
A Random Matrix-Based Approach for Dependency Detection from

Data Streams

Hillol Kargupta∗, Krishnamoorthy Sivakumar†, Samiran Ghosh∗

∗Computer Science and Electrical Engineering Department

University of Maryland Baltimore County

Baltimore, MD 21250

hillol@cs.umbc.edu, sghosh1@cs.umbc.edu

School of Electrical Engineering and Computer Science

Washington State University

Pullman, WA 99164-2752

siva@eecs.wsu.edu

Abstract

This paper describes a novel approach to detect correla-
tion from data streams in the context of MobiMine, an
experimental mobile data mining system. It presents
a brief description of the MobiMine and identifies the
problem of detecting dependencies among stocks from
incrementally observed financial data streams. This is
a non-trivial problem since the stock-market data is in-
herently noisy and small incremental volumes of data
makes the estimation process more vulnerable to noise.
This paper presents EDS, a technique to estimate the
correlation matrix from data streams by exploiting
some properties of the distribution of eigenvalues for
random matrices. It separates the “information” from
the “noise” by comparing the eigen-spectrum gener-
ated from the observed data with that of random matri-
ces. The comparison immediately leads to a decompo-
sition of the covariance matrix into two matrices: one
capturing the “noise” and the other capturing useful
“information.” The paper also presents experimental
results using Nasdaq 100 stock data.

1 Introduction

Mobile computing devices like PDAs, cell-phones,
wearables, and smart cards are playing an increas-
ingly important role in our daily life. The emergence
of powerful mobile devices with reasonable comput-
ing and storage capacity is ushering an era of ad-
vanced data and computationally intensive mobile ap-
plications. Monitoring and mining time-critical data
streams in a ubiquitous fashion is one such possibility.
Financial data monitoring, process control, regulation
compliance, and security applications are some possible

domains where such ubiquitous mining is very appeal-
ing.

This paper considers the problem of detecting de-
pendencies among a set of features from financial data
streams monitored by a distributed mobile data mining
system called the MobiMine. It allows the user to store
stock portfolio data, manage these portfolios, and mon-
itor relevant portion of the stock market from a PDA.
MobiMine is not a market forecasting system. It is nei-
ther a traditional system for stock selection and port-
folio management. Instead it is designed for drawing
the attention of the user to time critical “interesting”
emerging characteristics in the stock market.

This paper explores a particular module of the Mo-
biMine that tries to detect statistical dependencies
among a set of stocks. At a given moment the sys-
tem maintains a relevant amount of historical statistics
and updates that based on the incoming block of data.
Since the data block is usually noisy, the statistics col-
lected from any given block should be carefully filtered
and then presented to the user. This paper offers a
technique for extracting useful information from indi-
vidual data blocks in a data stream scenario based on
some well-known results from the theory of randomized
matrices. It presents a technique to extract significant
Eigen-states from Data Streams (EDS) where the data
blocks are noisy. The EDS offers a way to incrementally
perform PCA from data streams. The relevant Eigen-
states are used to estimate the covariance matrix. The
technique can also be easily applied to feature selec-
tion, feature construction, clustering, and regression
from data streams.

The technical approach of the proposed work is based
on the observation that the distribution of eigenval-
ues of random matrices [1] exhibit some well known



characteristics. The basic idea is to compare a “ran-
dom” phenomena with the behavior of the incoming
data from the stream in the eigen space and note the
differences. This results in a decomposition of the co-
variance matrix: one capturing the “noise” and the
other capturing useful “information.” The eigenvec-
tors generated from the “information” part of the co-
variance matrix are extracted and stored for the chosen
application. The noise part can also be useful for un-
derstanding the structure of the noise and confidence
statistics (e.g. signal-to-noise ratio).

Section 2 presents a brief overview of the MobiMine
system. Section 3 discusses relevant theory of random
matrices, reviews PCA, and then describes the EDS
technique. Section 4 presents the experimental results.
Section 5 concludes the work and identifies future work.

2 The MobiMine System

Figure 1: (Left) The architecture of the MobiMine
Server. (Right) The main interface of MobiMine. The
bottom-most ticker shows the WatchList; the ticker
right above the WatchList shows the stocks in the port-
folio.

The MobiMine is a PDA-based application for man-
aging stock portfolios and monitoring the continuous
stream of stock market data. This section presents
an overview of this system and identifies the depen-
dency detection problem in the context of mining data

streams, considered in this paper.

