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Abstract. We present a collective approach to learning a Bayesian network from

distributed heterogenous data. We first learn a local Bayesian network at each site

using the local data. Then each site identifies the observations that are most likely

to be evidence of coupling between local and non-local variables and transmits a

subset of these observations to a central site. Another Bayesian network is learnt

at the central site using the data transmitted from the local site. The local and

central Bayesian networks are combined to obtain a collective Bayesian network,

that models the entire data. Experimental results and theoretical justification that

demonstrate the feasibility of our approach are presented.

Keywords: Bayesian Network, Collective Data Mining, Distributed Data Mining,

Heterogenous Data

1. Introduction

Raw data is useful only when it is transformed into knowledge or useful

information. This involves data analysis and transformation to extract

interesting patterns and correlations among the problem variables. In

practical applications, such transformations require efficient data ac-

cess, analysis, and presentation of the outcome in a timely manner.

The advent of large distributed environments in both scientific and

commercial domains (e.g. the Internet and corporate intranets) intro-

duces a new dimension to this process — a large number of distributed

sources of data that can be used for discovering knowledge. Cost of data

communication between the distributed databases is a significant factor
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in an increasingly mobile and connected world with a large number

of distributed data sources. This cost consists of several components

like (a) Limited network bandwidth, (b) data security, and (c) exist-

ing organizational structure of the applications environment. The field

of Distributed Knowledge Discovery and Data Mining (DDM) studies

algorithms, systems, and human-computer interaction issues for knowl-

edge discovery applications in distributed environments for minimizing

this cost.

In this paper, we consider a Bayesian network (BN) model to rep-

resent uncertain knowledge. Specifically, we address the problem of

learning a BN from heterogenous distributed data. It uses a collective

data mining (CDM) approach introduced earlier by Kargupta et. al.

[30, 32, 33, 35]. Section 2 provides some background and reviews ex-

isting literature in this area. Section 3 presents the collective Bayesian

learning technique. Experimental results for two datasets — one simu-

lated and one real world — are presented in Section 4. We would like to

mention that these experiments are intended mainly to serve as a proof-

of-concept. More extensive results for real data mining applications

along the web mining line would be published later. Finally, Section 5

provides some concluding remarks and directions for future work.

2. Background, Motivation, and Related Work

In this section, we provide and background and motivation to the prob-

lem by means of an example. We then review the existing literature in

this area.

Distributed data mining (DDM) must deal with different possibili-

ties of data distribution. Different sites may contain data for a common

set of features of the problem domain. In case of relational data this

would mean a consistent database schema across all the sites. This

is the homogeneous case. Tables I and II illustrate this case using an

example from a hypothetical credit card transaction domain.1 There are

1 Please note that the credit card domain may not always have consistent schema.

The domain is used just for illustration.
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Table I. Homogeneous case: Site A with a table for credit

card transaction records.

Account Amount Location Previous Unusual

Number record transaction

11992346 -42.84 Seattle Poor Yes

12993339 2613.33 Seattle Good No

45633341 432.42 Portland Okay No

55564999 128.32 Spokane Okay Yes

Table II. Homogeneous case: Site B with a table for credit

card transaction records.

Account Amount Location Previous Unusual

Number record transaction

87992364 446.32 Berkeley Good No

67845921 978.24 Orinda Good Yes

85621341 719.42 Walnut Okay No

95345998 -256.40 Francisco Bad Yes

two data sites A and B, connected by a network. The DDM-objective in

such a domain may be to find patterns of fraudulent transactions. Note

that both the tables have the same schema. The underlying distribution

of the data may or may not be identical across different data sites.

In the general case the data sites may be heterogeneous. In other

words, sites may contain tables with different schemata. Different fea-

tures are observed at different sites. Let us illustrate this case with

relational data. Table III shows two data-tables at site X. The upper

table contains weather-related data and the lower one contains demo-

graphic data. Table IV shows the content of site Y, which contains

holiday toy sales data. The objective of the DDM process may be

detecting relations between the toy sales, the demographic and weather
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Table III. Heterogeneous case: Site X with two tables, one

for weather and the other for demography.

City Temp. Humidity Wind

Chill

Boise 20 24% 10

Spokane 32 48% 12

Seattle 63 88% 4

Portland 51 86% 4

Vancouver 47 52% 6

City State Size Average Proportion

earning of small

businesses

Boise ID Small Low 0.041

Spokane WA Medium Medium 0.022

Seattle WA Large High 0.014

Portland OR Large High 0.017

Vancouver BC Medium Medium 0.031

related features. In the general heterogeneous case the tables may

be related through different sets of key indices. For example, Tables

III(upper) and (lower) are related through the key feature City; on

the other hand Table III (lower) and Table IV are related through key

feature State. We consider the heterogenous data scenario in this paper.

