results returned by the local agents are much smaller than the
original data thus allowing economical communication and enhancing scalability. The
authors report on a PADMA implementation for unstructured text mining but note that the
architecture is not domain specific.

Papyrus, a system in development by the National Center for Data Mining [16], is a
hierarchical organization of the nodes within a data mining framework. The intent of this
project is to develop a distributed data mining system that reflects the current distribution
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of the data across multiple sites and the existing network configurations connecting these
configurations.

Another system under development [36] concerns itself with the efficient decomposition
of the problem in a distributed manner and utilizes clustering and Expected Maximization
algorithms for knowledge extraction.

Work has also been done concerning using the Internet [8] as the framework for large
scale data mining operations. This work is also applicable to intra-nets, and addresses
issues of heterogeneous platforms and security issues.

The WoRLD system [1] for inductive rule-learning from multiple distributed databases
uses spreading activation instead of item-by-item matching as the basic operation of the
inductive engine. Database items are labeled with markers ( indicating in or out of concept)
that are then propagated through databases looking for values where in or out of concept
markers accumulate.

A basic requirement of algorithms employed in DDM is that they have the ability to scale
up. A survey of methods of scaling up inductive learning algorithms is presented in [32].

2.3. Overview of Multivariate Regression
MR is a widely used data analysis technique owing to its ease of use and intuitive

theoretical basis [30, 13]. MR involves fitting a parametric function model to a set of data.
In this sense it is a form of inductive supervised learning.

The functions analyzed have the form
� ��� 	�� 	�� � ��� ���
	�	�	� ��� � � where the ��� -s are

constant coefficients and the � � terms are linear or non-linear functions of the feature set.
For example, if the feature set contains features ��� and ��� , then ��� , � � � , and ������������

�
may

be present in the � � terms of the function.
Given a data set  consisting of samples values of the features in the feature set and the

associated function value, possibly containing some random error, the objective of MR is
to produce an estimate !� � !� 	 � 	 �"!� � � � �#	�	�	$�"!� � � � of the function

�
where the regression

model coefficients !��� are estimates of the ��� . The technique used in MR is to find the set

of !� � -s that minimize %�&'� �)( !� � � , the sum of the squares of the difference between the
sample and estimated function value over the data sample set.

Using matrix notation to represent the function relation in terms of a data set of size *
gives

+ �
,)- �/.
where

+
is a *1032 matrix of function sample values, , is a *10"4 matrix where each

column represents the sample data for one independent feature or regressor and each row
contains the set of observed values of the independent features for one sample, - is a 450)2
matrix of the � � -s, and . is a *60/2 matrix of values representing errors in the measured
value of

�
. If the matrix ,87�, is invertible then the minimum squared error estimate of

the regression coefficients is

9-:� � , 7 , ��;=< , 7 +

where
9- is a 4)0"2 matrix of !�>� -s.

The following section provides an example of the problems that may arise from naive
application of MR to vertically partitioned data sets.
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FIG. 2. (Left) The global error function. (Right) The local error function at site A.

2.4. The Naive Approach to Local Regression Models
Data modeling is a mature field that has many well-understood techniques in its ar-

senal, including parametric regression. However, like many of these traditional tech-
niques, parametric regression cannot be directly used in a distributed environment with
a vertically partitioned feature space. The following example demonstrates that even a
simple decomposable parametric regression problem with no measurement error can pro-
duce misleading results in a distributed environment. Consider the function, � � � 	 �� � � ��
� 	
( �

��� , where � 	 and ��� are real valued variables, and the sample data set  �
� �$2�	 � ��2�	 � ��� 	 � � � � ( � 	�� � ( � 	�� ��� 	 � � � ��� 	�� � ( 2 	 � ��	 	 � � ��� ( 2 	 � ��� 	 � � ( 	 	 � ��
 , where each entry
is of the form ��� 	 �� � � � � � 	 ��� � �$� . Let us try to fit a model, !� ��� 	 �� � � � !� 	 � 	 �"!� � � � , to this
data by minimizing the mean-square error. The overall mean square error computed over the
data set  is, 	� % ���� ����� & �

� ( !� � � � � 	 � � � � ( !� 	 � � ��� 	 � � � ( � ( !� � � � ��� 	 ��� � � ( !� 	 � � ( � ( !� � �
Figure 2 (Left) shows the error surface with a global minima at !� 	 � �

and !� � � ( �
. It is

a simple quadratic function and finding the minima is quite straight forward.
Now let us consider the data set to be vertically partitioned; meaning � 	 is observed at

site A and � � is observed at a different site, B. Let us choose a linear model !� ��� 	 � � !� 	 � 	 .
The mean square error function for site A is 	

� % � � � � � � & �
�"( !� � � � � 	 � � � � ( !� 	 � � �

��� 	 � ( 2�	 	 � � ( !� 	 � . Figure 2 (Right) shows this local error function. It clearly shows that
the minima of this error function is not the same as the globally optimal value of !� 	 , i.e. 5.
This example demonstrates that even for simple linear data and models naive approaches
to minimize mean-square error may be misleading in a distributed environment. As will
be demonstrated later in this paper, wavelet-based CDM offers a correct, viable solution to
this problem.

3. COLLECTIVE DATA MINING AND WAVELET BASIS

This section provides an overview of the foundations of CDM and the wavelet basis used
for the distributed MR model developed later.
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3.1. The Foundations of Collective Data Mining
A thorough treatment of the foundations of CDM is presented in Kargupta et. al. [25].

What follows in this section is an abbreviated summary of that work as it applies to
distributed MR.

In MR relations among the different members of the domain and the corresponding
members in the range (class labels or the output function values, denoted by

�
) are

desired. The goal is to learn a function !��������� �
from the data set  � � �
	��� 	� �� � 	� � � ��	��� �� � � � �� � ����������	�����  � � ���  � 
 generated by an underlying function

��������� �
such that the !� approximates

�
. Individual members of the domain 	� � � 	 ��� � ������� �� � are�

-tuples and the ��� -s correspond to individual features of the domain.
The foundation of CDM is based on the fact that by using an appropriate set of basis

functions any function can be represented in a distributed fashion. Let � be a possibly
infinite set of basis functions. Associate an index with each basis function in � and denote
the 4 -th basis function in � by  � and the set of all such indices of the basis functions as
�"! . The function

� �
	� � can be represented as

� ��	� � �$#�
�&%('

) �  � ��	� � (1)

where ) � denotes the coefficient of the 4 -th basis function. The objective is to generate a
function !� �
	� � that approximates

� �
	� � from a given data set

!� ��	� � �$#
�
��*%('

!) �  � ��	� � (2)

where !� ! denotes a subset of � ! and !) � denotes the approximate estimation of the
coefficients ) � . For distributed MR using wavelet-based CDM the underlying task is
essentially to compute the significant wavelet coefficients, !) � -s.

