
Communication Efficient Construction of Decision Trees Over Heterogeneously
Distributed Data

Chris Giannella Kun Liu Todd Olsen
Hillol Kargupta

Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County, Baltimore, MD 21250 USA

{cgiannel,kunliu1,tolsen1,hillol}@cs.umbc.edu
(H. Kargupta is also affiliated with AGNIK, LLC, USA.)

Abstract

We present an algorithm designed to efficiently construct
a decision tree over heterogeneously distributed data with-
out centralizing. We compare our algorithm against a stan-
dard centralized decision tree implementation in terms of
accuracy as well as the communication complexity. Our
experimental results show that by using only 20% of the
communication cost necessary to centralize the data we can
achieve trees with accuracy at least 80% of the trees pro-
duced by the centralized version.

Key words: Decision Trees, Distributed Data Mining,
Random Projection

1 Introduction

Much of the world’s data is distributed over a multi-
tude of systems connected by communications channels of
varying capacity. In such an environment, efficient use of
available communications resources can be very important
for practical data mining algorithms. In this paper, we in-
troduce an algorithm for constructing decision trees in a
distributed environment where communications resources
are limited and efficient use of the available resources is
needed. At the heart of this approach is the use of ran-
dom projections to estimate the dot product between two
binary vectors and some message optimization techniques.
Before defining the problem and discussing our approach,
we briefly discuss distributed data mining to provide con-
text.

1.1 Distributed Data Mining (DDM)

Overview: Bluntly put, DDM is data mining where the
data and computation are spread over many independent

sites. For some applications, the distributed setting is more
natural than the centralized one because the data is inher-
ently distributed. The bulk of DDM methods in the liter-
ature operate over an abstract architecture where each site
has a private memory containing its own portion of the data.
The sites can operate independently and communicate by
message passing over an asynchronous network. Typically
communication is a bottleneck. Since communication is as-
sumed to be carried out exclusively by message passing, a
primary goal of many methods in the literature is to mini-
mize the number of messages sent. Similarly, our goal is to
minimize the number of messages sent. For more informa-
tion about DDM, the reader is referred to two recent surveys
[8], [10]. These provide a broad overview of DDM touching
on issues such as: association rule mining, clustering, basic
statistics computation, Bayesian network learning, classifi-
cation, and the historical roots of DDM.

Data format: It is commonly assumed in the DDM lit-
erature that each site stores its data in tables. Due to the
ubiquitous nature of relational databases, this assumption
covers a lot of ground. One of two additional assumptions
are commonly made regarding how the data is distributed
across sites: homogeneously (horizontally partitioned) or
heterogeneously (vertically partitioned). Both assumptions
adopt the conceptual viewpoint that the tables at each site
are partitions of a single global table.1 In the homogeneous
case, the global table is horizontally partitioned. The ta-
bles at each site are subsets of the global table; they have
exactly the same attributes. In the heterogeneous case, the
table is vertically partitioned, each site contains a collection
of columns (sites do not have the same attributes). How-
ever, each tuple at each site is assumed to contain a unique
identifier to facilitate matching across sites (matched tuples
contain the same identifier).

1It is not assumed that the global table has been or ever was physically
realized.

Note that the definition of “heterogeneous” in our paper
differs from that used in other research fields such as the
Semantic Web and Data Integration. In particular we are
not addressing the problem of schema matching.

1.2 Problem Definition and Results Summary

We consider the problem of building a decision tree over
heterogeneously distributed data. We assume that each site
has the same number of tuples (records) and they are or-
dered to facilitate matching, i.e., the ith tuple on each site
matches. This assumption is equivalent to the commonly
made assumptions regarding heterogeneously distributed
data described earlier. We also assume that the ith tuple
on each site has the same class label. Our approach can be
applied to an arbitrary number of sites, but for simplicity,
we restrict ourselves to the case of only two parties: Adam
and Betty. However, in section 4.3 we describe the commu-
nication complexity for an arbitrary number of sites. At the
end, Adam and Betty are to each have the decision tree in its
entirety. Our primary objective is to minimize the number
of messages transmitted.