2.1. Motivation

Bayesian networks offer very useful information about the mutual de-

pendencies among the features in the application domain. Such in-

formation can be used for gaining better understanding about the

dynamics of the process under observation. Financial data analysis,
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Table IV. Heterogeneous case: Site Y with one table holiday

toy sales.

State Best Selling Price Number Items Sold

Item ($) (In thousands)

WA Snarc Action Figure 47.99 23

ID Power Toads 23.50 2

BC Light Saber 19.99 5

OR Super Squirter 24.99 142

CA Super Fun Ball 9.99 24

manufacturing process monitoring, sensor data analysis, web mining

are a few examples where mining Bayesian networks has been quite

useful. Bayesian techniques will also be useful for mining distributed

data. In this section we discuss one such scenario and explain how

the proposed collective Bayesian learning algorithm can be useful in

practice.

Consider a subscriber of a wireless network. This person travels

frequently and uses her palmtop computer and cell phone to do business

and personal transactions. Her transactions go through different servers

depending upon her location during the transaction. Now let us say her

wireless service provider wants to offer more personalized service to her

by paying careful attention to her needs and tastes. This may be useful

for choosing the instant messages appropriate for her taste and needs.

For example, if she is visiting the Baltimore area the company may

choose to send her instant messages regarding the area Sushi and Italian

restaurants that she usually prefers. Since too many of such instant

messages are likely to be considered a nuisance, accurate personaliza-

tion is very important. This is indeed quite well appreciated by the

business community and use of Bayesian techniques for personalizing

web sites has already been reported elsewhere [49, 50, 5, 6].

The scenario described here is however somewhat different from the

traditional web personalization applications where web-log data are
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centrally located. In the current case the transaction data are logged

at different locations since the user is mobile and the wireless service

provider is interested in analyzing the overall transactional patterns of

the user. As the user moves from one wireless cell to another the servers

change and therefore the transactions go through different servers. To-

day the major wireless service providers support millions of customers.

Centralizing this inherently distributed large volume of data may not

be scalable. Moreover, these transaction data are heterogeneous. There

is no guarantee that the user will perform only a certain type of transac-

tions at every location. The user may choose to perform a wide variety

of transactions (e.g. purchasing gifts, money transaction, monitoring

the stock portfolio, reading news, and ordering pizza) at different sites.

Therefore the features defining the transactions observed at different

sites are likely to be different in general although we may have some

overlapping characteristic features (e.g. monitoring the stock portfolio

everyday!).

As pointed out elsewhere [36] there are many similar situations

where data are distributed among a large number of sites and cen-

tralized data mining is not scalable. The technique proposed here will

be applicable to many such domains.

2.2. Related Work

The volume of DDM literature is growing fast. There exist a reasonably

large body of work on DDM architectures and data mining techniques

for the homogeneous and heterogeneous cases. In the following, we

review only the existing literature for heterogeneous DDM.

Mining from heterogeneous data constitutes an important class of

DDM problems. This issue is discussed in [54] from the perspective

of inductive bias. The WoRLD system [2] addressed the problem of

concept learning from heterogeneous sites by developing an “activation

spreading” approach that is based on first order statistical estimation of

the underlying distribution. A novel approach to learn association rules

from heterogeneous tables is proposed in [17]. This approach exploits

the foreign key relationships for the case of a star schema to develop de-
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centralized algorithms that execute concurrently on the separate tables,

and subsequently merge the results. An order statistics-based technique

for combining high-variance models generated from heterogeneous sites

is proposed in [64].

Kargupta and his colleagues [35] also considered the heterogenous

case and proposed the Collective framework to address data analysis

for heterogeneous environments. They proposed the Collective Data

Mining (CDM) framework for predictive data modeling that makes

use of orthonormal basis functions for correct local analysis. They pro-

posed a technique for distributed decision tree construction [35] and

wavelet-based multi-variate regression [30]. Several distributed cluster-

ing techniques based on the Collective framework are proposed else-

where [32, 34]. They also proposed the collective PCA technique [34, 33]

and its extension to a distributed clustering application. Additional

work on distributed decision tree learning [4], clustering [45, 48, 55],

genetic learning[47] DDM design optimization [65], classifier pruning

[53], DDM architecture [38], and problem decomposition and local

model selection in DDM [43], are also reported.