If a function has a large number of significant basis coefficients exponential time (in
number of features) is required for computing the orthonormal representation. In order
to have polynomial time computation of the coefficients, two conditions must be met:
1) a sparse representation where most of the coefficients are zero or negligible, and 2)
approximate evaluation of the significant coefficients.

In most MR models non-linearity typically remains bounded so not all the features
non-linearly interact with every other feature. It is normally acceptable to assume that the
number of features that non-linearly interact with any given feature is bounded by some
constant. If this is not true then the problem is completely non-linear and is likely to be
difficult for even a centralized data mining algorithm let alone DDM. This requirement
has a deep root in issues of polynomial time, probabilistic and approximate learn-ability
[26]. Bounded non-linearity assures that the orthonormal representation will be sparse,
satisfying the first condition of polynomial time computation.

The second condition is associated with the fact that only a sample from the domain
will be available for computing the basis coefficients. This will not cause a problem as
long as our sample size is reasonable. To illustrate the rationale behind this observation
consider what happens when both sides of Equation 1 are multiplied by  ,+ ��	� � resulting
in

� �
	� �  -+ ��	� � � % �
�&% '/.

�  � �
	� �  -+ ��	� � . If the sample data set is denoted by  , then by
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summing both side over all members of  the result is

#
�� � &

� �
	� �  -+ �
	� � � #
�� � &

#�
�&% ' .

�  � ��	� �  -+ ��	� � (3)

Since  -+���	� �  -+ �
	� � � 2 then % ���� &  -+ ��	�
�  -+ �
	� � � �  � where

�  � is the sample size and
it follows that

2�  �
#
�� � &

� �
	� �  -+ ��	� � � . + �
#�

�&% ' � ���� + .
� % ���� &  � �
	�

�  -+ ��	� ��  �

If the population mean over the complete domain is zero then the sample mean must
approach zero as the sample size increases. Since 	� & � % �� � &  

� �
	� �  -+���	� � is the sample
mean it follows that for large sample sizes (typically the case for data mining problems)
the last term should approach zero.

In summary the primary steps of the CDM algorithm are [21]

1. generate appropriate orthonormal basis coefficients at each local site;
2. if needed, move an appropriately chosen sample of the data sets from each site to

a single site and generate the approximate basis coefficients corresponding to non-linear
cross terms;

3. combine the local models, transform the model into the user described canonical
representation, and output the model.

It should be noted that the approach to distributed MR using wavelet-based CDM does not
require the transfer of raw data (feature sample values) to a central site in order to estimate
non-linear cross terms. These estimates are instead generated directly from the local model
orthonormal basis coefficients.

The following section introduces the wavelet methods [37] used to create the orthonormal
basis representation needed for implementing distributed MR in CDM.

3.2. Wavelet Basis and Wavelet-Packet Analysis
A wavelet basis consists of a set of scaling basis functions � � and a set of wavelet basis

functions � � . The wavelet functions are dilated and translated versions of the scaling
functions [34, 35, 37]. The relation between the scaling and wavelet functions may be
understood by considering a vector space � + with � + dimensions defined on the interval	
� ��2 � . Note that � + contains all functions that are piece-wise constant on � + equal sub-

intervals defined on the interval
	
����2 � . Since � + ; 	 is also defined on

	
� ��2 � every function

in � + ; 	 is also in � + with each interval in � + ; 	 considered to correspond to two contiguous
intervals in � + . Let � + � � + ; 	 ��
 + ; 	 where the subspace 
 + ; 	 is the orthogonal
complement of � + ; 	 in � + . If the basis functions for � + ; 	 are the scaling functions � + ; 	�
then the basis functions for 
 + ; 	 will be the wavelet functions � + ; 	� . Since � + ; 	 and

 + ; 	 are complementary orthogonal spaces the � + ; 	� and � + ; 	� will be orthogonal to each
other in � + . Now if the � + ; 	� form an orthogonal basis for � + ; 	 and the � + ; 	� form an
orthogonal basis for 
 + ; 	 then combined the � + ; 	� and � + ; 	� will form an orthogonal
basis for � + .

This work employs a simple set of scaling functions for � + , the scaled and translated
“box” functions [34] defined on the interval

	
� ��2 � by

� + � � � � � � � � + � (� � � 4 � ����	�	�	 ��� + ( 2��
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where

� ��� � �
� 2 for ��� ��� 2

� otherwise

The wavelet functions corresponding to the box basis functions are the Haar wavelets

� + � � � � � � � � + � (� � � � � � ��	�	�	 ��� + ( 2��
where

� ��� � ���� � 2 for ��� ��� 	
�( 2 for 	

� � �	� 2
� otherwise

A function in � + may be represented in terms of these basis functions as

� ��� � ��
 + � � + � � 
 + 	 � + 	 � 	�	�	�� 
 + �� ; 	 � + �� ; 	
or also as,

� � � � ��
 + ; 	� � + ; 	� � 	�	�	 � 
 + ; 	���� � ; 	 � + ; 	���� � ; 	 ��� + ; 	� � + ; 	� � 	�	�	��� + ; 	���� � ; 	 � + ; 	���� � ; 	
The wavelet coefficients, 
 + ; 	� and � + ; 	� are generated by convolution of the 
 + � with a set
of orthogonal quadrature filters, � and � . For the Haar wavelets, � � � 	� � � 	� � 
 and� � � 	� � � ; 	� � 
 .

The Wavelet-Packet transform of a function in � + is calculated by recursively applying
the quadrature filters to the 
 and � coefficients of the next lower scale space and wavelet
space as if each represented a separate scale space. Figure 3 shows how the wavelet-packet
transform is generated by recursively applying the quadrature filters to the scale and wavelet
subspaces. The vector 	� + ��
 + � � 
 + 	 ��	�	�	 � 
 + �  ; 	 input at the top level of the wavelet-packet
decomposition is formed by assuming that the observed values of the piece-wise constant
function represent the coefficients of the scaling functions in � + . If the original function
is in � + then � + orthogonal subspaces �

�� ��4 � � ��	�	�	 ��� + ( 2 , will result from � recursive
applications of � and � .

