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Abstract

Ensemble learning is frequently used for classification
and other related applications in data mining. It gen-
erates multiple models and produces the final clas-
sification by aggregating the outputs of the different
models in the ensemble. However, large ensembles are
often hard to interpret and difficult to translate into
action-able knowledge. This paper considers the con-
struction of a decision tree from the Fourier spectrum
of an ensemble model within a user-defined range of er-
rors. The Fourier spectrum of an ensemble of decision
trees retains all the necessary information that can
be used to construct a simpler “informative” decision
tree. This approach can be effectively used for build-
ing ensemble-based classifiers from both static data
sets and data streams.

1 Introduction

Understanding the internal structure of ensemble
models is usually difficult. An ensemble model con-
sists of multiple base models that are learned from
different data subsets. It seeks to improve the predic-
tion accuracy by aggregating its base models. How-
ever, the aggregation is conducted at the prediction
level only and none of the base models are aggregated
into a simpler form.

A simpler representation of an ensemble model has
several merits. First, it saves storage overhead. This
is particularly true when the size of the ensemble is
ever increasing (e.g., in case of mining data streams).
Second, a classification can be done quickly. Finally,
a set of informative patterns (significant rules) can be
easily extracted.

This paper considers the Fourier analysis as a tool
to aggregate the trees in an ensemble, and proposes an
efficient algorithm that constructs a single informative
decision tree from the aggregated spectrum. Each tree

in an ensemble is transformed and merged into a very
compact Fourier Spectrum (FS). A tree is then con-
structed by computing information gain directly from
the Fourier spectrum.

A large volume of research reports that ensem-
ble classifier models often perform better than single
model-based classifiers [5, 2, 10]. However, reducing
an ensemble into a simpler model is a relatively new
attempt and only a few have been reported. Guo and
Sutiwaraphun [7] proposed knowledge probing as a
technique to extract descriptive knowledge from an
ensemble. They especially generated the new training
data set using the ensemble to learn such knowledge.
Kargupta and his colleagues considered the Fourier
representation of an ensemble of decision trees in fi-
nancial data stream environments [8]. Pruning meta-
learning based ensemble models was suggested in [13].

The rest of the paper is organized as follows. Sec-
tions 2 introduces the Fourier transform of decision
trees, and discusses several theoretical aspects of it.
Section 3 describes an algorithm to construct a deci-
sion tree from the given Fourier spectrum. Section 4
discusses the empirical verification of the proposed
Fourier analysis-based aggregation approach. Finally,
Section 5 concludes the paper.

2 Decision Trees and the

Fourier Domain
This section introduces the Fourier spectrum of a deci-

sion tree and its properties. It also shows how multiple
trees can be aggregated in the Fourier domain.

2.1 A Brief Review of the Fourier Ba-
sis

The Fourier basis consists of orthogonal functions that
can be used to represent any function. Consider the



function space over the set of ¢-bit discrete feature
vectors. If the i-th feature x; takes values between 0
and n — 1, we say it has a cardinality of n. Then, the
Fourier basis set that spans this space is comprised
of TIf_y\;, where \; represents the cardinality of the
i-th feature. Each Fourier basis function is defined as
P (x) =10,y exprm “mIm where j and x are strings
of length £. We often call 1(x) as the j-th basis
function.

The string j is called a partition, and the order of a
partition j is the number of non-zero feature values in
j- A Fourier basis function depends on some z; only
when j; # 0. Therefore a partition can also be viewed
as a representation of a certain subset of z;-s; every
unique partition corresponds to a unique subset of ;-
s. If a partition j has exactly a number of non-zeros
values, then we say the partition is of order « since the
corresponding Fourier function depends only on those
a number of variables corresponding to the non-zeros
in the partition j.

A function f : X¢ — R, that maps an /-dimensional
space of binary strings to a real-valued range, can
be written using the Fourier basis functions: f(x) =

> wj%)\(x), where wj is the Fourier (Eoefﬁcient (FC)

. —A .
corresponding to the partition j and t; (x) is the com-

plex conjugate of wjx(x); wy = Hé:l)% Y ox wjx(x)¢(x).