We now review important literature on learning using Bayesian net-

works (BN). A BN is a probabilistic graphical model that represents

uncertain knowledge [51, 31, 11]. Learning parameters of a Bayesian

network from complete data is discussed in [58, 10]. Learning parame-

ters from incomplete data using gradient methods is discussed in [7, 61].

Lauritzen [41] has proposed an EM algorithm to learn Bayesian network

parameters, whereas Bauer et. al. [3] describe methods for accelerating

convergence of the EM algorithm. Learning using Gibbs sampling is

proposed in [63, 25]. The Bayesian score to learn the structure of a

Bayesian network is discussed in [16, 10, 27]. Learning the structure of

a Bayesian network based on the Minimal Description Length (MDL)

principle is presented in [8, 39, 60]. Learning BN structure using greedy

hill-climbing and other variants is introduced in [28], whereas Chicker-

ing [14] introduced a method based on search over equivalence network

classes. Methods for approximating full Bayesian model averaging are

presented in [10, 28, 44].
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Learning the structure of Bayesian network from incomplete data,

is considered in [15, 12, 20, 21, 46, 56, 62]. The relationship between

causality and Bayesian networks is discussed in [28, 52, 59, 29]. See

[10, 23, 39] for discussion on how to sequentially update the structure of

a network as more data is available. Applications of Bayesian network to

clustering (AutoClass) and classification is discussed in [12, 19, 22, 57].

Zweig and Russel [66] use Bayesian networks for speech recognition,

whereas Breese et. al. [9] discuss collaborative filtering methods that use

Bayesian network learning algorithms. Applications to causal learning

in social sciences is discussed in [59]. In [40] the authors report a

technique to automatically produce a Bayesian belief network from

discovered knowledge using a distributed approach.

An important problem is how to learn the Bayesian network from

data in distributed sites. The centralized solution to this problem is

to download all datasets from distributed sites. Kenji [37] worked on

the homogeneous distributed learning scenario. In this case, every dis-

tributed site has the same feature but different observations. In this

paper, we address the heterogenous case, where each site has data about

only a subset of the features. To our knowledge, there is no significant

work that addresses the heterogenous case.

3. Collective Bayesian Learning

In the following, we briefly review Bayesian networks and then dis-

cuss our collective approach to learning a Bayesian network that is

specifically designed for a distributed data scenario.

3.1. Bayesian Networks: A review

A Bayesian network (BN) is a probabilistic graph model. It can be

defined as a pair (G, p), where G = (V, E) is a directed acyclic graph

(DAG) [31, 26]. Here, V is the vertex set which represents variables in

the problem and E is the edge set which denotes probabilistic relation-

ships among the variables. For a variable X ∈ V, a parent of X is a
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node from which there is a directed link to X. Let pa(X) denote the

set of parents of X, then the conditional independence property can be

represented as follows:

P (X | V \ X) = P (X | pa(X)). (1)

This property can simplify the computations in a Bayesian network

model. For example, the joint distribution of the set of all variables in

V can be written as a product of conditional probabilities as follows:

P (V) =
∏

X∈V

P (X | pa(X)). (2)

The conditional independence between variables is either obtained from

a priori expert knowledge or discerned from data, or a combination of

both [31]. The set of conditional distributions {P (X | pa(X)), X ∈ V}

are called the parameters of a Bayesian network. Note that if variable X

has no parents, then P (X | pa(X)) = P (X) is the marginal distribution

of X.

Figure 1 is a Bayesian network called the ASIA model (adapted from

[42]). The variables are Dyspnoea, Tuberculosis, Lung cancer, Bronchi-

tis, Asia, X-ray, Either, and Smoking. They are all binary variables.

The joint distribution of all variables is

P (A, S, T, L, B, E, X, D) = P (A)P (S)P (T | A)P (L | S)

P (B | S)P (E | T, L)P (X | E)P (D | B, E).
(3)

The ordering of variables constitutes a constraint on the structure of a

Bayesian network. If variable X appears before variable Y , then Y can

not be a parent of X. We use the ordering (A, S, T, L, B, E, X, D) as

prior knowledge in our example.

Two important issues in using a Bayesian network are : (a) learning

a Bayesian network and (b) probabilistic inference. Learning a BN

involves learning the structure of the network (the directed graph), and

obtaining the conditional probabilities (parameters) associated with the

network. Once a Bayesian network is constructed, we usually need to

determine various probabilities of interest from the model. This pro-

cess is referred to as probabilistic inference. For example, in the ASIA
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model, a diagnosis application would require finding the probability

P (B | D) of Bronchitis, given the (observed) symptom Dyspnoea. This

probability (usually called posterior probability) can be computed using

the Bayes rule.