Using the Haar function wavelets partitions � + into � + orthogonal subspaces �
�� that

are each spanned by one of the first � + Walsh functions [17]. Therefore, the Walsh
functions form an orthogonal basis,  � �  	 ��	�	�	 �� �� ; 	 , for � + and the Walsh coefficients,

. �
� 4 � ����� + ( 2 are equivalent to the wavelet-packet coefficients of the � + orthogonal

subspaces �
�� .
3.3. The Wavelet-based CDM Approach to Local Regression

To demonstrate the wavelet-based CDM regression method consider again the naive
example given in Section 2.3. Table 1 shows the Walsh coefficients, . � obtained from the
wavelet-packet decomposition of � 	 , � � , and � ��� 	 �� � � . Again selecting regression models

!� � � 	 � � !� 	�� 	 , !� � ��� � � !� � ��� and applying standard MR techniques to the non-zero Walsh
coefficient sets in each partition gives,

!� 	 � .
��� 
��� . � � � � � � 	 � � � 	 	 � � 	 �
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FIG. 3. Application of quadrature filters in wavelet-packet decomposition.

and

!� � � .
��� 
��� . � � � � � ( � 	 � � � 	 	 � ( � 	 �

Note that 1) the representation of the information embodied in the example has be-
come sparse compared to the original, 2) the regression coefficients for this decomposable
problem may now be determined directly from the non-zero wavelet coefficients in each
partition without recourse to information exchange.

In the general case some information in the form of wavelet coefficients will need to be
communicated among partitions in order to resolve non-linear terms.

TABLE 1

Walsh (wavelet-packet) coefficients for naive example.

K LMONQPR LM�S � PR LM�S � PR
T TFU T TFU T TFU T
V TFU T TFU W TFU W
X YFU T TFU Z TFU T
Y [�YFU T TFU T [�TFU Z

4. MULTIVARIATE LINER REGRESSION

Parametric regression [30], is a form of supervised learning that is applicable to CDM.
In this section one approach to distributed MR based on an orthogonal wavelet basis is
presented. We begin with a description of the method used to generate local models,
followed by the method for generating the global model. Next we apply these methods to
two benchmark data sets and compare the resulting model statistics with those obtained
using standard MR techniques on centralized data sets. Following this, large synthetic data
sets are employed to characterize model performance and scalability. Finally, we address
the overall performance bounds for the methodology.
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4.1. Generating Local Models
One of the keys to CDM is that the local models represent local information in terms of

the coefficients of a function set that forms an orthogonal basis for the distributed data set.
In the case of distributed MR the coefficients of interest are the Walsh (wavelet-packet)
coefficients obtained by performing a wavelet-packet decomposition on the samples of each
feature.

Given a partitioned set of real-valued features 	� � � 	 ��� � ��	�	�	 ��� � and a data set of these
features with * samples  � 	� � 	� � 	��� �� ��	�	�	 �&	� ���  let 	� � be the set of features and  � be
the associated data set found in partition

�
. If � 	�� 	� � then let 	� � 	� denote the column

vector of dimension * formed from the sample values of feature � 	 in partition
�

and
� 	 ��� � be the ���	� element of 	� � 	� .

Each of the 	� � �  � 	� � may be transformed into a set of wavelet basis coefficients .
� ��
 �

using wavelet-packet decomposition. In terms of the wavelet-packet transform technique,

� � �	� � � � � � � � � + � � � � �$2 � � + 	 �
	�	�	 � � � � * � � + �
therefore 	� � �  � 	� + where in this case * � � + . Once the wavelet-packet transform of 	� � � 
is performed � � ��� � may be expressed in terms of the Walsh basis as

� � ��� � �
�#� � 	 .

� � 
 �  � ��� � (4)

If the wavelet functions are properly selected based on the feature sample characteristics
the representation of the feature in the wavelet basis will be sparse and many of the . � -s will
be zero or insignificant. Note that the feature samples, � � ��� � , may be exactly re-constituted
from the wavelet coefficients using Equation 4. The wavelet representation may be made
more sparse by zeroing coefficients that have an absolute value below some threshold or
alternatively retaining only a fixed number or percentage of the coefficients with the largest
absolute values. If the Walsh coefficients are ordered from largest to smallest absolute
value and then the first ��� * coefficients are retained Equation 4 becomes,

!� � ��� � �

#
+ � 	 .

� ��
 +  -+��	� �

where the index � is on the ordered coefficients. This thresholding process will eliminate
the ability to exactly re-constitute the feature sample values from the wavelet coefficients.
However, a feature sample set estimate re-constituted from a set of thresholded coefficients
will be the minimum square error (MSE) estimate of the original feature samples based on
the number of wavelet coefficients retained [3]. The wavelet coefficients that remain after
thresholding form the local model.

4.2. Generating a Global Multivariate Regression Model
The local model coefficients contain all of the information needed from the sample data

sets in order to generate a global model. These local model coefficients, representing a MSE
estimate of the information available in the original feature samples, are communicated to
a central site to facilitate the global model generation process. In order to generate the
global model the wavelet coefficients for cross-terms and higher-order terms, the � � terms
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in the function to be fit, must first be estimated. This may be accomplished directly from
the local model wavelet coefficients.

To see that the wavelet coefficients for the cross-terms and higher-order terms may be
calculated directly from the local model wavelet coefficients first recall that the wavelet
basis functions are an orthogonal function set so that

2
*
� ; 	#� � �  � �	� �  -+ �	� � �

� 2 if
� � �

� otherwise
(5)

where the  �	� � are particular basis functions and N is the sample column vector space
size. Certain sets of orthogonal basis functions such as Walsh are closed under product
such that

 � �	� �  -+ ��� � �  � �	� � (6)

For the case of the Walsh basis any set of Walsh functions satisfying equation 6 are related
by

4 � ��� � (7)

where
�

represents addition modulo 2 of the binary representations of the index values
�

and � . Therefore in Equation 6 4 � � only if
� � � , so it follows that

2
*
� ; 	#� � �  � ��� � �

� 2 if
� � �

� otherwise

For feature � � the coefficient .
� �� � for the 4 �	� Walsh basis function is given by

.
� � � � � 2

*
� ; 	#� � � � � �	� �  � �	� �

and given a complete set of basis coefficients an individual sample value of feature � � may
be calculated using

� � ��� � �
� ; 	#� � � . � � � �  � ��� � (8)

For the cross-term � ��� � � � � � the relation for calculating the coefficient of the 4 �	� basis
function is

.
��� � � � � 2

*
� ; 	#� � � ��� ��� � ������ �  � ��� �

and by substituting the relation for � � and ��� based on Equation 8

.
��� � � � � 2

*
� ; 	#� � �

� � ; 	# � � � . � � � �  � ��� ���
	� � ; 	#
+ � � . � � � +  -+��	� ���  � ��� �
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Rearranging terms gives

.
��� � � � � 2

*
� ; 	# � � �

� ; 	#
+ � � . � � � � .