One way to solve this problem is to transmit all of the
data from Adam’s site to Betty. She then applies a standard
centralized decision tree builder and finally, transmits the fi-
nal tree back to Adam. We call this method the centralized
approach (CA). While straightforward, the CA may require
excessive communication in low communication bandwidth
environments. To address this problem, we have adapted a
standard decision tree building algorithm to the heteroge-
neous environment. The main problem in doing so is com-
puting the information gain offered by attributes in making
splitting decisions. To reduce communication, we approx-
imate information gain using a random projection based
technique. The technique converges on the correct informa-
tion gain as the number of messages transmitted increases.
We call this approach to building a decision tree the dis-
tributed approach (DA).

The tree produced by DA may not be the same as that
produced by CA. However, by increasing the number of
messages transmitted, the DA tree can be made arbitrarily
close. We conducted several experiments to measure the
trade-off between accuracy and communication. Specifi-
cally, we built a tree using CA (with the standard Weka tree
builder implementation) and others using DA while varying
the number of messages used in information gain approxi-
mation and the depth of the tree. We observed that by using
only 20% of the communication cost necessary to centralize
the data we can achieve trees with accuracy at least 80% of
the CA. Henceforth, when we discuss communication cost
or communication complexity, we mean the total number of
messages required. A message is a four byte number e.g. a
standard floating point number.

1.3 Paper Layout

In Section 2 we cite some related work. In Section 3
we describe the basic algorithm for building a decision tree
over heterogeneously distributed data using a distributed dot
product as the primary distributed operation. Then we pro-
pose a method for approximating a distributed dot product
using a random projection. In Section 4 we describe the
complete algorithm and give the communication complex-
ity. In Section 5 we discuss how different message op-
timization techniques are employed to further reduce the
communication. In Sections 6 we present the results of our
experiments. Finally, in Section 7 we describe several di-
rections for future work and conclusions.

2 Related Work

Most algorithms for learning from homogeneously dis-
tributed data (horizontally partitioned) are directly related
to ensemble learning [9, 3], meta-learning [12] and rule-
based [5] combination techniques. In the heterogeneous
case, each site observes only partial attributes (features) of
the data set. Traditional ensemble-based approaches usu-
ally generate high variance local models and fail to detect
the interaction between features observed at different sites.
This makes the problem fundamentally challenging. The
work addressed in [11] develops a framework to learn de-
cision tree from heterogeneous data using a scalable evolu-
tionary technique. In order to detect global patterns, they
first make use of boosting technique to identify a subset of
the data that none of the local classifiers can classify with
high confidence. This subset of the data is merged at the
central site and another new classifier is constructed from
it. When a combination of local classifiers cannot classify
a new record with a high confidence, the central classifier
is used instead. This approach exhibits a better accuracy
than a simple aggregation of the models. However, its per-
formance is sensitive to the confidence threshold. Further-
more, to reduce the complexity of the models, this algo-
rithm applies a Fourier Spectrum-based technique to aggre-
gate all the local and central classifiers. However, the cost of
computing the Fourier Coefficient grows exponentially with
the number of attributes. On the other hand, our algorithm
generates a single decision tree for all the data sites and
does not need to aggregate at all. The work in [2] presents
a general strategy of distributed decision tree learning by
exchanging among different sites the indices and counts of
the records that satisfy specified constraints on the values
of particular attributes. The resulting algorithm is provably
exact compared with the decision tree constructed on the
centralized data. The communication complexity is given
by O((M + |L|NV)ST) where M is the total number of
records, |L| is the number of classes, N is the total number

of attributes, V is the maximum number of possible values
per attribute, S is the number of sites and T is the number
of nodes of the tree. However, instead of repeatedly send-
ing the whole indices vectors to the other site, our algorithm
applies a random projection-based strategy to compute dis-
tributed dot product as the building blocks of tree induction.
This kind of dimension reduction technique, together with
some other message reusing and message sharing schemas
reduce as many unnecessary messages as possible. The
number of messages for one dot product is bounded by
O(k) (k << M), and the total communication cost of our
algorithm is O((LT + kIT)(S − 1)) (LT is the number of
leaf node and IT is the number of non-leaf node), which is
less than that in [2]. The work presented in [4] deals with
a privacy preserving two-party decision tree learning prob-
lem where no party is willing to divulge their data to the
other. The basic tree induction procedure is similar with
ours. However, a secure dot product protocol is proposed
here as the building block such that only the information
gain of the testing attribute is disclosed to both parties and
nothing else. The communication complexity of only one
dot product protocol is O(4M), the total communication
cost is higher than ours.