A

T

X

E

D

L B

S

Figure 1. ASIA Model

3.2. Collective Bayesian Network Learning Strategy

We now present a collective strategy to learn a Bayesian network (both

structure and parameters) when data is distributed among different

sites. The centralized solution to this problem is to download all datasets

from distributed sites to a central site. In many applications, this would

not be feasible because of the size of the data, available communication

bandwidth, or due to security considerations. Learning a BN for the ho-

mogeneous case was studied by Kenji [37]. In this case, every distributed

site has the same set of features but has different set of observations.

We address here the heterogenous case, where each distributed site has

all the observations for only a subset of the features.

The primary steps in our approach are:

− Compute local BNs (local model) involving the variables observed

at each site (local variables) based on local data.

− At each site, based on the local BN, identify the observations that

are most likely to be evidence of coupling between local and non-

local variables. Transmit a subset of these observations to a central

site.
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− At the central site, a limited number of observations of all the

variables are now available. Using this, compute a non-local BN

consisting of links between variables across two or more sites.

− Combine the local models with the links discovered at the central

site to obtain a collective BN.

The non-local BN thus constructed would be effective in identifying

associations between variables across sites, whereas the local BNs would

detect associations among local variables at each site. The conditional

probabilities can also be estimated in a similar manner. Those proba-

bilities that involve only variables from a single site can be estimated

locally, whereas the ones that involve variables from different sites can

be estimated at the central site. Same methodology could be used to

update the network based on new data. First, the new data is tested for

how well it fits with the local model. If there is an acceptable statistical

fit, the observation is used to update the local conditional probability

estimates. Otherwise, it is also transmitted to the central site to up-

date the appropriate conditional probabilities (of cross terms). Finally,

a collective BN can be obtained by taking the union of nodes and

edges of the local BNs and the nonlocal BN and using the conditional

probabilities from the appropriate BNs. Probabilistic inference can

now be performed based on this collective BN. Note that transmitting

the local BNs to the central site would involve a significantly lower

communication as compared to transmitting the local data.

It is quite evident that learning probabilistic relationships between

variables that belong to a single local site is straightforward and does

not pose any additional difficulty as compared to a centralized ap-

proach. The important objective is to correctly identify the coupling

between variables that belong to two (or more) sites. These correspond

to the edges in the graph that connect variables between two sites and

the conditional probability(ies) at the associated node(s). In the follow-

ing, we describe our approach to selecting observations at the local sites

that are most likely to be evidence of strong coupling between variables

at two different sites. The key idea of our approach is that the samples

that do not fit well with the local models are likely to be evidence
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of coupling between local and non-local variables. We transmit these

samples to a central site and use them to learn a collective Bayesian

network.

3.3. Selection of samples for transmission to global site

For simplicity, we will assume that the data is distributed between two

sites and will illustrate the approach using the BN in Figure 1. The

extension of this approach to more than two sites is straightforward.

Let us denote by A and B, the variables in the left and right groups,

respectively, in Figure 1. We assume that the observations for A are

available at site A, whereas the observations for B are available at a

different site B. Furthermore, we assume that there is a common feature

(“key” or index) that can be used to associate a given observation in

site A to a corresponding observation in site B. Naturally, V = A ∪ B.

At each local site, a local Bayesian network can be learned using only

samples in this site. This would give a BN structure involving only the

local variables at each site and the associated conditional probabilities.

Let pA(.) and pB(.) denote the estimated probability function involving

the local variables. This is the product of the conditional probabilities

as indicated by (2). Since pA(x), pB(x) denote the probability or likeli-

hood of obtaining observation x at sites A and B, we would call these

probability functions the likelihood functions lA(.) and lB(.), for the

local model obtained at sites A and B, respectively. The observations

at each site are ranked based on how well it fits the local model, using

the local likelihood functions. The observations at site A with large

likelihood under lA(.) are evidence of “local relationships” between site

A variables, whereas those with low likelihoods under lA(.) are possible

evidence of “cross relationships” between variables across sites. Let

S(A) denote the set of keys associated with the latter observations

(those with low likelihood under lA(.)). In practice, this step can be

implemented in different ways. For example, we can set a threshold ρA

and if lA(x) ≤ ρA, then x ∈ SA. The sites A and B transmit the set

of keys SA, SB, respectively, to a central site, where the intersection

S = SA∩SB is computed. The observations corresponding to the set of
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keys in S are then obtained from each of the local sites by the central

site.