The Fourier coefficient w; can be viewed as the relative
contribution of the partition j to the function value of
f(x). Therefore, the absolute value of w; can be used
as the “significance” of the corresponding partition j.
If the magnitude of some wj is very small compared to
other coefficients, we may consider the j-th partition
to be insignificant and neglect its contribution. The
order of a Fourier coefficient is that of the correspond-
ing partition. We often use terms like high order or
low order coefficients to refer to a set of Fourier coef-
ficients whose orders are relatively large or small.

2.2 Properties of Decision Trees in the
Fourier Domain

For almost all practical purposes, decision trees have
bounded depths. The following lemma illustrates in-
teresting properties of such trees. As the proof is
omitted here, interested readers may refer to [9] for
Boolean case and [11] for the extension to an arbi-
trary discrete domain.

Lemma 1 Exponential Decay
For all wj-s in a Fourier spectrum of a decision tree,

where o(j) denotes the order of partition j, k is any
non-negative integer, and p(k) is a function that de-
creases exponentially in k.

The key aspect of this lemma is that the energy of
higher order Fourier coefficients decays exponentially.
This observation suggests that the spectrum of a deci-
sion tree (or equivalently bounded depth function) can
be approximated by computing only a small number
of low order Fourier coefficients. So the Fourier basis
offers an efficient numeric representation of a decision
tree in terms of an algebraic function that can be eas-
ily stored and manipulated. An efficient algorithm
that extracts all significant Fourier coefficients from a
decision tree is detailed in [12].

2.3 Fourier Spectrum of an Ensemble
Classifier

The Fourier spectrum of an ensemble classifier can also
be defined in the Fourier basis. Let us define f(x) as
a classification function of a ensemble classifier. In bi-
nary classification problems, f(x) is essentially a lin-
ear weighted combination of classifications of each tree
in the ensemble.

f(x) a1 f1(x) + az f2(X) + ... + anfn(x)

= o Z w}l)%(x) + as Z w}z)%(x) +
jeJ1 JjEJ2

o tay Z wj(n)aj(x)

JE€In

where f;(x) and a; are i*" decision tree and its weight
respectively. J; is set of non-zero Fourier coefficients
that are detected by it* decision tree and w}l) is a
Fourier coefficient in .J;. Now Equation 1 is written
as:

fx) = ) wigs(x)

jET

where w; = Y1, aiw}i) and J = U, J;.

Therefore Fourier spectrum of f(x) (an ensemble
classifier) is an union of weighted spectrum of each
tree.

3 Construction of a Decision
Tree from Fourier Spectrum

This section discusses a tree construction from the
Fourier spectrum using the information gain. In par-
ticular, we propose a method to compute entropies
directly from the spectrum.



Figure 1: A Boolean decision tree

3.1 Schema Representation of a Deci-

sion Path

For the sake of simplicity, let us consider a Boolean de-
cision tree , as shown in Figure 1. The Boolean class
labels correspond to positive and negative instances of
the concept class. We can express a Boolean decision
tree as a function f : X¢ — {0,1}. The function f
maps positive and negative instances to one and zero
respectively. A node in a tree is labeled with a fea-
ture z;. A downward link from the node z; is labeled
with an attribute value of the i-th feature. The path
from the root node to a successor node represents the
subset of data that satisfies the different feature val-
ues labeled along the path. These data subsets are
essentially similarity-based equivalence classes and we
shall call them schemata (schema in singular form). If
h is a schema, then h € {0, 1, *}, where * denotes a
wildcard that matches any value of the corresponding
feature. For example, the path {(z3 RN T1,T1 2 x2}
in Figure 1 represents the schema 0 1, since all mem-
bers of the data subset at the final node of this path
take feature values 0 and 1 for z; and z3 respectively.
We often use the term order to represent the number
of non-wildcard values in a schema.

3.2 Schema Average and Information
Gain

Let us consider the schema average function,

o(h) = ﬁ S f(x)

x€h

(1)

where f(x) is the classification value of x and |h| de-
notes the number of members in h.