3 Building a Distributed Decision Tree: the
Basic Algorithm

For simplicity of exposition, we only discuss discrete
data and assume that each node of the tree has a correspond-
ing attribute and a child branch for each distinct value. Our
algorithm, however, generalizes to other cases (e.g. contin-
uous attributes) without any conceptual difficulties.

3.1 Notation

Both sites have M tuples ordered in such a way that tuple
i on Adam’s site corresponds to tuple i on Betty’s site. Tu-
ples on both sites have an associated class label drawn from
a set L. The tuples are labeled consistently across sites i.e.
the ith tuple on Adam and Betty’s site has the same class
label. Let N denote the total number of attributes from all
sites.

Let A denote the union of attributes over both sites and
�

denote the data set formed by joining the data from both
sites (Adam’s ith tuple is concatenated with Betty’s to form
the ith tuple in

�
). Given attribute A ∈ A, let Π(A) denote

the set of distinct values that appear in the A column. Given
set of attributes X ⊆ A and list of values ~x ∈ ×A∈XΠ(A),
let

�
(X = ~x) denote the set of tuples t in

�
such that the X

columns of t agree with ~x i.e. for all A ∈ X , t[A] = ~x[A].
Given ˆ� ⊆

�
, attribute A ∈ A and value a ∈ Π(A),

let #A=a(ˆ
�

) denote the number of tuples t in ˆ� such that

Rainy

Rainy

Rainy

Rainy

Sunny

Outlook

No

Yes

Yes

Yes

No

Play

No

Yes

Yes

Yes

No

Play

Normal

Normal

High

High

High

Humidity

1

1

1

1

0
1

2

Adam

Betty

1

1

1

1

0

0

1

0

0

0

•

No

Yes

Yes

Yes

No

Play

Normal

Normal

High

High

High

Humidity

1

1

1

1

0

0

0

1

1

0

•

0

1

0

0

0

0

0

1

1

0

Figure 1. Calculating information gain using
the dot product. ("Play" is the class name,
and · denotes the dot product.)

t[A] = a. Given class label ` ∈ L, let #`(ˆ
�

) denote the
number of tuples in ˆ� with label `. Let #`,A=a(ˆ

�
) denote

the number of tuples t in ˆ� with t[A] = a and label `. The
class entropy of A over ˆ�

is denoted EA(ˆ
�

) and defined as2

−
∑

a∈Π(A)
#A=a(ˆ

�
)

|ˆ
�
|

∑

`∈L

#`,A=a(ˆ
�
)

|ˆ
�
|

log2(
#`,A=a(ˆ

�
)

|ˆ
�
|

).

The information gain of A over ˆ� is denoted GA(ˆ
�

) and
defined as

−
∑

`∈L
#`(ˆ

�
)

|ˆ
�
|

log2(
#`(ˆ

�
)

|ˆ
�
|

) − EA(ˆ
�

).

Our distributed decision tree building approach can be
applied without change to other forms of information gain
such as the Gini index. For ease of discussion, we stick with
entropy based information gain.

3.2 Distributed Decision Tree Building Using a
Dot Product

We adapt the following version of the standard, depth-
first decision tree building algorithm (on discrete data). Ini-
tially the tree is empty and the first call is made to determine
the root node. The call chooses the attribute A1 fromA with
the largest information gain over

�
to become the root. For

each a∈Π(A1), a recursive call is made with list {(A1, a)}.
Each of these recursive calls will determine the children of
the root (with branches labeled with the values in Π(A1)).

At any call passed list (A1, a1), . . . (Ak , ak), the tu-
ples in

�
(X = ~x) where X = {A1, . . . , Ak} and ~x =

(a1, . . . , ak) are examined to determine the next splitting
attribute. The attribute from A − X with the largest infor-
mation gain over

�
(X = ~x) is chosen.

2We assume 0log2(0) equals zero.

Since the attributes are not all on one site, computing
the information gain may not be possible. For example, as-
sume at least one of the attributes from X were on Adam’s
site and consider D an attribute on Betty’s site and not in
X . To compute the information gain, Betty must com-
pute #`(

�
(X = ~x)) and #`,D=d(

�
(X = ~x)) for all d

∈ Π(D) and ` ∈ L. These values cannot be computed di-
rectly since Betty does not have

�
(X = ~x). Adam must

send Betty information to carry out this computation. To
reduce the amount of messages we approximate the values
using a technique based on random projections.