2.1 An Overview of the System

The MobiMine is a client-server application. The
clients (Figure 2), running on mobile devices like hand-
held PDAs and cell-phones, monitor a stream of finan-
cial data coming through the MobiMine server (Figure
1(Top)). The system is designed for currently available
low-bandwidth wireless connections between the client
and the server. In addition to different standard port-
folio management operations, the MobiMine server and
client apply several advanced data mining techniques
in order to offer the user a variety of different tools
for monitoring the stock market at any time from any
where. Figure 1(Bottom) shows the main user interface
of the MobiMine.

The main functionalities of the MobiMine are listed
in the following:

1. Portfolio Management and Stock Tickers: Stan-
dard book-keeping operations on stock portfolios
including stock tickers to keep an eye on the per-
formance of the stocks in the portfolio.

2. FocusArea: Stock market data is often overwhelm-
ing. It is very difficult to keep track of all the
developments in the market. Even for a full-
time professional following the developments all
the time is challenging. It is undoubtedly more
difficult for a mobile user who is likely to be busy
with other things. The MobiMine system offers
a unique way to monitor changes in the market
data by selecting a subset of the events that is
more “interesting” to the user. This is called the
FocusArea of the user. It is a time varying fea-
ture and it is currently designed to support the
following functionalities:

(a) WatchList: The system applies different mea-
sures to assign a score to every stock under
observation. The score is an indication of the
“interesting-ness” of the stock. A relatively
higher score corresponds to a more interest-
ing stock. A selected bunch of “interesting”
stocks goes through a personalization module
in the client device before it is presented to
the user in the form of a WatchList.

(b) Context Module: This module offers a col-
lection of different services for better under-
standing of the time-critical dynamics of the
market. The main interesting components
are,

i. StockConnection Module: This module
allows the user to graphically visualize



Figure 2: The architecture of the MobiMine Client.

the “influence” of the currently “active”
stocks on the user’s portfolio. This mod-
ule detects the highly active stocks in
the market and presents the causal re-
lationship between these and the stocks
in user’s portfolio, if any. The objective
is to give the user a high level qualitative
idea about the possible influence on the
portfolio stocks by the emerging market
dynamics.

ii. StockNuggets Module: The MobiMine
Server continuously processes a data
stream defined by a large number of
stock features (fundamentals, technical
features, evaluation of a large number
of well-known portfolio managers). This
module applies online clustering algo-
rithms on the active stocks and the
stocks that are usually influenced by
them (excluding the stocks in the user’s
portfolio) in order to identify similarly
behaving stocks in a specific sector.

The StockConnection module tries to detect
the effect of the market activity on user’s
portfolio. On the other hand, the Stock-
Nuggets module offers an advanced stock-
screener-like service that is restricted to only
time-critical emerging behavior of stocks.

(c) Reporting Module: This module supports a
multi-media based reporting system. It can
be invoked from all the interfaces of the sys-
tem. It allows the user to watch different
visualization modules and record audio clips.
The interface can also invoke the e-mail sys-
tem for enclosing the audio clips and reports.

A detailed description of this system can be found else-
where [2]. The following section discusses the unique
philosophical differences between the MobiMine and
traditional systems for mining stock data.

2.2 MobiMine: What It is Not

A large body of work exists that addresses different as-
pects of stock forecasting [3, 4, 5, 6, 7, 8] and selection
[9, 10] problem. The MobiMine is fundamentally dif-
ferent from the existing systems for stock forecasting
and selection. First of all, it is different on the basis
of philosophical point of view. In a traditional stock
selection or portfolio management system the user ini-
tiates the session. User outlines some preferences and
then the system looks for a set of stocks that satisfy
the constraints and maximizes some objective function
(e.g. maximizing return, minimizing risk). The Mo-
biMine does not do that. Instead it initiates an action,
triggered by some activities in the market. The goal is
to draw user’s attention to possibly time-critical infor-
mation. For example, if the Intel stock is under-priced
but its long time outlook looks very good then a good
stock selection system is likely to detect Intel as a good
buy. However, the MobiMine is unlikely to pick Intel in
the WatchList unless Intel stock happens to be highly
active in the market and it fits with user’s personal
style of investment. The Context detection module is
also unlikely to show Intel in its radar screen unless
Intel happens to be highly influenced by some of the
highly active stocks in the market. This difference in
the design objective is mainly based on our belief that
mobile data mining systems are likely to be appropriate
only for time-critical data. If the data is not changing
right now, probably you can wait and you do not need
to keep an eye on the stock price while you are having
a lunch with your colleagues.

