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Abstract

Function induction using the widely studied Walsh
or Multidimensional Discrete Fourier Transform
(MDFT) coefficient estimates has several benefits, in-
cluding the fact that decision trees can be constructed
efficiently from the spectrum. While these estimates
are accurate for uniform data, highly skewed data is
the norm. This paper gives a way of improving the ac-
curacy of the MDFT coefficient estimates in the case
of skewed data. An adaptive resampling algorithm for
learning the MDFT coefficients is presented and veri-
fied experimentally. An equivalent estimator that can
be learned using a single pass algorithm is defined.
The effectiveness of the technique is demonstrated us-
ing controlled experiments.

1 Introduction

The Multidimensional Discreter Fourier Transform
(MDFT) ! is a popular way to study functions de-
fined on discrete spaces. It has been studied in the
field of genetic algorithms [8, 3, 9]. The MDFT can
also be used to learn functions by estimating the co-
efficients. This has been studied in the case of the
uniform distribution for AC° functions [11], and for
more general functions [10, 14]. The issue of skewed
distributions is addressed in [7]. However, the mem-
bership queries model used in these papers is often
inappropriate in practical situations. In addition, the
Fourier spectrum has several extremely practical ap-
plications which the alternative basis in [7] may not.
Decision trees have an exponential decay property in
their Fourier spectrum [13, 12, 11]. This has been ex-
ploited in learning decision trees efficiently using their
Fourier spectrum [13, 12]. It is possible to convert
a decision tree to its Fourier spectrum and vice versa
efficiently [13]. It has been shown that the Fourier rep-
resentation of a decision tree can be used to aggregate

1The MDFT is also referred to as the Walsh transform, es-
pecially in the Genetic Algorithms literature.

ensembles of decision trees to produce simpler deci-
sion trees or learn decision trees from time-changing
data streams [13, 12]. The Fourier spectrum has the
additional benefit over several data mining or machine
learning algorithms that it is amenable to analysis.

One of the hurdles in the use of the Fourier spec-
trum as a learning tool is the requirement that the
data be roughly uniformly distributed. If the features
are Boolean, this means that the probability that a
feature takes a value of one is equal to the probability
that it equals zero. However, this is a scenario that
is rarely encountered in the real world, where skewed
data abounds. Common examples of highly skewed
real-world data include market basket data and web-
log data. It is safe to say that any process that can be
modeled using a Poisson or exponential distribution,
when converted to categorical attributes, gives rise to
skewed data. Studying the effect of skewness on the
usual Fourier coefficient estimates gives us a way of
understanding how we could correct inaccuracies in
the estimates. This paper is a preliminary attempt at
learning the Fourier spectrum accurately from highly
skewed data.

This paper is based on the observation that the bias
introduced into the coefficient estimates by the non-
uniformity of the data can be decomposed into two
parts. As this paper shows, one of these parts can
be dealt with using adaptive resampling techniques.
Resampling techniques including the bootstrap [4, 5],
boosting [6], bagging [1] and arcing [2] have been the
subject of extensive study in combination with many
learning algorithms. The scheme in this paper is less
general in the sense that it is specialized towards the
learning of Fourier coefficients only.

In order to explain the motivation for the specific re-
sampling scheme used here, we first define the MDFT
and examine the effect of skewed distributions on the
bias of the estimates (Section 2). In Section 3 we
study the source of this bias and identify a way of
eliminating part of the bias. We then give a more
efficient, equivalent way of computing the estimates.
We then present experimental results to corroborate



the theoretical claims made in Section 4. The next
section, Section 5, points out areas for future research
and concludes the paper.

2 The Effect of the Distribution
on MDFT Estimates

Consider the discrete set X = {0,1}".  We
are interested in learning functions of the
form f X — R As usual, we are given

a sample from this function: a set of points
S = {(X1>f(xl))7(XZ)f(XZ))a"'7(XN7f(XN))}7
where x; € X Vi = 1,...,N. The MDFT representa-
tion is our chosen representation for these functions
for this section.

We describe a way to induce functions in this rep-
resentation, and study how well the method performs
under different distributions of data. To fix notation,
we first give a description of the transform.

2.1 The Multidimensional Fourier

Transform

The MDFT is recapitulated here. The reader is re-
ferred to [8, 3, 9] for further details.