� � � +
� ; 	#� � �  � ��� �  + ��� �  � �	� �

Now note that the last sum in this relation will be zero unless  �  + �  � or, equivalently,��� � � 4 . The sum may be replaced by the Dirac
�
-function

� ��� �

� � � � �
� 2 if � � �

� otherwise

The relation for the cross-term basis function coefficient becomes

.
��� � � � � 2

*
� ; 	# � � �

� ; 	#
+ � � . � �� � .

� �� + � �$� � � � � ( 4 �
where again .

� �� � and .
� �� + are wavelet-basis coefficients for features � � and � � , � �$� � �� � ( 4 � is the Dirac delta function and * is the vector space dimension (the number of

samples). The relation for the cross-term basis coefficient is now in terms of only the basis
coefficients of the cross-term features.

Once the global model wavelet coefficients are available the regression coefficients
may be estimated by performing a regression directly on the wavelet coefficients. This is
possible since the wavelet-packet transform is a linear transform. Thus the original function
estimation relation given in Section 2.3

!� � !� 	�� 	 � !� ��� � �
	�	�	 � !��� � �
is transformed linearly to

!.
��� + � !� 	 .

��� � + � !� � .
��� � + � 	�	�	� !� � .

����� +
where .

��� 
 + is the coefficient of the � �	� basis function in the orthogonal representation of

the term � � of the function to be fit and the !� � coefficients we wish to estimate are the
same in both relations. Standard centralized MR techniques [30, 13] are used on the set of

wavelet coefficients .
��� 
 + to find the set of !� � -s that minimize %  � .

��� + ( !.
� *� + � �

.
In Section 2 we noted that in terms of matrix notation, the estimates of the regression

coefficients could be calculated from the sample data as
9-:� � , 7 , ��; < , 7��

In [4] the authors provide a detailed description of numerical methods for manipulating
matrices to solve this specific equation. For the purposes of the work presented here
however a somewhat similar approach, that is also presented in [4] was employed. Gaussian
elimination was used to solve the 4 simultaneous equations

� 	�	 !� 	 � � 	� !� � � ����� � � 	 � !� � � � 	 �
� � 	 !� 	 � � ��� !� � � ����� � � � � !� � � � � �

...
...

...
...

...
� � 	 !� 	 � � � � !� � � ����� � � ��� !� � � � � �
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where

� � + � #
.
� 
� . � � ( % .

� 
� % .
� �

*

� � � � #
.
� 
� . �� ( % .

� 
� % .
��

*
It should be noted that while multivariate polynomial regression has been the model for

the mathematical development presented here, in general the terms � � of the function to
be fit may be non-polynomial functions of the feature set. In these situations additional
operations in the form of these functions must be applied to the observed feature samples
or their wavelet coefficients. The most efficient order of application of the functions and
wavelet transforms will depend on the form of the terms and the partitioning of the feature
set.

As will be seen in the following section the accuracy of the global model decreases
as the number of cross-terms and higher-order terms increases for a given number of
features and level of information communicated. This performance issue may be offset by
a modification to the method used to generate the local models. In partition

�
the terms� � �
	� � � � 4 � � � of the polynomial dependent only on features in partition
�

may be
formed for each sample and the wavelet-packet decomposition calculated for each of these.
This reduces the number of cross-terms and higher-order terms that must be estimated
using local coefficients in the global model. The increase in global model accuracy is offset
by the increased communication cost associated with transmitting the local models of the
terms in addition to those of the features. It must be emphasized that the accuracy of the
method is not directly dependent on the number of partitions but rather on the number of
cross-terms.

To summarize the wavelet-based CDM-MR method presented here

1. Calculate the wavelet basis coefficients for the features or terms in each partition,
2. Use thresholding to select a subset of the largest absolute value coefficients for each

feature, creating a minimum square error model of the local features,
3. Transmit the local coefficient models to a central site,
4. Generate estimates of wavelet coefficients for cross-terms and/or higher order terms

directly from the local model coefficients, producing a global wavelet model,
5. Calculate regression coefficients directly from the global wavelet coefficient model.

4.3. Application and Benchmarking of CDM Regression
In this section we apply the CDM-MR technique to two benchmark data sets that have

been analyzed by others using standard MR techniques. The purpose is to demonstrate the
specifics of the CDM-MR technique on tractable data sets and to compare the parametric
regression models obtained with published results for centralized data techniques.

We begin with data first proposed in [29] and currently included in the NIST Statistical
Reference Datasets [31]. This data set consists of values of Total employment,GNP implicit
price deflater, GNP, Unemployment, Armed Forces manpower level, Non-institutionalized
population � 14 yrs., and Year, for the years 1947 through 1962. The first of these seven
variables (Employment) is taken as the dependent variable and the data set is used to fit a
MR model with the six independent variables and an intercept. We deal with the intercept
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by adding a dummy feature to the problem. This feature has value 1 for all samples and the
associated regression coefficient in the wavelet basis will correspond to the intercept value
in the original basis.

The wavelet-packet decomposition for the “Year” independent variable is shown in
Figure 4. The top ��� � � �

row is simply the sample data itself that is assumed to represent
the coefficients 
 �� through 
 � 	 � of the scaling functions. Since we are using Haar wavelets
� � � � 	� � � 	� � � ��� � � 	� � � ; 	� � �$� the first entry in the � � � scale space is


 �� � 
 ��
�
�
� 
 � 	�

�
� 2�� ����

�
� 2�� � ��

�
� � ��� ��

�

Likewise, the first entry for the � � � wavelet space is

� �� � 
 ��
�
�
( 
 � 	�

�
� 2�� ����

�
( 2�� � ��

�
� ( 2�

�

The second entry in each of the � � � spaces is


 � 	 � 
 � ��
�
� 
 � ��

�
and � � 	 � 
 � ��

�
( 
 � ��

�

with the other entries determined likewise. This process is repeated �
	 � � 2 	 � �
times, each

time starting with the scale and wavelet spaces is the previous step to produce the complete
wavelet-packet transform as shown in Figure 4. The complete set of � � � coefficients for
the dependent variable, the six independent variables, and the dummy feature variable are
shown in Table 2.

