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Abstract

Inductive learning of nonlinear functions plays an important role in constructing
predictive models and classifiers from data. This paper explores a novel randomized
approach to construct linear representations of nonlinear functions proposed elsewhere
[14, 17]. This approach makes use of randomized codebooks, called the Genetic Code-
like Transformations (GCTs) for constructing an approximately linear representation
of a nonlinear target function. This paper first derives some of the results presented
elsewhere [17] in a more general context. Next it investigates different probabilistic and
limit properties of GCTs. It also presents several experimental results to demonstrate
the potential of this approach.
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construction, randomized transformations.

1 Introduction

Learning nonlinear functions from data is important in many domains like data mining, pat-
tern recognition, statistics, blackbox optimization, and machine learning. Often it is used for
constructing predictive models and classifiers. However, as we all know learning nonlinear
functions from data is usually more difficult compared to learning a linear function. So, any
technique to efficiently construct a good approximation of nonlinear functions in an appro-
priate linear representation will be extremely useful. There exist techniques like the support
vector machines (SVMs) [5, 30] that work on a linear representation of a nonlinear problem
and they are gaining increasing popularity. This paper explores an alternate approach.
This paper presents a class of randomized transformations with interesting properties that
may be useful for learning nonlinear discrete functions in an “almost” linear representation.
It draws motivations from the Universal Genetic Code that transforms the mRNA sequence



to the Protein sequence in a living organism. This code, is defined by a small redundant
table that assigns an amino acid for every three consecutive nucleic acids in the mRNA.
This paper investigates the role of genetic code-like transformations (GCTs) [14, 17] in
learning nonlinear functions from data with unknown underlying distribution. This paper
revisits the foundation of randomized GCTs and explores the analytical properties of such
transformations. It also offers experimental results to demonstrate the potential of this
approach.

Section 2 revisits randomized GCTs developed elsewhere [14, 17] and reviews multidimen-
sional discrete Fourier transformations, a tool used throughout this paper to study random-
ized GCTs. It also offers the biological motivation behind this research. Section 3, defines
the GCTs themselves and motivates the main problems tackled in this paper—understanding
probabilistic and limit properties of the randomized GCTs. Section 4 explores several prop-
erties of these transformations. Some transformations are better than others for a given
problem. So finding an appropriate randomized GCT for a given problem is an important
problem. Section 5 formulates the codebook optimization problem for finding a suitable
transformation. Section 6 explores the distributions of such randomized transformations
and it shows that the probability of finding a “good-enough” transformation increases “very
quickly” as the number of features of the new representation constructed by the random-
ized GCTs increases linearly. Section 8 tests the hypotheses of this paper using a set of
experiments. Finally, Section 9 concludes the paper.

2 Background

This section presents the necessary background material and the motivation behind this
research. It offers a brief review of the universal genetic code used in a living organism
during the process of translation. It also revisits an abstraction of this code, called genetic
code-like transformations (GCTs) introduced elsewhere [14, 17].

2.1 Function Induction and Representational Issues

Consider the discrete set X = X; X XoXx- - -xX X,,, where each Xj is a finite set {0, 1, ..., k;—1}.
We use the notation [k;] to denote the set {0,1,...  k; — 1}. We are interested in inducing
functions of the form f: X — R. We are given a sample from this function: a set of points
S = {(x1, f(x1)), (x2, f(x2)),-- -, (Xm, f(Xm))}, where x; € X Vi =1,... ,m. The problem
is to learn, or induce, a good approximation f : X — R to f based on the information in S.

Function induction algorithms must work with a representation of the functions f and
f. One example of a representation of a function is a vector in R?, where d is the number
of points in X. Each coordinate of the vector represents the value of the function at a point
in the space. This is an explicit representation of the function. It is not difficult to see that
there is a decomposition of the function in terms of a particular basis of the set F of all
real-valued functions on X. Various bases of F can be used for different decompositions of
the function; each basis yields a representation of the function as a point in a d-dimensional
space. The computational complexity of inducing a function from data depends on the
chosen representation.