Recall that a schema h denotes a path to a node ny,
in a decision tree. Consequently, the average classifica-
tion value of h essentially illustrates the classification
confidence at ny (in binary classification problems).
¢(h) can also used to compute the entropy at ny:

confidence(h) = max(¢(h),1— ¢(h))

—¢(h)log ¢(h)
—(1 = ¢(h))log(1 — ¢(h))

The computation of ¢(h) using Equation 1 and a
given ensemble is not practically feasible, since we
need to evaluate all x € h. Instead, we can use
the schema transform [6] that computes ¢(h) directly
from the given FS:

entropy(h) =

¢(h) = Z--Zexpwm(h) W(O,.\l1,lmyens0) (2)
T
l1by Imbm
h) = (—
k(h) (Ajl Y )

where h has m non-wildcard value b; at position j;
and /; has the cardinality of ;. Further details of the
schema transform can be found in [6].

Using Equation 2 as a tool to obtain information
gain, implementing a variation of C4.5 algorithm is im-
mediately possible. However, such a naive approach is
computationally inefficient. The computation of ¢(h)
requires an exponential number of FCs with respect
to the order of h. Thus, the cost involved in comput-
ing ¢(h) increases exponentially as the tree becomes
more deep. Moreover, since the FS of the ensemble is
very compact in size, most FCs involved in computing
¢(h) are zero. Therefore, the evaluation of ¢(h) us-
ing Equation 2 is not only inefficient but also involves
unnecessary computations.

An efficient algorithm that computes ¢(h) is pos-
sible by taking advantage of a recursive and decom-
posable property of Equation 2. When computing the
average of order [ schema h, we can reduce some com-
putational steps if any of order [-1 schemata which
subsumes h is already evaluated. For a simple ex-
ample in a Boolean domain, let us consider the eval-
uation of schema ¢(x1 % 0 % ). Let us also assume
that @¢(x1 * xx) is pre-calculated. Then, ¢(*1 % 0 * *)
is obtained by simply adding W000100 and —wWop10100 tO
(%1 % xx). This observation leads us to an efficient
algorithm to evaluate schemata. Recall that the path
to a node from the root in a decision tree can be rep-
resented as a schema. Then, choosing an attribute for
the next node is essentially the same as selecting the
best schema among those candidate schemata which
are subsumed by the current schema and whose orders
are one higher. In the following section, we describe a
tree construction algorithm that is based on this.

3.3 Bottom-up Approach to Construct
a Tree

Before describing the algorithm, we need to introduce
some notations. hj—; is a schema whose order is one



higher than that of h and whose non-wild card val-
ues are the same as in h, except at the k-th feature,
which is set to 7. As an example, for the schema h =
(*1**2), one such schema is hg—; = (*¥1*12). Here we
assign an integer number for a feature name (zero for
the leftmost feature). 7(h) denotes a set of partitions
that are required to compute ¢(h) (See Equation 2).
A k-fixed partition has a non-zero value at the k-th
position. In particular, {(k) denotes a set of order
one k-fixed partitions. ~y(hy=;) is the partial sum of
¢(hg=;) which only includes k-fixed partitions. Now
the information gain achieved by choosing the k-th
feature with a given h is redefined using these new
notations:

Gain(h, k)

entropy(h) -
Ak —
LS catcopy i
i=0

entropy(hy—;) = —¢(hk=i) log(p(hg=:))

—(1 = ¢(hy=;))log(1 — d(hy=;))
¢p(hy=;) = ¢(h) +v(hy=;)
y(hp=) = Z 1/’ (hy= z)

jem(h)®E(k)

where ® is the Cartesian product and Ay is the cardi-
nality of the k-th feature, respectively.