Each of the values can be modeled as a dot product com-
putation (similar to [2] and [4]). Let XA denote the at-
tributes from X on Adam’s site and ~xA their associated val-
ues from the passed list; likewise define XB and ~xB . Let
~V (XA = ~xA) be a length M vector of zeros and ones. The
ith entry is one if the ith tuple ti in

�
satisfies ti[XA] = ~xA.

All other entries are zero. Likewise, let ~V (D = d, XB =
~xB , `) be the 0/1 vector whose ith entry is one if ti[D] = d,
ti[XB] = ~xB and ti has label `. It can be easily seen that the
dot product of ~V (XA = ~xA) and ~V (D = d, XB = ~xB , `)
equals #`,D=d(

�
(X = ~x)). Moreover, the dot product of

~V (XA = ~xA) and ~V (Xb = ~xB , `) equals #`(
�
(X = ~x)).

Figure 1 illustrates this concept. Adam sends Betty a bi-
nary vector representing the tuples with “Outlook = Rainy”.
Betty constructs two vectors representing “Humidity = Nor-
mal && Play = Yes” and “Humidity = High && Play =
Yes”, respectively. The dot products gives the number of
tuples in the whole database that satisfy the constrains “Out-
look = Rainy && Humidity = Normal && Play = Yes” and
“Outlook = Rainy && Humidity = High && Play = Yes”.
Note that the notation above deals with the case where Betty
computes the information gain of her attributes. However,
our algorithm will also require the reverse case: Adam com-
putes the information gain of all his attributes. The notation
is analogous. Actually, in our algorithm, instead of send-
ing the original binary vectors directly to the other site, we
project the vectors into a lower dimensional space first and
transmitting the new vectors to all other sites. This leads to
the distributed dot product computation in the next section.

3.3 Distributed Dot Product

In the previous section, we observed that distributed dot
product of boolean vectors is the building block of deci-
sion tree induction. In this section, we propose a random
projection-based distributed dot product technique that can
greatly reduce the dimensionality of the vector, thereby re-
ducing the cost of building the tree. Similar form of this
algorithm appears elsewhere in a different context [7].

Given vectors ~a = (a1, . . . , am)T and ~b =
(b1, . . . , bm)T at two distributed site A and B, respectively,
we want to approximate ~aT~b using a small number of mes-

sages between A and B. Algorithm 3.3.1 gives the detailed
procedure.

Algorithm 3.3.1 Distributed Dot Product Algorithm(~a,~b)
1. A sends B a random number generator seed. [1 mes-
sage]
2. A and B cooperatively generate k ×m random matrix
R where k � m. Each entry is generated independently
and identically from any distribution with zero mean and
unit variance. A and B compute â = R~a, b̂ = R~b, re-
spectively.
3. A sends â to B. B computes âT b̂ = ~aT RT R~b. [k
messages]
4. B computes D = âT b̂

k
.

So instead of sending a m-dimensional vector to the
other site, we only need to send a k-dimensional vector
where k � m and the dot product can still be estimated.

The above algorithm is based on the following fact:

Lemma 3.1 Let R be a p × q dimensional random matrix
such that each entry ri,j of R is independently and chosen
from some distribution with zero mean and unit variance.
Then,

E[RT R] = pI , and E[RRT] = qI.

Proof Sketch: The (i, j) entry of RT R is the dot product of
the ith and jth columns of R. If i = j, then the expected
value of the dot product equals the p times the variance plus
the square of the mean, hence, p. If i 6= j, then the expected
value of the dot product equals p times the square of the
mean, hence zero. The second part of the lemma is proven
analogously. �

Intuitively, this result echoes the observation made else-
where [6] that in a high-dimensional space vectors with ran-
dom directions are almost orthogonal. A similar result was
proved elsewhere [1].