The following argument justifies our selection strategy. Using the

rules of probability, and the assumed conditional independence in the

BN of Figure 1, it is easy to show that:

P (V) = P (A,B) = P (A | B)P (B) = P (A | nb(A))P (B), (4)

where nb(A) = {B, L} is the set of variables in B, which have a link

connecting it to a variable in A. In particular,

P (A | nb(A)) = P (A)P (T | A)P (X | E)P (E | T, L)P (D | E, B). (5)

Note that, the first three terms in the right-hand side of (5) involve

variables local to site A, whereas the last two terms are the so-called

cross terms, involving variables from sites A and B. Similarly, it can be

shown that

P (V) = P (A,B) = P (B | A)P (A) = P (B | nb(B))P (A), (6)

where nb(B) = {E, D} and

P (B | nb(B)) = P (S)P (B | S)P (L | S)P (E | T, L)P (D | E, B). (7)

Therefore, an observation {A = a, T = t, E = e, X = x, D = d, S =

s, L = l, B = b} with low likelihood at both sites A and B; i.e. for

which both P (A) = P (A = a, T = t, E = e, X = x, D = d) and

P (B) = P (S = s, L = l, B = b) are small, is an indication that both

P (A | nb(A)) and P (B | nb(B)) are large for that observation (since

observations with small P (V) are less likely to occur). Notice from (5)

and (7) that the terms common to both P (A | nb(A)) and P (B | nb(B))

are precisely the conditional probabilities that involve variables from

both sites A and B. In other words, this is an observation that indicates

a coupling of variables between sites A and B and should hence be

transmitted to a central site to identify the specific coupling links and

the associated conditional probabilities.

In a sense, our approach to learning the cross terms in the BN

involves a selective sampling of the given dataset that is most relevant
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to the identification of coupling between the sites. This is a type of

importance sampling, where we select the observations that have high

conditional probabilities corresponding to the terms involving variables

from both sites. Naturally, when the values of the different variables

(features) from the different sites, corresponding to these selected obser-

vations are pooled together at the central site, we can learn the coupling

links as well as estimate the associated conditional distributions. These

selected observations will, by design, not be useful to identify the links

in the BN that are local to the individual sites. This has been verified

in our experiments (see Section 4).

3.4. Performance Analysis

In the following, we present a brief theoretical analysis of the perfor-

mance of the proposed collective learning method. We compare the

performance of our collective BN with that of a Bayesian network

learned using a centralized approach (referred to as centralized BN

in the sequel).

There are two types of errors involved in learning a BN: (a) Error

in BN structure and (b) Error in parameters (probabilities) of the BN.

The structure error is defined as the sum of the number of correct edges

missed and the number of incorrect edges detected. For parameter error,

we need to quantify the “distance” between two probability distribu-

tions. We only consider learning error in the parameters, assuming that

the structure of the BN has been correctly determined (or is given).

A widely used metric is the Kullback-Leibler (KL) distance (cross-

entropy measure) dKL(p, q) between two discrete probabilities, {pi},

{qi}, i = 1, 2, . . . , N

dKL(p, q) =
N∑

i=1

pi ln(
pi

qi

) (8)

where N is the number of possible outcomes.

Indeed, if p∗ is the empirically observed distribution for data sam-

ples {si, 1 ≤ i ≤ M} and h is a hypothesis (candidate probability
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distribution for the underlying true distribution), then [1]

dKL(p∗, h) =
M∑

i=1

p∗(si) ln(
p∗(si)

h(si)
) =

M∑

i=1

1

M
ln

1

M
−

M∑

i=1

1

M
ln(h(si))

= ln
1

M
−

1

M

M∑

i=1

ln(h(si)).

(9)

Therefore, minimizing the KL distance with respect to the empirically

observed distribution is equivalent to finding the maximum likelihood

solution h∗ of
∑M

i=1 ln(h(si)).

Since the BN provides a natural factorization of the joint probability

in terms of the conditional probabilities at each node (see (2)), it is

convenient to express the KL distance between two joint distributions

in terms of the corresponding conditional distributions. Let h and c

be two possible (joint) distributions of the variables in a BN. For i =

1, 2, . . . , n, let hi(xi | πi), ci(xi | πi) be the corresponding conditional

distribution at node i, where xi is the variable at node i and πi is the

set of parents of node i. Following [18], define a distance dCP (P, ci, hi)

between hi and ci with respect to the true distribution P :

dCP (P, ci, hi) =
∑

πi

P (πi)
∑

xi

P (xi | πi) ln(
ci(xi | πi)

hi(xi | πi)
). (10)

It is then easy to show that

dKL(P, h) − dKL(P, c) =
n∑

i=1

dCP (P, ci, hi). (11)

Equations (10) and (11) provide a useful decomposition of the KL

distance between the true distribution P and two different hypotheses

c, h. This will be useful in our analysis of sample complexity in the

following sub-section.