For most non-trivial learning problems the target function f is nonlinear in the given
natural representation. Therefore, if we learn it well in the same representation we are most
likely to come up with an f () which is also nonlinear. In this paper we shall show that
this nonlinear learning process can be efficiently reduced to an approximately linear learning
problem by applying the randomized genetic code-like transformations, at least for the classes
of problems considered here. Randomized GCTs apply a probabilistic transformation n(x)
to every member of the sample set S and generate a new representation in a different space.
These transformations have strong similarities with the universal genetic code used in a living
organism for producing the amino acid-based representation of proteins from the mRNA
sequence. In order to fully appreciate the proposed approach, we must understand the
biology to some extent. The following section presents this biological motivation.

2.2 Biological Motivation

The gene expression process in nature involves a series of representation transformations
of the genome. Representation transformations are often used in many fields like Physics,
Engineering, Machine Learning, and Mathematics for transforming difficult problems into
suitable forms that are easier to solve. Therefore representation transformations in gene
expression may have intriguing computational implications in genetic search. The gene
expression process starts by first transforming the DNA sequence to the mRNA. The DNA
is a sequence of four different nucleotides namely, adenine (A), thiamin (T), guanine (G), and
cytosine (C). The mRNA is also a sequence of four different nucleotides namely, adenine (A),
uracil (U), guanine (G), and cytosine (C). This step is called the Transcription. Next the
mRNA sequence is transformed into protein, a sequence of amino acids. This step is known
as Translation. It uses a code-book that defines the correspondence between nucleotide
triplets (known as codons) in the mRNA and the amino acids in proteins. This code-book is
known as the genetic code (Table 1). Each codon is comprised of three adjacent nucleotides
in an mRNA chain and it produces an amino acid. The genetic code takes an mRNA
sequence, replaces every three adjacent nucleic acids (codon) by the corresponding amino
acid (listed in Table 1), and produces the amino acid sequence. With a few exceptions,
the genetic code for most eukaryotic and prokaryotic organisms is the same. There exists
a considerable body of literature exploring the models of evolutionary computation in gene
expression [10, 13, 1, 3,9, 19, 18, 27, 29, 11, 6, 7, 20, 2]. Interested readers may refer to [17]
for a detailed literature review.

Proteins control almost every important activity in a living body and they define the
phenotype of a living organism. This construction of the phenotype from the genome can be
viewed as an evaluation of a genetic “fitness” function. So Proteins, mRNAs, and the DNA
can be viewed as different representations of this underlying genomic “fitness’ function.

Most living organisms choose protein-based representation of the genome for all the
important tasks. So it is quite natural to wonder about the reason behind choosing this
special representation that requires a sequence of representation transformations. However,
this paper does not consider the biological implications directly.

This paper considers the genetic code-based translation process that transforms the
mRNA sequence to the amino acid sequence in proteins in the light of efficient function
induction. It considers GCT-s, an abstract class of transformations, that draws direct mo-



Protein feature | mRNA codons

Alanine GCA GCC GCG GCU

Cysteine UGC UGU

Aspartic acid GAC GAU

Glutamic acid | GAA GAG

Phenylalanine | UUC UUU

Glycine GGA GGC GGG GGU

Histidine CAC CAU

Isoleucine AUA AUC AUU

Lysine AAA AAG

Leucine UUA UUG CUA CUC CUG CUU
Methionine AUG

Asparagine AAC AAU

Proline CCA CCC CCG CCU

Glutamine CAA CAG

Arginine AGA AGG CGA CGC CGG CGU
Serine AGC AGU UCA UCC UCG UCU
Threonine ACA ACC ACG ACU

Valine GUA GUC GUG GUU
Tryptophan UGG

Tyrosine UAC UAU

STOP UAA UAG UGA

Table 1: The universal genetic code.

tivation from the genetic code. It suggests that these genetic code-like transformations may
have an important role in learning and adaptation. It develops randomized GCTs that can
be used to efficiently learn nonlinear functions from data.

In order to understand why GCTs work, we use the well-known multidimensional Fourier
transform as a representation to study the effect of the GCTs on a function. The next section
reviews the MFT of a function.

2.3 Multidimensional Fourier Transformation and Probabilistically
Orthonormal Representations

In this section, we first review Multidimensional Fourier Transformation (MFT), (identical to
the Walsh transformations in Boolean representations) [8, 4, 12, 21]. MFT is a useful tool for
detailed study of the functions we will be considering as well as the GCTs themselves. Next
we explore the structure of the mean-square error surface in orthonormal representation of the
target and estimated function. We also introduce a probabilistic notion of orthonormality.