3.4 Accuracy Analysis

We give a Chernoff-like bound to quantify the accuracy
of our distributed dot product for decision tree induction as
follows:

Lemma 3.2 Let ~a and ~b be any two boolean vectors. Let â

and b̂ be the projections of ~a and ~b to <k through a random
matrix R whose entries are identically, independently cho-
sen from N(0,1) such that â = R~a and b̂ = R~b, then for any
ε > 0, we have

Pr{~aT~b − εm ≤
âT b̂

k
≤ ~aT~b + εm} ≥

1 − 3
(

(

(1 + ε)e−ε
)

k
2 + ((1 − ε)eε)

k
2

)

k Mean Var Min Max
100(1%) 0.1483 0.0098 0.0042 0.3837
500(5%) 0.0795 0.0035 0.0067 0.2686
1000(10%) 0.0430 0.0008 0.0033 0.1357
2000(20%) 0.0299 0.0007 0.0012 0.0902
3000(30%) 0.0262 0.0005 0.0002 0.0732

Table 1. Relative errors in computing the dot
product.

Proof: Omitted due to space constraints.
This bound shows that the error goes to 0 exponentially

fast as k increases. Note that although the lemma is based
on normal distribution with zero mean and unit variance, it
is also true for other distributions that are symmetric about
the origin with unit variance. Table 1 depicts the relative er-
ror of the distributed dot product between two synthetically
generated binary vectors of size 10000. k is the number of
randomized iterations (represented as the percentage of the
size of the original vectors). Each entry of the random ma-
trix is chosen independently and uniformly from {1,−1}.
In practice, this bound can be used to find the suitable k.

4 Algorithm Details

4.1 Main Procedure

At the commencement of the algorithm, each site deter-
mines which local attribute offers the largest information
gain. No communication is required to accomplish this. The
best attribute from each site is then compared and the at-
tribute with the globally largest information gain, AG, is se-
lected to define the split at the root node of the tree. For each
distinct value a ∈ Π(AG), a new branch leading down from
the root is created. For each these branches, the site contain-
ing AG constructs a binary vector representing which tuples
correspond to this new branch, ~V (AG = a), and sends the
projection of it to the other site. Upon receiving each vec-
tor, the other site indexes it according to it’s path and stores
it in a vector cache for later use.

At each non-root node Z, each party, P attempts to find
the nearest closest ancestor of Z that splits on an attribute
not local to P (one may not exist). Consider Figure 2 with
P = Adam. When considering node Z1, path (1), the near-
est non-local ancestor would be the grandparent of Z1. For
node Z2, path (2), the nearest non-local ancestor would be
the parent of Z2. For node Z3 no non-local ancestor exists.

If P fails to find a non-local ancestor for Z (i.e.. the
search terminated at root)then P does not require any infor-
mation from the other party to compute the information gain
of it’s attributes. In this case the evaluation of the informa-
tion gain proceeds as it does at root and can be calculated

exactly. Otherwise, P retrieves the appropriate entry from
it’s vector cache and uses it to approximate the information
gain of it’s local attributes using the distributed dot product.
Note that,in either case, no communication is required.

As before, once each site determines the local attribute
with the largest information gain, the attribute with the glob-
ally largest information gain, AG, is selected to define the
split at Z. Following this, each party now executes one of
the following actions

• If AG is local to P then, for each a ∈ Π(AG), a new
branch leading down from the root is created. For
each branch, P constructs a binary vector represent-
ing which tuples corresponding to this new path and
sends the projection of it the other party.

• If AG is non-local then P waits until it receives the
projection vector from the other party, indexes it ac-
cording to it’s respective path, and stores it in the local
vector cache.

The total number of messages required the above actions
is k (the number of columns of R).

In order to reduce the memory signature of the algorithm
each site will occasionally check the contents of it’s vector
cache and delete any invalid entries. A vector becomes in-
valid when (1) every path associated with that vector ter-
minates in a leaf node, or (2) the node which generated the
vector is no longer the nearest non-local ancestor to any of
it’s descendants.

We made one minor change to the algorithm presented
above. When the number of ones/zeros in a binary vector
is less than the number of iterations k, we can just transmit
the list of indices directly. Not only does this reduce the
communication cost of the algorithm even further, it allows
the calculation of information gain further down the tree to
be made in an exact, rather than approximate, manner.