This paper focuses on the correlation-based depen-
dency detection aspect of the used in the StockConnec-
tion module. The following section initiates the discus-
sion.

3 Detection of Dependencies

and Random Matrices

Correlation analysis of time series data is a common
technique for detecting statistical dependencies among
them. This is also frequently used for stock data anal-
ysis. However, doing it online is a challenging problem
since correlation must be computed from incrementally
collected noisy data. This requires proper filtering. Av-
eraging techniques usually require large sample size for
reliably removing the noise from the data and that may



not be practical in a time-critical data stream moni-
toring application. This paper considers an approach
that removes the “noise” by considering the eigenvalues
of the covariance matrix computed from the collected
data. The noisy eigen-states are removed by exploit-
ing some properties of the eigen-distribution of random
matrices. The following section presents a brief review
of random matrices.

3.1 Introduction to Random Matrices

A random matrix X is a matrix whose elements are
random variables with given probability laws. The the-
ory of random matrices deals with the statistical prop-
erties of the eigenvalues of such matrices.

Let X be an m × n matrix whose entries Xij ,
i = 1, . . . ,m, j = 1, . . . , n are i.i.d. random vari-
ables. Furthermore, let us assume that X11 has zero
mean and unit variance. Consider the n × n sam-
ple covariance matrix Y

(m)
n = 1

m
XX ′. Let λ

(m)
n1 ≤

λ
(m)
n2 ≤ · · · ≤ λ

(m)
nn be the eigenvalues of Y

(m)
n . Let

F
(m)
n (x) = (

∑n

i=1 U(x−λ
(m)
ni ))/n, be the empirical cu-

mulative distribution function (c.d.f.) of the eigenval-

ues {λ(m)
ni }1≤i≤n, where U(x) is the unit step function.

We will consider asymptotics such that in the limit
as N → ∞, we have m(N) → ∞, n(N) → ∞, and
m(N)
n(N) → Q, where Q ≥ 1.

Under these assumptions, it can be shown that [11]

the empirical c.d.f. F
(m)
n (x) converges in probability to

a continuous distribution function FQ(x) for every x,
whose probability density function (p.d.f.) is given by

fQ(x) =

{

Q
√

(x−λmin)(λmax−x)

2πx
λmin < x < λmax

0 otherwise,

(1)
where λmin = (1 − 1/

√
Q)2 and λmax = (1 + 1/

√
Q)2.

3.2 Principal Component Analysis

PCA is a statistical technique for analyzing multivari-
ate data [12]. It involves linear transformation of a
collection of related variables into a set of principal
components. All the principal components are sta-
tistically uncorrelated and individual principal compo-
nents are ordered with respect to the statistical vari-
ance of that component. Consider the random vec-
tor X = (X1, X2, . . . , Xn)1 with mean E[X] = 0 and
covariance matrix Cov[X] = E[X′

X] = Σx. The
ith principal component of X is a linear combination
Yi = Xa

′
i, where ai is a unit eigenvector of Σx corre-

sponding to the ith largest eigenvalue λi. In this case,

1We denote our vectors as row vectors.

Yi is uncorrelated with the previous principal com-
ponents (Y1,Y2, . . . ,Yi−1) and has maximum vari-
ance. In general, we are interested in representing
X by means of a small set of principal components
(dimensionality reduction). Let Ŷ = [Y1, . . . ,Yk] be
the first k principal components of X, where k � n.
These principal components can be used to obtain a
reasonable approximation of the original data as fol-
lows: X̂ = ŶÂ′ where the columns of Â consist of the
first k eigenvectors of Σx.

3.3 EDS Approach for Online PCA

Consider a data stream mining problem that observes
a series of data blocks X1, X2, · · ·Xs, where Xt is an
mt ×n dimensional matrix observed at time t (i.e., mt

observations are made at time t). If the data has zero-
mean, the sample covariance Covt based on data blocks
X1, X2, . . . , Xt can be computed in a recursive fashion
as follows [13]:

Covt =

∑t−1
j=1 mj

∑t

j=1 mj

[

Covt−1 +
mt

∑t−1
j=1 mj

Σ̂t

]

(2)

where Σ̂i = (X ′
iXi)/mi is the sample covariance matrix

computed from only the data block Xi.

In order to exploit the results from random ma-
trix theory, we will first center and then normalize
the raw data, so that it has zero mean and unit vari-
ance. This type of normalization is sometimes called
Z-normalization, which simply involves subtracting the
column mean and dividing by the corresponding stan-
dard deviation. Since the sample mean and variance
may be different in different data blocks (in general,
we do not know the true mean and variance of the
underlying distribution), Equation 2 must be suitably
modified. In the following, we provide the important
steps involved in updating the covariance matrix incre-
mentally. Detailed derivations can be found in [13].