Now we are ready to describe the Tree Construction
from Fourier Spectrum (TCFS) algorithm, which es-
sentially notes the decomposable definition of ¢(hg—;)
and focuses on computing y(hy—;)-s. Note that with
a given h (the current path), selecting the next fea-
ture is essentially identical to choose the k-th feature
that achieves the maximum Gain(h,k). Therefore,
the basic idea of TCFS is to associate most up-to-date
¢(hg—;)-s with the k-th feature. In other words, when
TCFS selects the next node (after some ¢ is chosen for
h; = i), hy=; becomes the new h . Then, it identi-
fies a set of FCs (We call these appropriate FCs) that
are required to compute all h,_;-s for each feature
and computes the corresponding entropy. This pro-
cess can be considered to update each ¢(hg—;) for the
corresponding k-th feature as if it were selected. The
reason is that such computations are needed anyway if
a feature is to be selected in the future along the cur-
rent path. This is essentially updating ¢(hg—;)-s for a
feature k using bottom-up approach (following the fla-
vor of dynamic programming). Note that ¢(h,=;) is,
in fact, computable by adding v(h,=;) to ¢(h). Here
v(hy=;)-s are partial sums that only current appropri-
ate FCs contribute. Detection of all appropriate FCs
requires a scan over the FS. However, they are split
from the F'S once they are used in computation, since
they are no longer needed for the calculation of higher
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Figure 2: Illustration of the Tree Construction from
Fourier Spectrum (TCFS) algorithm

order schemata. Thus it takes much less time to com-
pute higher order schemata, which goes against the
naive implementation. The algorithm stops growing a
path when either the original FS becomes an empty
set or the minimum confidence level is met. Option-
ally, the depth of the resulting tree can be set as a
hard bound. A pictorial description of the algorithm
is shown in Figure 2.

In general, it is not immediately obvious to com-
pare running times of conventional tree induction al-
gorithms and TCFS. In essence, TCFS uses the same
criteria to construct a tree as that of the C4.5, which
requires a number of information gain test that grows
exponentially with respect to the depth of the tree.
In that sense, the asymptotic running time of TCFS
is the same as that of the C4.5. However, while the
C4.5 uses original data to compute information gains,
TCFS uses a Fourier spectrum. Therefore, in practice,
a comparison between the two models depends on the
sizes of the original data and that of Fourier spectrum.

In this section, we discussed a way to assign a con-
fidence to a node in a decision tree, and considered a
method to estimate information gain using it. Conse-
quently, we showed that a decision tree construction
from the Fourier spectrum is possible. In particular,
we devised TCFS algorithm that exploits the recur-
sive and decomposable nature of tree building process
in spectrum domain, thus constructing a decision tree
efficiently.

4 Empirical Study
This section reports the experimental performance of

the proposed decision tree aggregation scheme using
a semi-synthetic data stream with 100 discrete at-



Block Bagging Arc-fx Type | Block | Average | Ensemble | Fourier
Size | #FCs | #Nodes || #FCs | #Nodes Size Tree

100 103 3008 151 3300 Bagging | 100 | 79.45(%) | 88.68(%) | 88.11(%)

200 148 4288 322 5216 200 | 89.68(%) | 94.11(%) | 92.75(%)

300 256 4904 688 6092 300 | 92.67(%) | 95.57(%) | 94.82(%)

Arc-fx 100 | 73.18(%) | 92.26(%) | 91.83(%)

Table 1: The number of FCs that contain 99% and 200 | 87.75(%) | 96.21(%) | 95.28(%)

99.5% of the total energy for Bagging and Arc-fx, re- 300 | 90.98(%) | 97.78(%) | 96.32(%)

spectively.

tributes. The objective is to continuously evolve a
decision tree-based predictive model for a particular
Boolean attribute using the ensemble approach. The
data-stream generator is essentially a C4.5 decision
tree learned from three years of NASDAQ 100 stock
quote data. The original data is pre-processed and
transformed to discrete data by encoding percentages
of changes in stock quotes between consecutive days.
For this experiment, we assigned 4 discrete values that
denote levels of change. Decision trees predict whether
the Yahoo stock is likely to increase or decrease based
on the attribute values of the 99 stocks.

We assume a non-stationary sampling strategy in
order to generate the data. Every leaf in the deci-
sion tree-based data generator is associated with a cer-
tain probability distribution, which is changed many
times during a single experiment. We also added white
Gaussian noise to the generator. A test data set of
10,000 instances is generated from the data source
prior to the experiment.

We implemented versions of Bagging [3] and Arc-fx
(Arcing) [4]. For each case, we built ensembles with
different sample block sizes (N). In particular, N =
100, 200 and 300. Each ensemble consists of 100 base
models.