4.2 Leaf Nodes Determination

The construction of a path down the decision tree con-
tinues until a leaf node is reached, which meets at least one
of the following criteria: (1) All of the tuples for the node
belong to one class. The node is then labeled by that class.
(2) If any child of a node is empty, label that child as a leaf
representing the most frequent class in this node. (3) There
are less than minNumObj (4 in our experiments) tuples for
the node, regardless of class. The node is then labeled by
the most frequent class of all the tuples in this node. Note
here that the calculations used to determine this may be ap-
proximations based on the distributed dot product.

From the above criteria, we can see that the determina-
tion of a leaf node can actually be made by its parent since
information gain computation enables the parent to get the

Attribute from Adam

Attribute from Betty

Attribute from Adam Attribute from Betty

Attribute from Adam

(1) (2) (3)

Z1
attribute unknown yet

Z2
attribute unknown yet

Z3
attribute unknown yet

Figure 2. Sample distributed tree structure.

total number tuples for each child, together with the number
of tuples belonging to different classes in its child. After a
node is split, and if the leaf node is determined, the site who
owns the splitting attribute can just send the other site(s) the
tree branch name, total number of tuples covered by the leaf
and the number of misclassified ones (No projected vector
is transmitted). This information will be later used for tree
pruning.

4.3 Communication Complexity

For each non-leaf node (except the root where only 2
messages are required to find the best split), to find the
best split, only one party needs to send a projected vector
to the other (k messages). After each party evaluating its
local attributes, they exchange the name and information
gain value of their best attribute and decide the split (2 mes-
sages). Note that, the leaf node can be decided right away
by its parent, then one parent needs to send the other site the
branch name, total number of tuples covered by the leaf and
total number of misclassified ones (3 message). The total
number of messages is bounded by O(LT + kIT) where
IT denotes the number of non-leaf node (except root) and
LT is the number of leaf nodes. This can be generalized to
S sites as O((LT + kIT)(S − 1)).

Note that the communication complexity does not de-
pend on the number of distinct values of any attribute. As
a result, continuous attributes do not directly increase the
communication complexity. However, if continuous at-
tributes are split using the standard single threshold method,
they may create deeper trees thus indirectly increasing the
communication complexity.

4.4 Tree Pruning

Pessimistic post-pruning approach can be applied. From
the discussion in the previous section, we know that each
leaf node has the information about total number of records
it covers and the number of misclassified ones. We can
therefore compute the predicted error rate over the entire
population of the records covered by this leaf from the con-
fidence limits. Furthermore, because both parties will have
a copy of the tree, and no validation data are required, they
can prune the tree independently. Since this procedure re-
quires no message communication and is totally the same
for both centralized and distributed models, in our experi-
ment we only compared the performance without pruning.

5 Optimizations

The algorithm described in Section 4.1 implicitly ap-
plies two important communication optimization strategies:
message sharing and message reusing.

Message Sharing: Messages associate with a projected
vector from one site can be used to compute the information
gains of all the attributes owned by the other site. As
a concrete illustration, consider the tree in Figure 2. To
find the best split for node Z1 on path (1), Betty needs to
evaluate her local attributes. Since the parent node is split
by Adam’s attribute, Adam will send Betty one projected
vector which contains the information about tuples that sat-
isfy the constrains induced by Adam’s attributes along path
(1). On receiving this information, Betty can approximate
the information gain of all her attributes without any other
communications.

Message Reusing: Previously sent messages can also
be reused as we descend down the tree. This property is
realized by the cache employed for each active path as
we discussed in Section 4.1. As an example, consider
again node Z1 on path (1) in Figure 2. In order for Adam
to evaluate his attributes on node Z1, he needs to know
the information about tuples that satisfy the constrains
specified by Betty’s attributes along the path. However,
in this case no message are required because Adam has
cached this information before when evaluating the parent
node of Z1. Further more, this cached information can be
continuously used if all the nodes along the path starting
from N are split on Adam’s local attributes. The cache will
not be updated until a node on the path is split by Betty’s
attribute.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Performance of Distributed vs. Centralized for DNA and COIL Data Sets

Distributed Communication Cost / Centralized Communication Cost

D
is

tr
ib

ut
ed

 A
cc

ur
ac

y
/ C

en
tr

al
iz

ed
 A

cc
ur

ac
y

DNA Data Set

COIL Data Set

Figure 3. Accuracy vs. Cost of distributed
decision tree over DNA and COIL data sets
using 10-fold cross validation.