Let µt, σt be the local mean and standard de-
viation row vectors, respectively, for the data block
Xt and µt, σt be the aggregate mean and standard
deviation, respectively, based on the aggregation of
X1, X2, · · · , Xt. Let X̄r, X̂r denote the local cen-
tered and local Z-normalized data, respectively, ob-
tained from data block Xr (1 ≤ r ≤ t) using µr and
σr. Moreover, at time t, let X̄r,t, X̂r,t denote the ac-
tual centered and actual Z-normalized data obtained
from data block Xr using the µt and σt. In particu-
lar, X̂r,t,[i,j] = X̄r,t,[i,j]/σt,[j] = (Xr,t,[i,j] −µt,[j])/σt,[j],
where i, j denote row and column indices. Note
that the aggregate mean µt can be updated incre-
mentally as follows: µt = (

∑t

r=1 µrmr)/
∑t

r=1 mr =

(µt−1

∑t−1
r=1 mr + µtmt)/

∑t

r=1 mr. Let us define Zt



to be the covariance matrix of the aggregation of cen-
tered (or zero mean) data X̄1,t, X̄2,t, . . . , X̄t,t, and zt

be the local covariance matrix of the current block X̄t.
Note that

σt,[j] =
√

Zt,[j,j], and

Covt,[i,j]) =
Zt,[i,j]

σt,[i] × σt,[j]
, 1 ≤ i, j ≤ n, (3)

where Covt is the covariance matrix of the aggregated
Z-normalized data X̂1,t, . . . , X̂t,t. Therefore, the Z-
normalization problem is reduced to that of incremen-
tally updating the covariance matrix Zt on the centered
data. Define ∆t = (µt − µt−1) and ∆t = (µt − µt). It
is then easy to show that [13]

X̄ ′
r,tX̄r,t − X̄ ′

r,t−1X̄r,t−1 = mr∆t
′
∆t,

X̄ ′
t,tX̄t,t − (X̄t)

′(X̄t) = mt∆
′
t∆t, and

Zt = Zt−1 + ∆
′

t∆t

t−1
∑

r=1

mr + X̄ ′
tX̄t + mt∆

′
t∆t (4)

The above discussion and related work [14] show that
the covariance matrix can be incrementally updated.
An online PCA algorithm can directly compute the
eigenvectors of this matrix. However, this simplistic
approach does not work well in practice due to two
main problems: (a) data may be inherently noisy and
(b) the number of observations (mi) made at a given
time may be small. Both of these possibilities may pro-
duce misleading covariance matrix estimates, resulting
in spurious eigenstates. It is important that we filter
out the noisy eigenstates and extract only those states
that belong to the eigenspace representing the under-
lying information.

In this paper, we assume that the observed data
is stationary and consists of actual information cor-
rupted by random noise. The proposed technique de-
composes the covariance matrix into two components:
(1) the noise part and (2) the information part by sim-
ply comparing the eigenspace of the covariance matrix
of observed data with that of a randomly generated
matrix. In other words, we compare the distribution
of the empirically observed eigenvalues with the theo-
retically known eigenvalue distribution of random ma-
trices given by Equation 1. All the eigenvalues that
fall inside the interval [λmin, λmax] correspond to noisy
eigenstates. Following are some of the main steps at
any time t in the EDS approach:

1. Perform PCA on the current estimate of the co-
variance matrix Covt and compute the eigenvalues
λt,1 ≤ · · · ≤ λt,n.

2. Identify the noisy-eigenstates λt,i ≤ λt,i+1 · · · ≤
λt,j such that λt,i ≥ λmin and λt,j ≤ λmax. Let

Receive Data block Xt

Local Covariance Matrix �� t and Mean µt

Z-normalization

Normalized Data

EDS Filter

Noise Component Signal Component 

Global Covariance Matrix Covt and Mean

+

20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Random Matrix Eigenvalue Distirbution

Q

E
ig

e
n

va
lu

e

Figure 3: (Top) The flow chart of the proposed EDS
approach for mining data streams. (Bottom) The dis-
tribution of the eigen values, λmax and λmin with in-
creasing Q for the financial data set, consider here.