3.5. Sample Complexity

We now derive a relationship between the accuracy of collective BN

and the number of samples transmitted to the central site. We consider
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the unrestricted multinomial class BN, where all the node variables are

Boolean. The hypothesis class H is determined by the set of possible

conditional distributions for the different nodes. Given a BN of n vari-

ables and a hypothesis class H, we need to choose a hypothesis h ∈ H

which is close to a unknown distribution P . Given an error threshold

ε and a confidence threshold δ, we are interested in constructing a

function N(ε, δ), such that if the number of samples M is larger than

N(ε, δ)

Prob(dKL(P, h) < dKL(P, hopt) + ε) > 1 − δ, (12)

where hopt ∈ H is the hypothesis that minimizes dKL(P, h). If smallest

value of N(ε, δ) that satisfies this requirement is called the sample

complexity. This is usually referred to as the probably approximately

correct (PAC) framework. Friedman and Yakhini [24] have examined

the sample complexity of the maximum description length principle

(MDL) based learning procedure for BNs.

Dasgupta [18] gave a thorough analysis for the multinomial model

with Boolean variables. Suppose the BN has n nodes and each node has

at most k parents. Given ε and δ, an upper bound of sample complexity

is

N(ε, δ) =
288n22k

ε2
ln2(1 +

3n

ε
ln

18n22k ln(1 + 3n/ε)

εδ
). (13)

Equation (13) gives a relation between the sample size and the (ε, δ)

bound. For the conditional probability hi(xi | πi) = P (Xi = xi | Πi =

πi), we have (see (10))

dCP (P, hopt, h) ≤
ε

n
(14)

We now use the above ideas to compare the performance of the

collective learning method with the centralized method. We fix the

confidence δ and suppose that an εcen can be found for the centralized

method, for a given sample size M using (13). Then, following the

analysis in [18, Section 5],

dCP (P, hcen
opt , h

cen) ≤
εcen

n
, (15)
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where hcen
opt is the optimal hypothesis and hcen is the hypothesis obtained

based on a centralized approach. Then from (11)

dKL(P, hcen) − dKL(P, hcen
opt ) =

n∑

i=1

dCP (P, hcen
i,opt, h

cen
i )

≤
n∑

i=1

εcen

n
= εcen.

(16)

For the collective BN learning method, the set of nodes can be split

into two parts. Let Vl be the set of nodes, which have all their parent

nodes at the same local site, and Vc be the set of nodes, which have

at least one parent node belonging to a site different than the node

itself. For ASIA model, Vl = {A, S, T, L, B, X} and Vc = {E, D}. We

use nl and nc to denote the cardinality of the sets Vl and Vc. If a node

x ∈ Vl, the collective method can learn the conditional probability

P (x | pa(x)) using all data because this depends only on the local

variables. Therefore, for x ∈ Vl,

dCP (P, hcol
opt, h

col) ≤
εcol
1

n
=

εcen

n
, (17)

where, for the local terms, εcol
1 = εcen. For the nodes in Vc, only the

data transmitted to the central site can be used to learn its condi-

tional probability. Suppose Mc data samples are transmitted to the

central site, and the error threshold εcol
2 satisfies (13), for the same

fixed confidence 1 − δ. Therefore, for x ∈ Vc, we have from (14) that

dCP (P, hcol
opt, h

col) ≤
εcol

2

n
, where εcol

2 ≥ εcen, in general, since the in the

collective learning method, only Mc ≤ M samples are available at the

central site. Then from (11) and (17)

dKL(P, hcol
opt) − dKL(P, hcol) =

n∑

i=1

dCP (P, hcol
i,opt, h

col
i )

=
∑

i∈Vl

dCP (P, hcol
i,opt, h

col
i ) +

∑

i∈Vc

dCP (P, hcol
i,opt, h

col
i )

=
nl

n
εcen +

nc

n
εcol
2

(18)

Comparing (16) and (18), it is easy to see that the error threshold of

the collective method is εcol = nl

n
εcen + nc

n
εcol
2 . The difference of the
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error threshold between the collective and the centralized method is

εcol − εcen =
nc

n
(εcol

2 − εcen) (19)

Equation (19) shows two important properties of the collective method.