6 Experiments

We conducted experiments on two public domain data
sets to evaluate the performance of our algorithm. The first
one is StatLog DNA data set 3 which is a processed ver-
sion of Molecular Biology Databases from UCI Machine
Learning Repository. This data set consists of 2000 DNA
nucleotide sequences, each with 180 binary attributes and 1
three-valued class label. The second one comes from COIL
2000 Challenge 4. It contains information on customers of
an insurance company and consists of 5822 samples with
86 nominal valued attributes. We vertically partitioned each
data set into two separate subsets with alternative sampling
of the attribute. The implementation is based on J48 from
Weka-3-4.

Figure 3 illustrates the results of our experiments. The
X-axis indicates the ratio of the communication cost in-
duced by the distributed algorithm to the cost of central-
izing data which is simply half of the size of the origi-
nal data, i.e, 0.5MN . The Y-axis corresponds to the ratio
of the accuracy of the distributed model to the centralized
model. We computed the 95% confidence interval of the
accuracy of centralized model, together with the confidence
interval of distributed model for different communication
cost. Then a best case optimistic bound (confidence upper
bound of the accuracy of distributed model divided by the
lower bound of the centralized model) and worst case pes-
simistic bound (confidence lower bound of the accuracy of
distributed model divided by the upper bound of the cen-
tralized model) are calculated and plotted as the error bar.

3http://www.liacc.up.pt/ML/statlog/datasets/dna/dna.doc.html
4http://kdd.ics.uci.edu/databases/tic/tic.html

50/50 60/40 70/30 80/20 90/10
0.82

0.84

0.86

0.88

0.9

0.92
Performance vs. Attributes Partition Schema for DNA Data

R
el

at
iv

e
A

cc
ur

ac
y

50/50 60/40 70/30 80/20 90/10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
el

at
iv

e
C

om
m

un
ic

at
io

n
C

os
t

Figure 4. Performance of distributed decision
tree with regard to different attributes parti-
tion schema for DNA data.

In both cases, the figure shows that by using only 20% of
the communication cost necessary to centralize the data we
can achieve trees at least 80% as accurate as the centralized
version. Although we didn’t carry out experiments for more
than two sites, our analysis shows that the communication
complexity scales linearly with the number of sites.

To investigate the effect of the way that attributes are
partitioned among different sites on the performance of dis-
tributed decision tree, we fixed the random seed and length
of the projected vectors, then tested the algorithm while
changing the number of attributes present on each site (50
vs.50, 60 vs.40, . . ., 90 vs.10). Figure 4 gives the result.
Generally, the accuracy increases as the attributes are parti-
tioned more and more unequally among different sites. We
believe that this is due to the increasing likelihood, as the
attributes become more and more unbalanced, that the en-
tire paths through the tree, from root to leaf , will split on
attributes mostly located on the same site. Thus the infor-
mation gain for the corresponding splits can be computed
locally and will not suffer from the randomization inherent
in the distributed dot product. In the meantime, we also no-
ticed a corresponding increase of the relative communica-
tion cost as the partition becomes more unequally. Although
we are still looking into this behavior, we do have an intu-
itive explanation. Since when centralizing the data, we will
always send the data from the site with fewer attributes to
the site with more. Therefore, the cost of centralized algo-
rithm decreases linearly with the number of attributes on the
smaller site. On the other hand the communication cost of
our distributed algorithm depends primarily on the number
of interior nodes of the resulting tree, which in turn depends
on characteristics of the dataset itself and not on the way
the data is partioned. With regard to the cost-benefit ratio,

our algorithm might perform at it’s best when the attributes
are partioned in a balanced fashion. The results shown in
Figure 3, which were obtained with attributes evenly dis-
tributed between two sites, support this hypothesis.

7 Conclusions and Future Work

We have presented an algorithm that allows the effi-
cient construction of a decision tree over heterogeneously
distributed data. The key of our approach is a random
projection-based dot product estimation and message shar-
ing strategy. The experimental results are very promising
and show that this technique reduces the communication by
a factor of five while still retaining 80% of the original ac-
curacy.