The results obtained by performing a regression on the complete set of wavelet coeffi-
cients is presented in Table 3. These results are, as expected, equivalent to the Certified
Regression Statistics provided by NIST. Since all of the wavelet coefficients are used in
the regression a centralized regression is being performed. Statistics for MR models cre-
ated using 12, 8 and 5 wavelet coefficients per feature are shown in Tables 4, 5 and 6,
respectively. These results show the model parameters and statistics change as the number
of wavelet coefficients retained per feature approaches the minimum number required to
produce an , matrix of proper rank. It should be noted that the effect of eliminating a
small number of coefficients for this example is pronounced due to the small size of the
data set and the relatively high collinearity among the independent variables in the Long-
ley data set. However, these models represent the minimum square error models for the
number of wavelet coefficients per feature retained. The implications of this may be seen
by comparing the CDM-MR model generated from the eight largest wavelet coefficients
for each feature (Table 5) and a centralized model generated from some combination of
eight examples from the original data set. Tables 7 and 8 present the statistics for models
generated with data samples for years 1947, 1949, 1953, 1954, 1955, 1956, 1960 and 1962,
and for years 1947, 1948, 1949, 1950, 1959, 1960, 1961 and 1962. The statistics of these
three models show some variation but the estimated regression coefficients for each model
fall within the 95% confidence interval for the other two models. Of particular interest is the
inter-model variation in the size of the 95% confidence intervals. The second centralized
regression model has a much tighter confidence interval that the first centralized model
and the CDM-MR model has a tighter confidence interval that either of the centralized
data models. This result demonstrates that selecting some subset of the sample data to
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centralize and then use to generate a regression model may not generate the MSE model
for that amount of information transfer. The result also supports the MSE model result for
the wavelet basis.

The second benchmark data set we employ is the Boston Housing data set created by
Harrison and Rubinfeld [18]. This data set consists of 506 samples with 13 independent
variables, 12 of which are real-valued, and one real-valued dependent variable. Since the
regression model reported in [18] has an intercept term we add one dummy variable with a
value of 1.0 for each sample to this data set. Descriptions of the variables are provided in
Table 9. The regression model fit to the data is

� 	 � � � � � � � 	 � � � �
� � � � � � ����� � � � 	 � ����� � � � � � � 	 � � � � � �

� � �	� � � � � ��
�� � � ���� � ��� ��� (
� 	 	 � � � � ��� � 	 � � � ��� � � �

� � 	 ��� � � � � � 	�	�� * � � 	� � *���� � � � 	� � � � � � � 	 � *�� � �

The Longley data provided a good example of how overall model statistics compare
between CDM-MR models and models created using centralized data. However, the data
set is to small to examine how the model changes as the number of wavelet coefficients
per feature retained to build the model is reduced. Using the Boston Housing data set we
compare the model produced with centralized data to models produced using 50%, 30% and
10% of the coefficients per feature. Table 10 presents the results of the comparison. The
centralized data results are taken from [18] except for the

� � value which was calculated
using from the given coefficients and the data set. Overall, the CDM-MR model coefficients
remain consistent with the centralized model coefficients even at the 10% retained wavelet
coefficients per feature level.

These data sets were selected to facilitate demonstration of the CDM-MR technique.
They are not typical of the data sets that CDM is intended for in that they are small enough
to be stored at a single location and are complete in the sense that all features are under the
direct control of the investigator. The data sets CDM targets are very large with different
features sets residing at different locations and possibly under the control of different
entities. Inevitably, interesting data sets that fit this description are proprietary. In order to
evaluated the performance of CDM-MR for larger data sets we turn in the following section
to the use of synthetic data sets.

4.4. CDM Regression Method Performance Trends
In this section we use several large (up to 100 MB) synthetic data sets to provide

a characterization of CDM-MR method performance trends in terms of 1) appropriate
selection of wavelet functions, 2) the number of cross-terms and higher-order terms relative
to the number of features,3) the sample size for a given problem. In addition we demonstrate
scalability.

The basic metric we use to measure this performance is the residual value 	 � defined by

� � ( !� � � 	 �

where � � is the actual function or dependent feature value for example
�

and !� � is the
estimate of that value generated by the regression model. This is similar to the residual
value calculated in classical parametric regression but has the important difference that the
examples used are from out-of-sample data not the examples used to build the regression
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����� � ���	� � ����
 � ����� � �	� � � �	��� � �	�� � �	� � � �	� ��� �	����� ��� ��� ������� �	� 
�� ��� ��� � ����� ������� ���	����� ��
�������� ���
����	��� ��������	��� �� ���	����� �������� ��� ������ ��� � ������ �	� � ����	 �	���  ��� ��� ���� ��� ���� ��� ���� ��� ���� ��� ���� ��� ���� ��� ���� ��� ���� ��
��	� �����	� ����� � ���	�� �� �� �� �� ��� ��� ��� ��� � � � ������ � 
�������  � 
����	���  �!
	��� "�!
	���  �!�	��� "�!�	���  � � ������ �������  � � � � � ������ � 
�� 
 ��� � ��
 � ��� � � � �� � � � � � � �
FIG. 4. Wavelet-packet decomposition of Year variable from Longley data.

TABLE 2

Wavelet coefficients (j = 0) for Longley data.

Filter Y X1 X2 X3 X4 X5 X6 X7

HHHH 261268.0 4.0 406.725 1550793.75 12773.25 10426.75 469696.0 7818.0
GHHH -12061.5 0.0 -35.475 -330374.25 -2176.75 -475.75 -22896.0 -16.0
HGHH -5587.5 0.0 -19.625 -180627.75 -244.75 -1600.75 -11966.5 -8.0
GGHH -816.0 0.0 -2.425 -3423.75 1362.25 -2038.25 2108.5 0.0
HHGH -1068.0 0.0 -7.525 -64972.25 -1682.25 -71.75 -6475.5 -4.0
GHGH 166.5 0.0 2.075 14241.75 -202.25 -140.25 1260.5 0.0
HGGH 708.5 0.0 -2.275 5170.25 -439.25 196.75 1108.0 0.0
GGGH 280.0 0.0 1.525 -3377.75 -28.25 -204.75 -355.0 0.0
HHHG -829.0 4.0 -4.575 -36884.75 -540.25 -15.75 -2895.5 -2.0
GHHG 326.5 0.0 -0.275 3168.25 -49.25 -83.25 645.5 0.0
HGHG -169.5 0.0 -1.725 -700.25 -110.25 241.75 380.0 0.0
GGHG -1143.0 0.0 -0.225 -17265.25 1061.75 -42.75 -310.0 0.0
HHGG -1153.0 0.0 -1.625 -5499.75 621.25 -50.25 112.0 0.0
GHGG 438.5 0.0 -0.925 -3944.75 166.25 -211.75 -81.0 0.0
HGGG -485.5 0.0 -0.975 -3763.25 142.25 149.25 33.5 0.0
GGGG 1417.0 0.0 -0.675 14615.75 -1229.75 280.75 67.5 0.0

model. The average residual value over the test data set

		 � 2
�

�
# � � 	 �

� � ( !� � �

will remain close to zero unless the CDM-MR method introduces a bias or offset into the
model. The standard deviation of the residual values

# � � $%%& 2
�
( 2

�
# � � 	 � 	

� ( 		 � �

provides a notion of the distribution of the residuals about the mean. As we are interested
only in relative performance of the models the standard deviation of residual values for
a set of models that are to be compared are normalized such that the maximum standard
deviation is 1.