First, the difference in performance is independent of the variables

in Vl. This means the performance of the collective method for the

parameters of local variables is same as that of the centralized method.

Second, the collective method is a tradeoff between accuracy and the

communication overhead. The more data we communicate, more closely

εcol
2 will be to εcen. When Mc = M , εcol

2 = εcen, and εcol − εcen = 0.

4. Experimental Results

We tested our approach on two datasets — ASIA model and Web

log data. We present our results for the two cases in the following

subsections.

4.1. ASIA Model

Our experiments were performed on a dataset that was generated from

the BN depicted in Figure 1 (ASIA Model). The conditional prob-

ability of a variable is a multidimensional array, where the dimen-

sions are arranged in the same order as ordering of the variables, viz.

{A, S, T, L, B, E, X, D}. Table V (top) depicts the conditional proba-

bility of node E. It is laid out such that the first dimension toggles

fastest. From Table V, we can write the conditional probability of node

E as a single vector as follows: [0.9, 0.1, 0.1, 0.01, 0.1, 0.9, 0.9, 0.99]. The

conditional probabilities (parameters) of ASIA model are given in Table

V (bottom) following this ordering scheme. We generated n = 6000

observations from this model, which were split into two sites as illus-

trated in Figure 1 (site A with variables A, T, E, X, D and site B with

variables S, L, B). Note that there are two edges (L → E and B → D)

that connect variables from site A to site B, the rest of the six edges

being local.
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Table V. (Top) The conditional probability of node E

and (Bottom) All conditional probabilities for the ASIA

model

No. T L E Probability

1 F F F 0.9

2 T F F 0.1

3 F T F 0.1

4 T T F 0.01

5 F F T 0.1

6 T F T 0.9

7 F T T 0.9

8 T T T 0.99

A 0.99 0.01

S 0.5 0.5

T 0.1 0.9 0.9 0.1

L 0.3 0.6 0.7 0.4

B 0.1 0.8 0.9 0.2

E 0.9 0.1 0.1 0.01 0.1 0.9 0.9 0.99

X 0.2 0.6 0.8 0.4

D 0.9 0.1 0.1 0.01 0.1 0.9 0.9 0.99

Local Bayesian networks were constructed using a conditional in-

dependence test based algorithm [13], for learning the BN structure

and a maximum likelihood based method for estimating the conditional

probabilities. The local networks were exact as far as the edges involving

only the local variables. We then tested the ability of the collective

approach to detect the two non-local edges. The estimated parameters

of these two local Bayesian network is depicted in Table VI. Clearly, the

estimated probabilities at all nodes, except nodes E and D, are close to

the true probabilities given in Table V. In other words, the parameters
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Table VI. The conditional probabilities

of local site A and local site B

Local A

A 0.99 0.01

T 0.10 0.84 0.90 0.16

E 0.50 0.05 0.50 0.95

X 0.20 0.60 0.80 0.40

D 0.55 0.05 0.45 0.95

Local B

S 0.49 0.51

L 0.30 0.59 0.70 0.41

B 0.10 0.81 0.90 0.19

that involve only local variables have been successfully learnt at the

local sites.

A fraction of the samples, whose likelihood are smaller than a se-

lected threshold T , were identified at each site. In our experiments, we

set

Ti = µi + ασi, i ∈ {A, B}, (20)

for some constant α, where µi is the (empirical) mean of the local like-

lihood values and σi is the (empirical) standard deviation of the local

likelihood values. The samples with likelihood less than the threshold

(TA at site A TB at site B) at both sites were sent to a central site. The

central learns a global BN based on these samples. Finally, a collective

BN is formed by taking the union of edges detected locally and those

detected at the central site. The error in structure learning of the col-

lective Bayesian network is defined as the sum of the number of correct

edges missed and the number of incorrect edges detected. This is done

for different values of α. Figure 2 (left) depicts this error as a function

of the number of samples communicated (which is determined by α). It
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Figure 2. Performance of collective BN: (left) structure learning error (right)

parameter learning error.

is clear that the exact structure can be obtained by transmitting about

5% of the total samples.

Next we assessed the accuracy of the estimated conditional prob-

abilities. For the collective BN, we used the conditional probabilities

from local BN for the local terms and the ones estimated at the global

site for the cross terms. This was compared with the performance of a

BN learnt using a centralized approach (by aggregating all data at a

single site). Figure 2 (right) depicts the KL distance d(pcntr(V), pcoll(V))

between the joint probabilities computed using our collective approach

and the one computed using a centralized approach. Clearly, even with a

small communication overhead, the estimated conditional probabilities

based on our collective approach is quite close that obtained from a

centralized approach.