A primary set of directions for future work is motivated
by the fact that our distributed algorithm requires more
computation (local) than the centralized algorithm. One of
the fundamental reasons is that our algorithm must com-
pute a matrix, vector product for each frequency count. The
overall benefit of our algorithm hinges on a trade-off: in-
creased local computation, reduced communication. In set-
tings where total computation time is the most important
factor, the overall benefit depends on communication de-
lay. One direction for future work involves carrying out a
careful timing study to compare the total algorithm times
(distributed vs. centralized) taking into account communi-
cation delays. The goal would be to determine how large
the communication delay need be to offset the extra local
computation time.

In settings where factors other than time cannot be ig-
nored (e.g. energy consumption, privacy), the reduced com-
munication could offer benefits in spite of an increased to-
tal computation time. For example, in energy constrained
environments, communication typically requires more en-
ergy that computation. Also, if maintaining the privacy
of each party’s data is a high priority, increased computa-
tion time is reasonable sacrifice for reduced communication
since this means less information need be protected. The
reduced communication offered by our algorithm makes
it a decent starting point for developing a more efficient
privacy-preserving distributed decision tree induction algo-
rithm than currently reported in the literature. Indeed, an-
other direction for future work involves incorporating se-
cure multi-party computation (SMC) based protocols to ad-
dress privacy constrains while retaining low communication
complexity.

Acknowledgments

The authors acknowledge supports from the United
States National Science Foundation (NSF) CAREER award

IIS-0093353, NSF Grant IIS-0329143, and NASA (NRA)
NAS2-37143.

References

[1] R. I. Arriaga and S. Vempala. An algorithmic theory of
learning: Robust concepts and random projection. In Pro-
ceedings of the 40th Foundations of Computer Science, New
York, NY, October 1999.

[2] D. Caragea, A. Silvescu, and V. Honavar. Learning deci-
sion trees from distributed heterogeneous autonomous data
sources. In Proceedings of the Conference on Intelligent Sys-
tems Design and Applications (ISDA’03), Tulsa, Oklahoma,
2003.

[3] T. Dietterich. An experimental comparison of three meth-
ods for constructing ensembles of decision trees: Bagging,
boosting and randomization. Machine Learning, 40(2):139–
158, 2000.

[4] W. Du and Z. Zhan. Building decision tree classifier on
private data. In Workshop on Privacy, Security, and Data
Mining at the 2002 IEEE International Conference on Data
Mining (ICDM’02), Maebashi, Japan, December 2002.

[5] L. O. Hall, N. Chawla, K. W. Bowyer, and W. P. Kegelmeyer.
Learning rules from distributed data. In M. J. Zaki and
C.-T. Ho, editors, Large-Scale Parallel Data Mining, vol-
ume 1759 of Lecture Notes in Computer Science. Springer-
Verlag, 2000.

[6] R. Hecht-Nielsen. Context vectors: General purpose ap-
proximate meaning representations self-organized from raw
data. In Computational Intelligence: Imitating Life, pages
43–56. IEEE Press, 1994.

[7] H. Kargupta and V. Puttagunta. An efficient randomized al-
gorithm for distributed principal component analysis from
heterogeneous data. In Agnik L.L.C. Technical Report 2004-
002, 1450 S. Rolling Road, Baltimore, MD 21227, USA,
2004.

[8] H. Kargupta and K. Sivakumar. Existential pleasures of dis-
tributed data mining. In H. Kargupta, A. Joshi, K. Sivaku-
mar, and Y. Yesha, editors, Data Mining: Next Generation
Challenges and Future Directions. MIT/AAAI press, 2004.

[9] D. Opitz and R. Maclin. Popular ensemble methods: An
empirical study. Journal of Artificial Intelligence Research,
11:169–198, 1999.

[10] B. Park and H. Kargupta. Distributed data mining: Algo-
rithms, systems, and applications. In N. Ye, editor, The
Handbook of Data Mining, pages 341–358. Lawrence Erl-
baum Associates, Mahwah, N.J., 2003.

[11] B. Park, H. Kargupta, E. Johnson, E. Sanseverino, D. Hersh-
berger, and L. Silvestre. Distributed, collaborative data anal-
ysis from heterogeneous sites using a scalable evolutionary
technique. Applied Intelligence, 16, January 2002.

[12] A. Prodromidis and P. Chan. Meta-learning in distributed
data mining systems: Issues and approaches. In H. Kargupta
and P. Chan, editors, Advances of Distributed Data Mining.
AAAI Press, 2000.