Wavelets techniques form a large and expanding body of knowledge [19]. There are many
families of wavelet functions. Any set of orthogonal wavelet functions may potentially be
used in wavelet-based CDM. An important consideration in selecting a specific wavelet
function for a problem is how sparse the feature representation becomes in terms of the
wavelet coefficients. As the representation becomes sparser fewer wavelet coefficients
are needed for a local model of a given accuracy. For this paper Haar wavelets were
selected because their relatively simple mathematical form provides a necessary clarity in
the development of the distributed MR technique. The Haar wavelets are the least-smooth
members of the wavelet families they belong to.
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TABLE 3

CDM Regression model statistics for Longley data with all coefficients retained.
���

0.999987�� 304.8541

Coefficient
���� �	��
 �� P ����� CI

����
-3482258.7 890420.4 -3.9108 0.0036 -5496531.0, -1467986.3�� � 15.0619 84.9149 0.1774 0.8631 -177.0292, 207.1529���

-0.0358 0.0335 -1.0695 0.3127 -0.1116, 0.0399���
-2.0202 0.4884 -4.1364 0.0025 -3.1251, -0.9154�� � -1.0332 0.2143 -4.8220 0.0009 -1.5179, -0.5485���
-0.0511 0.2261 -0.2261 0.8262 -0.5625, 0.4603����

1829.1515 455.4785 4.0159 0.0030 798.7867, 2859.5162

TABLE 4

CDM Regression model statistics for Longley data with 12 coefficients retained.
� �

0.999985�� 332.3977

Coefficient
���� �	��
 �� P ����� CI

����
-3459035.5 896750.4 -3.8573 0.0039 -5487627.4, -1430443.5�� � 56.1487 89.4239 0.6279 0.5457 -146.1424, 258.4398���

-0.0449 0.0316 -1.4186 0.1897 -0.1164, 0.0267���
-2.1178 0.4699 -4.5073 0.0015 -3.1808, -1.0549�� � -1.0881 0.2429 -4.4794 0.0015 -1.6376, -0.5386�� �
0.0373 0.2254 0.1653 0.8723 -0.4726, 0.5472����

1811.8521 460.4716 3.9348 0.0034 770.1922, 2853.5119

TABLE 5

CDM Regression model statistics for Longley data with 8 coefficients retained.
� �

0.999968�� 477.9735

Coefficient
���� �	��
 �� P ����� CI

����
-2806889.6 1081972.7 -2.5942 0.0290 -5254483.9, -359295.4�� � -24.3543 213.7620 -0.1139 0.9118 -507.9179, 459.2093���

-0.0216 0.0482 -0.4472 0.6653 -0.1306, 0.0875�� �
-1.7310 0.7048 -2.4561 0.0364 -3.3253, -0.1367�� � -0.8998 0.4533 -1.9849 0.0784 -1.9253, 0.1257�� �
0.0081 0.3599 0.0225 0.9826 -0.8060, 0.8222����

1478.6216 556.3516 2.6577 0.0261 220.0666, 2737.1767
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TABLE 6

CDM Regression model statistics for Longley data with 5 coefficients retained.
� �

0.999941�� 650.4082

Coefficient
���� �	��
 �� P ����� CI

����
-3958376.7 3597783.7 -1.1002 0.2998 12097135.1, 4180381.6�� � -1975.3736 1285.5059 -1.5367 0.1588 -4883.3922, 932.6450�� �

0.1719 0.1223 1.4055 0.1934 -0.1048, 0.4487�� �
-1.2519 0.6300 -1.9871 0.0782 -2.6771, 0.1733�� � -0.4363 0.5620 -0.7765 0.4574 -1.7076, 0.8349�� �
-0.2650 1.3296 -0.1993 0.8464 -3.2729, 2.7428����

2145.8926 1896.6631 1.1314 0.2871 -2144.6608, 6436.4460

TABLE 7
Standard regression model statistics for Longley data with 1947, 1948, 1949,

1950, 1959, 1960, 1961 and 1962 retained.
� �

0.999665�� 191.1414

Coefficient
�� � �	��
 �� P ����� CI

����
-3401168.5 667110.9 -5.0984 0.1233 -11877579.8, 5075242.8�� � -304.4729 211.3409 -1.4407 0.3863 -989.8016, 2380.8557���

0.0473 0.0455 1.0410 0.4872 -0.5305, 0.6252�� �
-0.9499 0.7564 -1.2558 0.4281 -10.5609, 8.6612�� � -0.7709 0.4938 -1.5611 0.3627 -7.0456, 5.5038�� �
-0.8696 0.3721 -2.3370 0.2574 -5.5974, 3.8582����

1834.9335 342.7404 5.3537 0.1176 -2519.9775, 6189.8445

TABLE 8
Standard regression model statistics for Longley data with 1947, 1949, 1953,

1954, 1955, 1956, 1960 and 1962 retained.
���

0.998917�� 414.2000

Coefficient
���� �	��
 �� P ����� CI

�� �
-4951145.8 5312775.9 -0.9319 0.5224 -72456074.4, 62553782.9�� � 276.7046 266.4325 1.0386 0.4880 -3108.6267, 3662.0359�� �

-0.1459 0.1829 -0.7978 0.5713 -2.4704, 2.1785�� �
-3.1734 2.6451 -1.1997 0.4424 -36.7822, 30.4355�� � 0.7333 2.5085 0.2923 0.8190 -31.1405, 32.6070�� �
0.6293 0.8046 0.7822 0.5774 -9.5938, 10.8525����

2548.0656 2719.4141 0.9401 0.5196 31890.8638, 36986.9950
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TABLE 9

Variable definitions for Boston housing data set.