Let F be the set of all real-valued functions on
X. F forms a 2™-dimensional vector space over R.
The MDFT of a function f € F is a representation
of the function as a linear combination of the ba-
sis set {j(x) = (=13* : j € {0,1}"} Here j - x
is defined as ) ;" jix;, the subscript [ denoting the
[-th component. This basis is orthonormal with re-
spect to the inner product defined on F by (f,g) =
1/2" Y ety [(x)g(x). Any f € F can be repre-
sented uniquely as a linear combination of the basis

elements:
> wig(x)

jefo,1}~

fx) = (1)

The coefficients {w; : j € {0,1}"} are collectively
called the MDFT of f. Given a function f, the MDFT
can be computed using the equation:

w= =g S fEGR @)

xe{0,1}"

Orthogonality of the Fourier basis can be character-
ized in probabilistic terms. We first note that for any
u, v € X, u(X)hy(x) = thw(x) where w is the string
defined by w; = (v; —w;) mod 2. We use the notation
w = u @ v. If points are drawn from the space X
using a uniform distribution on the points of X. Let
X, in boldface, represent a random string drawn from
X. Then the basis set {1j(x) : j € X} is orthogonal if

and only if E (1w (X)) = 0 for every nonzero w, where
the expectation is taken over uniformly distributed X.
Note also that Equation 2 can be rewritten

wj = B (f(X)¢3(X)) (3)

2.2 Function Induction the

Fourier Transform

using

The function induction process in this representation
consists of estimating the Fourier coefficients from the
data. That is, we wish to find estimates {w;}jex
for the Fourier coefficients {wj}jex of the underlying
function. Using Equation 2 above, w; can be esti-
mated as .
Wy = E Z f(xi)5(x:)
x; €S

if the sample S comes from the uniform distribution.

To demonstrate what goes wrong when the distri-
bution is not uniform, we assume that the bits are
independent with probability of success being p for
each bit. Let w € X be such that |w|, the num-
ber of nonzero bits in w, is k. Then it can be
shown that E(iw(X)) = (1 — 2p)¥. This implies
that E(dy) = Yiex wi(l —2p)%L (If i@ j| = 0,
(1 — 2p)l®il ig interpreted as 1.) If p equals 0.5, we
are in the uniform case and we get E[w;] = wj. In this
case, wj is an unbiased estimate for wj. If p # 0.5, w;
is no longer an unbiased estimate of wj; nor is there a
simple correction such as an additive or multiplicative
factor that will rectify the bias. (Note that the bias
is dependent on the coefficients themselves, which we
do not know.) Figure 1 shows this effect on a sim-
ulated dataset with 10 features and a second order
function with two nonzero coefficients. Of course, we
are able to derive an expression for the bias in this
case because of the distribution assumption. In the
most general situation, where the distribution of the
data is not a product distribution, the analysis is more
complicated.

3 Learning Functions with Uni-
formized Data

The analysis in Section 2.2 shows that a uniform dis-
tribution is a sufficient condition for the MDFT esti-
mate Wj to be an unbiased estimator of wj. Since
E(w;) = E[f(X)y;(X)], we restrict our attention
to E[f(X)1;(X)]. Define a new operator ® as fol-
lows: ® : X x X — {0,1}* extracts the features of
x corresponding to 1’s in the partition j. (The no-
tation {0,1}* means |J,x{0,1}".) For example, if
X = {0,117, x = 01010, j = 11010, then x ® j = 011.
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Figure 1: MSE (over the entire space) of the function
induced using MDFT estimates. The x-axis represents
the probability of success in the data generation.

Algorithm: Resampling
e For each j € J do
1. Dj(i) = 1/freq(x; ®j), i =1,...,N.

2. Normalize Dj so that it is a probability mass
function.

3. Sample from S according to Dj to get a new
sample S’ of size N.

4. Estimate the coefficient wj; using the usual
estimates on the new sample S’.

We also use —j to denote the bitwise NOT of j. We
now have

E(y) = E[f(X)y;(X)] = (4)
By [E(f(X)9(X)X@j=U)] =
Y. E(f(X)(X)X®j=u)P(U=u)
uec{0,1}ll

Our approach to reducing the bias is to “correct” the
non-uniformity in X ® j. The idea is to resample the
data according to a distribution that causes X ® j to
be uniformly distributed. The algorithm is described
in Figure 3.

We note that while this gives significantly better re-
sults in terms of accuracy in many cases (as the exper-
iments show), it is inefficient because we go through
a separate resampling procedure for each coefficient
we estimate. To overcome this problem, we define a
new estimator. If X ® j were uniformly distributed,
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Figure 2: Comparison of the MSE for two learning
algorithms (MDFT, Resampling/DSS) for a second-
order function with two nonzero coefficients. The x-
axis is the probability of success. The farther from .5,
the more skewed the data. The y-axis is log-scaled.