A more important test of our approach is the error in estimating

the conditional probabilities at nodes E and D, since these are the

cross terms, estimated at the global site, based on a selective trans-

mission of data. The KL distance between the conditional probabilities

was computed based on our collective BN and a BN obtained using

a centralized approach (by transmitting all data to one site), for the

cross terms: p(E | T, L) and p(D | E, B). Given that these are condi-

tional probabilities, we compute the sum over all the possible values of
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{T, L}, of the KL distance between pcoll(E | T, L) and pcntr(E | T, L),

estimated using our collective approach and the centralized approach,

respectively. Figure 3 (top left) depicts the KL distance
∑

T,L d(pcntr(E |

T, L), pcoll(E | T, L)), between the two estimates. Figure 3 (top right)

depicts the sum
∑

B,E d(pcntr(D | B, E), pcoll(D | B, E)), over all the

possible values of {E, B}, of the KL distance between the two estimates.

Clearly, even with a small data communication, the estimates of the

conditional probabilities of the cross-terms, based on our collective

approach, is quite close to that obtained by the centralized approach.

To further verify the validity of our approach, the transmitted data at

the central site was used to estimate two local conditional probabilities,

p(X | E) and p(L | S). The corresponding KL distances are depicted

in the bottom row of Figure 3 (left: node L and right: node: X). It

is clear that the estimates of these probabilities is quite poor, unless

a substantial fraction of the data is transmitted. This clearly demon-

strates that our technique can be used to perform a biased sampling

for discovering relationships between variables across sites.

4.2. Webserver Log Data

In the second set of experiments, we used data from real world do-

main — a web server log data. Web server log contains records of user

interactions when request for the resources in the servers is received.

Web log mining can provide useful information about different user

profiles. In our application, the raw web log file was obtained from

the web server of the School of EECS at Washington State University

— http://www.eecs.wsu.edu. There are three steps in our processing.

First we preprocess the raw web log file to transform it to a session form

which is useful to our application. Each session corresponds to the logs

from a single user in a single web session. We consider each session

as a data sample. Then we categorize the resource (html, video, audio

etc.) requested from the server into eight categories: E-EE Faculty, C-

CS Faculty, L-Lab and facilities, T-Contact Information, A-Admission

Information, U-Course Information, H-EECS Home, and R-Research.

These categories are our features. Each feature value in a session is
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Figure 3. KL distance between conditional probabilities

set to one or zero, depending on whether the user requested resources

corresponding to that category. An 8-feature, binary dataset was thus

obtained, which was used to learn a BN.

A central BN was first obtained using the whole dataset. Figure 4

depicts the structure of this centralized BN. We then split the features

into two sets, corresponding to a scenario where the resources are split

into two different web servers. Site A has features E, C, T, and U and

site B has features L, A, H, and R. We assumed that the BN structure

was known, and estimated the parameters (probability distribution) of

the BN using our collective BN learning approach. Figure 5 shows the

KL distance between the central BN and the collective BN as a function

of the fraction of observations communicated. Clearly the parameters

of collective BN is close to that of central BN even with a small fraction

of data communication.
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Figure 4. KL distance between conditional probabilities
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Figure 5. KL distance between conditional probabilities

5. Conclusions

We have presented an approach to learn Bayesian networks from dis-

tributed heterogenous data. This is based on a collective learning strat-

egy, where a local model is obtained at each site and the global associa-

tions are determined by a selective transmission of data to a central site.

In our experiments, the performance of the collective Bayesian network

was quite comparable to that obtained from a centralized approach,
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even for a small data communication. To our knowledge, this is the first

approach to learning Bayesian networks from distributed heterogenous

data.

A number of theoretical and practical issues remains to be resolved.

In particular, we need to obtain tight bounds for the performance of

our collective BN as compared to that obtained from a centralized

approach, as a function of the data communication involved. Some

preliminary analysis of this problem was presented in Section 3. A

thorough understanding of this problem would provide performance

guarantees for our approach (in terms of (ε, δ) error bounds used in

Section 3), in terms of the communication overhead. Other important

problems include (a) scalability of the approach with respect to number

of sites, and number of variables and (b) effect of the choice of existing

learning algorithms on performance of the collective Bayesian network.

We are actively pursuing these issues and would report this in a future

publication.
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