Variable Description

MV Median value of owner occupied homes.
RM Average number of rooms per dwelling.
AGE Proportion of owner-occupied units built prior to 1940.
B Proportion of population that is black.
LSTAT % of lower status of the population.
CRIM Per capita crime rate.
ZN Proportion of residential lad zoned for lots over 25,000 sq.ft.
INDUS Proportion of non-retail business acres per town.
TAX Full-value property-tax rate per $10,000.
PTRATIO Pupil-teacher ratio by town.
DIS Weighted distance to five Boston employment centers.
RAD Index of accessibility to radial highways.
NOX Nitric oxides concentration.

TABLE 10

Regression model results for Boston housing data set.

Parameter Centralized Model CDM Model - 50% CDM Model - 30% CDM Model - 10%
� �

0.80569 0.804251 0.792491 0.775627�� � 9.76 9.73 9.72 9.67�� � 0.0063 0.0074 0.0090 0.0112�� � 0.0000898 0.0004 -0.00079 -0.00067�� � -0.19 -0.20 -0.23 -0.19�� � 0.096 0.097 0.082 0.075�� � -0.00042 -0.00042 -0.00033 -0.00039�� � -0.031 -0.030 -0.027 -0.025���� 0.36 0.37 0.36 0.36���� -0.37 -0.36 -0.34 -0.28�� � � -0.012 -0.013 -0.013 -0.014�� �� 0.0000803 0.00032 0.00064 0.0016�� � � 0.000241 0.00031 0.00102 0.0016�� � � 0.088 0.084 0.119 0.118�� � � -0.0064 -0.0066 -0.0057 -0.0052
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FIG. 5. Model accuracy loss due to retention of fewer wavelet coefficients is reduced as the feature sample
characteristics become more consistent with the smoothness of the wavelet function.

To demonstrate the importance of matching the wavelet function to the data characteris-
tics we turn the problem on its head and apply the Haar based distributed MR to a series
of data sets which provide varying degrees of suitability for use with the Haar wavelets.
A function with 15 linear terms and four cross-terms (19 total terms) based of a feature
set of size 15 was used for this purpose. Feature samples were generated randomly with
uniform probability on the interval

	 ( 2 � 	 � ��2 � 	 � � . The “smoothness” of the data was varied
by introducing a probability that the sample value of each feature would change form
one sample to the next. The smoothest data was generated with a 2������ probability that
feature sample values would change from one sample to the next (barring the chance that
the random number generator returned the same value). The least smooth data had only a
2���� probability of individual sample values changing from one sample to the next. Test
cases were performed with smoothness between 2���� and 2������ to evaluate the impact on
global model accuracy as a function of percentage of wavelet coefficients retained in the
local models. Figure 5 shows that for a given percentage of retained wavelet coefficients
the less-smooth data sets tend to be more accurate since they are more compatible with the
wavelet functions. The plots also show that global model accuracy, as measured by normal-
ized residual value standard deviation and mean residual value increases as the percentage
of wavelet coefficients retained increases.

In Figure 6 the effect of varying numbers of cross-terms relative to a fixed number of
features is shown. The base function used in this evaluation was the same one used to
evaluate the effect of data smoothness with additional cross-terms added as required by the
case. The feature sample data was 2���� smooth and the local models used 2 ��� wavelet
coefficient retention. Figure 6 shows a linear relation between the number of cross-terms
and normalized residual standard deviation. The mean residual value remains close to zero.

The importance of sample size in CDM was described in Section 3 of this paper. The
effect of sample size was evaluated using a 36-term quadratic in 15 features [25]. In
the function each feature is represented in a linear and a quadratic term and there are six
additional cross-terms,

� ��� � � �����
� � �

� �
� �
2 ��� 	 ( ��� � 	 � 2�	�� � �
2 ��� �� �

2 � � � � 2�2 � �� �
2� � � ( 2 � � �� �
2 ��� � ( ��� �� �
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FIG. 6. Residual value standard deviation increases linearly while the mean residual value remains near
zero as the number of cross-terms increase
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FIG. 7. Global model accuracy increases with sample size
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Data sets were created with 2���� smoothness and between 1K and 8K training examples
and an equivalent number of test examples. Local models retained 2���� of the wavelet
coefficients. Figure 7 shows that global model accuracy does increase as the sample size
increases.

To evaluate scalability of the CDM-MR algorithm a data set consisting of 193 features
(1 dependent and 192 independent) and 64K samples was constructed. The dependent
feature was a function of 128 total terms, 64 linear terms and 64 cross-terms. The data set
represents time-series data for three types of process. One third of the features are similar
to the “ less smooth” data used in the other synthetic data sets. For this portion of the data
set the features take on values in

	
� ��2 � and change from sample to sample with probability

0.1%. The second third of the features evolve according to the process

� � � � � ( 2
�
# � � � � � � # � � )

where � ) is a Wiener process [20]. The sample data values are generated according to

� ��� 	
� � � � ��� � ���

; �� 	 � �
 ��� 	 � 
 �
� 



! Please write
������� � ������������������������ �����
	������������" ��������� � ������� � ��#�$

in file ! 23

TABLE 11

Large data set calculations with various portions of coefficients retained.

% Coefficients Retained Mean residual Normalized standard deviation

100% 0.006 0.252
50% -0.015 0.281
30 % -0.007 0.401
10% 0.023 1.000

where � is a random draw from a standard normal distribution and the specific values used
are � � � 	 � � , # � � 	���� and � � � 2�	 � . The final third of the features evolve according to
the process � � � � � � ( � � � � � # � )
where again � ) is a Wiener process [20]. The sample data values are generated according
to

� ��� 	 � � � � � � �
( � �

� � � � # � � � �
where � is a random draw from a standard normal distribution, � � is set randomly on	
� 	 � 	 ��� 	�2 � , � � � � and � � � 	�2 . For the second and third process

� � � 	
�
�
� � .

The 64 linear terms in the regression function are based on the first third of the features
and the 64 cross-terms are based on the products of the second and final third of the
features. The function value itself is the sum of the 128 terms plus a normally distributed
random error. Calculations were performed with 100% , 50% , 30% and 10% of the
wavelet coefficients for each feature retained. The results of the calculations are presented
in Table 11. The results show that for very large data sets the accuracy of the global model,
as measured by the mean residual value and normalized standard deviation of residuals
does not degrade significantly as the proportion of wavelet coefficients retained per feature
is reduced to 10%.

It should be noted that it is currently rare to use parametric regression directly for a
function with this many terms. Principal components and/or factor analysis are typically
used in this situation.

4.5. CDM Regression Algorithm Performance
Given * samples of each feature the wavelet-packet decomposition algorithm performs

* calculations for each of �
	 � ��* decomposition levels resulting in a time complexity of
� � * � 	 � * � . If � features reside in a partition then it will take � � � * � 	 � * � time to
calculated the coefficients for all the features in that partition.