Equation 5 would reduce to

wjio= % Y EUfX)X)IXej=u) ()
uec{0,1}1l

= o Y timWE (X)X @] = uf6)
uec{0,1}1l

Our new estimator wj is based on equation 6. The
idea now is to estimate E (f(X)|X ® j = u) for each
value of u and use Equation 6. Let Sy j = {x € S|x®
j = u}. The estimator W is now defined naturally as

b = o D Wisi(u)fug where
ue{0,1}1l
A 1
fuj = Y f®
| u7J|XESu,j

The algorithm maintains a histogram of counts cor-
responding to (j,u) pairs it encounters in the data.
It is evident that the histograms can be created in a
single scan.

The estimates fu,j and thus w; can be computed
directly from the histograms. It can be shown that
under the assumption that X ® —j is independent of
X ®J, bounds on the bias of w; are smaller than those
on wj. Thus, we can give better guarantees about the
performance of the new estimator.
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Figure 3: A comparison of the spectrum sizes corre-
sponding to Figure 2.

Algorithm: Deterministic Single Scan (DSS)
e For each x; € S do

— For each j € J do
* count|[j, x; ® j] « count[j,x; ®j]+ 1

4 Controlled Experiments

This section provides experimental verification of the
performance of the proposed algorithm on simulated
data. Four datasets were generated using a product
distribution with the probability of success of all bits
being set at a given value. The instances so gener-
ated were labeled using four different functions. The
number of features in each of the cases was 100, a
fairly large number. Training data size was set to 750
instances. Note that this is extremely sparse in ad-
dition to being skewed — the whole space consists of
2100 instances. Since the functions have in truth only
a small number of nonzero Fourier coefficients, such
small amounts of data should be sufficient for estima-
tion. The challenge for the learning algorithm is to
ignore the abundant spurious information. In all our
test cases, the Resampling/DSS algorithm-based esti-
mates performed significantly better than the MDFT
estimates. The performance was measured both in
terms of the Mean Squared Error (MSE) over a test-
ing data set and the size of the learned spectrum. The
testing data set was generated independently of the
training data set according to the same distribution,
and had 5500 instances classified using the same func-
tion.

Figures 2, 4, 6 and 8 show the results of the experi-
ments. The y-axis in these figures is logarithmic scale.
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Figure 4: Comparison of the MSE for another second-
order function with two nonzero coefficients. The y-
axis is log-scaled.

The x-axis represents the probability that a bit in a
string is a 1. Thus, a very low x value corresponds to
data in which most of the features take the value of 0.
The smaller the x value, the more skewed the data. As
can be seen, the NWT estimates perform very poorly
in the case of highly skewed data. In some of the cases
(Figure 2 and Figure 8), the NWT estimates appear
to get worse and then improve as the data becomes
more uniform. This is an artefact of the MDFT learn-
ing algorithm: no learning takes place when the data
is very skewed.

The figures show that not only does the Resam-
pling/DSS algorithm perform better than the MDFT
in terms of the MSE, but the spectrum learned is
also much (orders of magnitude) smaller for skewed
data. This is important for algorithms that utilize the
Fourier spectrum for tasks such as building decision
trees and aggregation of an ensemble model [12].

5 Conclusions and Future Work

This paper presented an algorithm that improves upon
the accuracy of the standard MDFT estimates in the
case of skewed data. Experiments show that the re-
sults can have errors that are orders of magnitude
smaller. In addition, the size of the spectrum learned
falls much more rapidly for the proposed algorithm
than for the standard MDFT estimates. This is im-
portant for many algorithms that use the MDFT to
learn other models such as decision trees. The paper
pointed out that better bounds can be given for the
estimates computed by the new algorithm than for the
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Figure 5: A comparison of the spectrum sizes corre-
sponding to Figure 4.

MDFT estimates.

The work in this paper is a preliminary effort. The
algorithm needs to be studied further under the fol-
lowing headings:

e While the algorithm handles hundreds of at-
tributes and is linear in the sample size, it does
not scale to thousands of attributes. The scala-
bility of the algorithm needs to be addressed by
the use of an appropriate (heuristic or otherwise)
pruning technique.

e Bounds on the bias of the new estimator can be
proven to be better than those on MDFT esti-
mates. However, the variance of the estimator is
yet to be studied in order to determine the relia-
bility of the new estimates (i.e. have we reduced
bias at the expense of variance).

e The ability to learn coeflicients accurately from
skewed data also enables us to learn effectively in
the case of vertically partitioned distributed data.
The application of this algorithm to distributed
data needs to be investigated.

In summary, this paper presented an interesting,
promising new algorithm for mining highly skewed
data sets.
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Figure 6: Comparison of the MSE of two learning al-
gorithms for a second-order function with four nonzero
coefficients. The y-axis is log-scaled.
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Figure 9: A comparison of the spectrum sizes corre-
sponding to Figure 8.