Λt,n = diag{λt,i, . . . , λt,j}, be the diagonal matrix
with all the noisy eigenvalues. Similarly, let Λt,s

= diag{λt,1, . . . , λt,i−1, λt,j+1, . . . , λt,n}, be the
diagonal matrix with all the non-random eigenval-
ues.

Let At,n and At,s be the matrices whose columns are
eigenvectors corresponding to the eigenvalues in Λt,n

and Λt,s, respectively and At = [At,s|At,n]. Then
we can decompose Covt = Covt,s + Covt,n, where

Covt,s = At,sΛt,sA
′

t,s is the signal part of the covari-

ance matrix and Covt,n = At,nΛt,nA
′

t,n is the noise part
of the covariance matrix. At any given time step, the
signal part of the covariance matrix produces the use-
ful non-random eigenstates and they should be used for
data mining applications. Note that it suffices to com-
pute only the eigenvalues (and eigenvectors) that fall
outside the interval [λmin, λmax], corresponding to the
signal eigenstates. This allows computation of Covt,s

and hence Covt,n. The following section presents the
experimental results.



4 Mobile Financial Data Stream

Mining Using EDS

This section describes an application of the EDS for
mining Nasdaq 100 financial time-series data streams.
The EDS is used to“filter” the correlation matrix
for detecting the dependencies among different stocks.
The experiments reported here consider 99 companies
from Nasdaq 100. We sample data every five minutes
and each block of data is comprised of mi = 99 rows.
At any given moment the user is interested in the un-
derlying dependencies observed from the current and
previously observed data blocks.

First let us study the effect of the EDS-based fil-
tering on the eigen-states produced by this financial
time-series data. Figure 3(Right) shows the distribu-
tion of eigen values from the covariance matrix (Covt)
for different values of t. It also shows the theoretical
lower and upper bounds (λmax and λmin) at different
time steps (i.e. increasing Q). The eigen states falling
outside these bounds are considered for constructing
the “signal” part of the covariance matrix. The fig-
ure shows that initially a relatively large number of
eigen states are identified as noisy. As time progresses
and more data blocks arrive, the noise regime shrinks.
It is also interesting to note that the EDS algorithm
includes the lower end of the spectrum in the signal
part. This is philosophically different from the tradi-
tional wisdom of considering only those eigen states
with large eigen values.

In order to evaluate the online performance of the
EDS algorithm we compare the eigen-space captured
by the EDS at any given instant with respect to the
“true” eigen-space defined by the underlying data dis-
tribution. Although data streams are conceptually infi-
nite in size, the experiments documented in this section
report results over a finite period of time. So we can
benchmark the performance of the EDS with respect
to the “true” eigen-space defined by the eigen vectors
computed from the entire data set (all the data blocks)
collected from the stream during the chosen period of
observation. We first report the evolution of the signal-
part of the covariance matrix along time and compare
that with the “true” covariance matrix generated from
the entire data set. We report two different ways to
compute this difference:

1. RMSE: The root mean square error (RMSE) is
computed between the covariance matrices gener-
ated by the online EDS and the entire data set.

2. Thresholded Error: This measure first computes
the difference between the estimated and true co-
variance matrices. If the (i, j)-th entry of the
difference matrix is greater than some user given

BATCH NUMBER

E
R

R
O

R

2 4 6 8 10 12

2
0
0

2
2
0

2
4
0

2
6
0

Random Matrix Based Result
90% Variance Explained Case
75% Variance Explained Case

Performance With Respect to Time

BATCH NUMBER

R
O

O
T

 M
E

A
N

 S
Q

U
A

R
E

 E
R

R
O

R

2 4 6 8 10 12

3
.2

3
.4

3
.6

3
.8

Random Matrix Based Result
90% Variance Explained Case
75% Variance Explained Case

Performance With Respect to Time

Figure 4: The relative performance (thresholded error
count in left and RMS error on right) of the EDS algo-
rithm and the traditional approach using eigen vectors
capturing 90% and 75% of the total variance. Different
batch numbers correspond to different time steps.

threshold θ then the value is set to 1 otherwise
0. The total number of 1’s in this matrix is the
observed thresholded error count.

Figure 4 compares the performance of our EDS al-
gorithm with that of a traditional method that simply
designates as signal, all the eigen-states that account
for, respectively, 90% and 75% of the total variance. It
shows the thresholded error count for each method, as
a function of time (batch number). It is apparent that
the EDS algorithm quickly outperforms the traditional
method.