Once all retained wavelet coefficients have been centralized it may be necessary to
calculate cross-term coefficients. Assuming that there are * samples, that � percent of the
wavelet coefficients for each feature retained, and that the cross-terms depends on features
in at most � partitions, then the worst-case performance will be � �$� ��* ��� � .

The regression algorithm as implemented for this work is dominated by the time needed
to set up the simultaneous equations. Given

�
independent regressors including the dummy

variable for the intercept term if needed the setup requires � � * � � � time.

5. LINEAR DISCRIMINANT ANALYSIS
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Linear discriminant analysis (LDA) [13] is another form of supervised learning that is
related to MR. Given two populations for which the same features are measured samples
from each population with known membership are used to construct a decision rule. Ob-
servations with unknown population membership may be correctly classified with high
probability using the decision rule.

5.1. Linear Discriminant Analysis in CDM
An equivalence between MR and LDA was pointed out by Fisher [12]. Within the

regression model pseudo-variables representing the population classes are employed as the
dependent variables. For a two-class problem:

� ��	� � � �
� � 	 if observation

�
comes from class 1

� � if observation
�

comes from class 2

Fisher proposed that the values of the pseudo-variables be

� 	 � � �
�
	�� � � ; � � �

(
� 	

�
	 � � � (9)

where � 	 and � � are the number of training examples from class 1 and 2, respectively.
From a theoretical standpoint the difference between MR and Fisher’s LDA is that in

the case of MR the independent variables are assumed to be known exactly with any
variability embodied in the dependent variable while in LDA the dependent variable (class)
is known exactly and any variability is embodied in the independent variables. From
an implementation standpoint the important difference between MR and LDA is how the
model is used, not the basic CDM or regression techniques used to create the model. In the
case of LDA the result of applying the regression model to a set of features in an observation
of unknown class is compared to a decision boundary value that is determined as part of
the learning or training phase. By using the pseudo-variable values proposed by Fisher
for class values and with the assumption that the feature covariances are not significantly
different between populations the decision boundary value becomes 0.0. What constitutes a
significant difference in feature covariance between populations within the CDM framework
and how this may be evaluated for any given populations is left for future resolution.

The following section describes an application of LDA to the Iris data set [12] a widely
used benchmark data set for statistics and machine learning.

5.2. CDM Linear Discriminant Analysis Example: Iris Data
In this section distributed LDA applied to the Iris data set [12] that consists of measure-

ments of four features of three varieties of Iris flower. The data set contains 150 examples,
50 for each variety or class. Two samples were randomly eliminated from each class
and the remaining 144 were divided into three groups of 48 samples each, 16 from each
class, in order to facilitate a 3-fold cross validation of the model. For the purposes of this
demonstration each feature is assumed to reside in a separate partition and the class label
column vector is only needed to generate the global models so it is not transmitted to each
site. Since the Iris data represents three classes, not two, an additional step is required
in the modeling process. First regression models that discriminate between each pair of
classes are generated then those models were used in committee form to select the proper
classification for observations of unknown class. In the case of a tie (each model selects a
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different class) the estimated class value closest to the assigned class value for any model
is used to select the classification.

The results of the validation test cases are shown in Table 12. On average the models
created using wavelet-based CDM correctly classified the out-of-sample test cases � � 	 ���
of the time. Examples of reported accuracies for centralized methods are presented in
Table 13.

TABLE 12

Results of 3-fold cross-validation on Iris data.

Case Correct Classification Incorrect Classification Accuracy
V W�� T V T TFU T �X W V � �QW U T �Y W V � �QW U T �

Combined
V Y T V W � TFU Y �

It should be noted that because there are no cross-terms or higher-order terms only
four wavelet coefficients were required from each partition in order to generate the global
model. Thus the communication overhead was sightly over

� � of that required to centralize
all 96 sample values in any one training set at one site. Further, for this problem the
communication cost of four wavelet coefficients is independent of the sample size. This is
a result of the high level of compatibility between the discrete representation of the class
variable and the Haar wavelet functions.

6. CONCLUSIONS AND FUTURE WORK

This paper presents a method for performing distributed multivariate regression using
wavelet-based Collective Data Mining. The distributed multivariate parametric regression
technique presented here learns local information in terms of the coefficients of an orthog-
onal basis function representation, transmits a small (relative to the sample size) number
of significant coefficients to a central site and then generates a global model directly from
that small set of significant coefficients. The method seamlessly blends machine learning
and the theory of communication with the statistical methods employed in multivariate
parametric regression to provide an effective data mining technique for use in a distributed
data and computation environment.

In application to distributed multivariate parametric regression wavelet techniques were
shown to produce an orthogonal basis that provides a sparse, distributed, representation of
a function as basis function coefficients. Using these coefficients to communicate local

TABLE 13

Reported classification method accuracy for Iris data.

Method Accuracy Source

Clustering (ISODATA) 88.0% (Freemen, 1970) [14]
Reduced-NN 93.0 - 96.7% (Gates, 1972) [15]
1-NN 95 - 97% (Duda & Hart, 1973) [11]
Partitional Clustering 89.337% (Duda & Hart, 1973) [11]
Hierarchical Clustering 90.0% (Duda & Hart, 1973) [11]
Tree 97.33% (Duda & Hart, 1973) [11]
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model information to a central site required as little as 2 ��� of the communication cost
required to assemble a centralized data set. The importance of selecting wavelet functions
that are compatible with data characteristics, the reduction in model accuracy as the relative
number of non-linear cross terms increases, and the increase in model accuracy with sample
size were demonstrated.

Application of wavelet-based CDM methodology to linear discriminant analysis, a tech-
nique related to multivariate regression, was also presented. An application to the Iris data
set with the assumption that each feature resides in a different data base showed classifica-
tion accuracy similar to centralized techniques. Linear discriminant problems such as Iris
are particularly well suited for treatment with the Haar wavelets used in this work due to the
discrete nature of the class feature. Communication costs for this problem were shown to
be directly proportional to the number of independent features in the discriminant function
and independent of the sample size.

Future work will follow two distinct paths, further exploration of the use of wavelet
techniques in this context and extension of these CDM techniques to other real-domain
learning problems.

The work presented in this paper is based on Haar wavelets and the Haar-Walsh wavelet
packet basis. Higher order (smoother) orthogonal wavelets and other wavelet bases, such
as multi-resolution or Paley order, may provide improved performance in some cases.
The ability to pre-characterize data sets in terms of appropriate wavelet function basis is
currently being investigated.

Work on extending the real-domain wavelet-based CDM techniques to learning neural
network models is ongoing.
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