Table 1 compares model complexities of original en-
sembles with their Fourier representations that con-
tain 99% and 99.5% of the total energy for Bagging
and Arc-fx respectively. In the case of Arc-fx, we
needed more energy to represent the corresponding
ensemble. It can be understood that Arc-fx is more
diverse (or, possibly more specific) than Bagging in
terms of decision paths. However, in either case,
the result faithfully illustrates the compactness of the
Fourier representation of decision trees. The subse-
quent experiments are based on these Fourier spectra.

Table 2 compares the classification accuracies of the
original ensemble models and the trees that are con-
structed from their aggregated Fourier spectrum. We
call these Fourier Trees. Also, the average accuracy
of an individual tree in an ensemble is shown in Ta-
ble 2. Since most trees in each ensemble have depths

Table 2: Accuracies of ensembles and Fourier trees.
Average stands for the average accuracy of individual
base model in an ensemble.

Type Block Confidence
Size 0.5-0.6 0.6-0.8 0.8-1.0
Bagging | 100 | 71.11(%) | 71.04(%) | 100(%)
200 | 63.52(%) | 67.65(%) | 100(%)
300 | 64.01(%) | 75.1(%) | 99.1(%)
Arc-fx 100 | 73.08(%) | 100(%) | 100(%)
200 | 78.72(%) | 99.5(%) | 100(%)
300 | 75.33(%) | 100(%) | 100(%)

Table 3: The accuracies leaf nodes of different confi-
dence levels.

of less than 5, we fixed the depth of each Fourier tree
to 5. We also set the minimum confidence level (for
early stopping criteria) to 0.9. Interestingly enough,
we could construct Fourier trees that are comparable
to the original ensembles.

Table 3 shows how the confidence associated with
each leaf node in the aggregated tree affects the accu-
racy. For this we divide confidence ranges into three
groups; [0.5,0.6), [0.6,0.8) and [0.8,1.0]. We then mea-
sured the average accuracy performance of each group.
The results clearly convey the idea that leaf nodes
with high confidences tend to be more accurate. This
confirms that our original intention of extracting de-
scriptive patterns is valid. One interesting observation
is that a leaf with a relatively low confidence produces
a high accuracy in Arc-fx, which is not the case in
Bagging.

In this section, we presented the empirical analysis
of the Fourier tree that is constructed from the Fourier
spectrum of an ensemble. Various experimental re-
sults reported here strongly confirm that a complex
ensemble model can be reduced to a very compact
Fourier spectrum and a tree constructed from it. Par-
ticularly, we illustrated comparable accuracy perfor-
mances of the Fourier trees. We also showed that con-
fidences associated with each node can be effectively
used as a measure to extract significant patterns.



5 Conclusion and Future Direc-
tions

A novel approach to construct a single decision tree
from an ensemble classifier is presented in this pa-
per. We showed that information gain is directly com-
putable from the Fourier spectrum of an ensemble
classifier. Subsequently, a fast algorithm that con-
structs a tree was proposed. Since the structure of
an ensemble classifier is believed to be complex, we
specifically proposed a measure to extract significant
patterns out of the aggregated tree. Preliminary ex-
perimental results strongly confirm that an informa-
tive tree of a reasonable quality can be constructed
from a given Fourier spectrum, which is amenable to
the discovery of significant patterns.

Ensemble models offer new challenges to knowledge
visualization: How can one display the dominant pat-
terns in an ensemble? Traditional decision tree vi-
sualization techniques [1] usually focus on visualizing
the known structure, thus, not applicable to an en-
semble. TCFS algorithm presented here opens a new
way to visualize an ensemble. At each level of a tree,
TCFS can measure expected information gains quickly
so that the user can decide which direction to explore.
An individual may easily verify the significance of a
rule in which he/she is interested.

The Fourier representation-based approach pre-
sented in this paper is applicable to categorical data.
If the features are continuous then we first need to
discretize them before learning the tree. We need to
explore techniques for constructing the spectrum of
the trees that dynamically discretize continuous fea-
tures while building the tree, resulting in different dis-
cretizations in different portions of the tree. However,
examination of this and similar possibilities will be left
for future research.
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