5 Conclusions and Future Work

This paper described the EDS approach for extracting
useful noise-free eigen states from data streams in the
context of a mobile data mining application. It showed
that the EDS approach is considerably better than the



traditional wisdom of selecting the top-ranking eigen-
vectors guided by some user-given threshold. The EDS
allows us to extract the eigenstates that correspond to
non-random information that are likely to be useful
from a data mining perspective.

The EDS approach works by comparing the empir-
ically observed eigen distribution with the known dis-
tribution of random matrices. The theoretically known
values of upper and lower limits of the spectrum are
used to identify the boundary between noisy and sig-
nal eigen-states. This random matrix based approach
to separating the information bearing and noisy eigen-
states has potential computational advantages. Indeed,
since the upper bound λmax of the noisy eigenvalues is
known a priori, one can easily use a suitable numeri-
cal technique (e.g., power method [15]) to compute just
the few largest eigenvalues. Once these eigenvalues and
corresponding eigenvectors are computed, one can ob-
tain the signal-part of the covariance matrix, which can
be subtracted off from the total covariance to isolate
the noise-part of the covariance.

Another feature of our EDS approach is illustrated
in Figure 3. As seen from the graph, the limits λmax

and λmin both converge to 1 as the ratio Q tends to
infinity (see also equation 1). In a data stream mining
scenario, the number of features n is fixed, whereas the
number of total number of observations m increases as
each block of data is received. Hence, Q increases with
time, which results in a smaller interval [λmax, λmin] for
the noisy eigenstates. This means that, as we observe
more and more data, the EDS algorithm would poten-
tially designate more eigenstates as signal. This is also
intuitively satisfying, since most of the noise would get
“averaged-out” as we observe more data.

Acknowledgments

The authors acknowledge supports from the United
States National Science Foundation CAREER award
IIS-0093353 and NASA (NRA) NAS2-37143. The au-
thors would like to thank Li Ding.

References

[1] M. L. Mehta. Random Matrices. Academic Press,
London, 2 edition, 1991.

[2] H. Kargupta, H. Park, S. Pittie, L. Liu,
D. Kushraj, and K. Sarkar. Mobimine: Monitor-
ing the stock market from a PDA. ACM SIGKDD

Explorations, 3:37–47, 2001.

[3] A. Azoff. Neural Network Time Series Forecasting

of Financial Markets. Wiley, New York, 1994.

[4] N. Baba and M. Kozaki. An intelligent forecasting
system of stock price using neural networks. In
Proceedings IJCNN, Baltimore, Maryland, pages
652–657, Los Alamitos, 1992. IEEE Press.

[5] S. Cheng. A neural network approach for forecast-
ing and analyzing the price-volume relationship in
the taiwan stock market. Master’s thesis, National
Jow-Tung University, Taiwan, R.O.C, 1994.

[6] R. Kuo, L. Lee, and C. Lee. Intelligent stock
market forecasting system through artificial neu-
ral networks and fuzzy delphi. In Proceedings of

World Congress on Neural Networks, pages 345–
350, San Deigo, 1996. INNS Press.

[7] C. Lee. Intelligent stock market forecasting sys-
tem through artificial neural networks and fuzzy
delphi. Master’s thesis, Kaohsiung Polytechnic In-
stitute, Taiwan, R.O.C, 1996.

[8] J. Zirilli. Financial Prediction Using Neural Net-

works. International Thomson Computer Press,
1997.

[9] J. Campbell, A. Lo, and A. MacKinley. The

Econometrics of Financial Markets. Princeton
University Press, USA, 1997.

[10] G. Jang, F. Lsi, and T. Parng. Intelligent
stock trading decision support system using dual
adaptive-structure neural networks. Journal of In-

formation Science Engineering, 9:271–297, 1993.

[11] D. Jonsson. Some limit theorems for the eigen-
values of a sample covariance matrix. Journal of

Multivariate Analysis, 12:1–38, 1982.

[12] H. Hotelling. Analysis of a complex of statistical
variables into principal components. Journal of

Educational Psychology, 24, 1933.

[13] H. Kargupta, K. Sivakumar, and S. Ghosh. De-
pendency detection in mobimine and random ma-
trices. Accepted for publication in the Proceedings
of the 6th European Conference on Principles and
Practice of Knowledge Discovery in Databases,
2002.

[14] P. Hall, D. Marshall, and R. Martin. Merging
and splitting eigenspace models. IEEE Trans-

actions on Pattern Analysis and Machine Intel-

ligence, 22(9):1042–1049, September 2000.

[15] J. E. Jackson. A User’s Guide to Principal Com-

ponents. John Wiley, 1991.