2.3.1 A Brief Review of MFT

We use the MF'T to study real valued functions defined on X. Let F be the set of all such
functions. F forms a (][], k;)-dimensional vector space over R. The MFT of a function
f € F is essentially a decomposition of f according to a suitable basis of F, the Fourier
basis.



In the binary case, where k; = 2 for i = 1,...,n, the Fourier basis (also called Walsh
basis) is {15(x) = (—1)i : j € [2]"}. Here j-x is defined as 3"}, jix;, the subscript [ denoting
the [-th component. As can be seen, the basis consists of 2" functions whose indexes are
themselves the elements of the space [2]. It can be shown that it is orthonormal with respect
to the inner product defined on F by (f, g) =1/2" > o f(x)g(x). (The orthonormality of
this basis is a crucial property, as we shall see repeatedly in this paper.) Any f € F can be
represented uniquely as a linear combination of the basis elements: f(x) = > cpon w¥5(x).
The coefficients {wj : j € [2]"} are collectively called the multidimensional Fourier transform
of f. Given a function f, the MFT can be computed using the equation: w; = (5, f) =
= > xepn J (X)¥5(x). This is a direct consequence of the orthonormality of the basis.

In the case when the k;’s take arbitrary positive integral values, the Fourier basis is similar.

With X as defined above, the basis is: {wj( ) = exp (27?2 Yoy Jlk’l‘l) j€ X}. When k; =

2 for [ = 1,...,n, this reduces to basis for Boolean domain defined earlier. The other
expressions are almost the same. We summarize them below for completeness.

=) wir(x) (1)

jex

= (f,y) = X Zf x) 5 (%) (2)

xeX

It is worthwhile to note that the MFT in the non-binary case has complex numbers as its
elements. Note also that an inner product here involves the complex conjugate: (f,g) is

defined as ﬁ > ex F(X)g(x).

2.3.2 Mean Square Error and Orthonormal Representation

This section introduces a probabilistic framework for defining orthonormal representations.
It also studies the structure of Mean Square Error (MSE) surface in this framework. It notes
that the MSE has a nice quadratic shape when the linear basis are orthonormal to each
other.

If f and f are the target function and its approximation respectively the MSE over the
training data set S is defined in the following manner.

MSE = %Z(f(X) — f(x)* = Y (f(x) = F)(f(x) = f(x))

= —Z (Z — wy)ys(x )) (Z(w_k—w—k)wk—(m)
= D (i — ) (i — W) (v, Vi) (3)

where (f, g)s means ﬁ Y xes f(#)g(x) and ; represent Fourier coefficients corresponding



to f If (45, vx)s is close to zero for j # k, this further reduces to

MSE =) (5 — wy) (5 — @5) = Y _ by — wy|? (4)

jex jex

since (15, 1;)s = 1 for any j € X. Note that terms in the error are coefficient-wise indepen-
dent. This means that an error minimization algorithm that estimates the Fourier coefficients
by means of an independent gradient descent along each coefficient performs well. In other
words, gradient minimization of MSE offers accurate approximations of the true coefficients.

We now give a probabilistic characterization of the orthogonality of the Fourier basis.
This gives us a useful alternative way of looking at orthogonality. Consider the property

(hu, Vy) = ﬁ Y oxex Yu(X)hy(x) =0, if u # v, u,v € X. Now,

Pu(x)Yy (x) = exp (27riz %) exp ( 2%22 b l) = exp (27”2 Wlxl)
=

where w is the string defined by w; = (v; — u;) mod k;. Note that w = 0 iff v = u. Thus,
we get

(Wuthe) = 57 =3 () (5)

xeX

Now, assume that points are drawn from the space X using a uniform distribution on the
points of X. Then the expression in Equation 5 is simply the expectation of 1y (x), denoted
by E (1w (x)). It is easy to see now that the basis set {1;(x) : j € X} is orthogonal if and only
if E(¢Yw(x)) = 0 for every nonzero w. Note that the same reasoning shows that (1;, ¥x)s
equals F(1w(x)) where w is suitably defined and the expectation is with respect to a uniform
distribution over S. We will use this view of orthogonality in the following sections.

MFT exposes the underlying interactions among the features and quantifies their influ-
ence on the function value. For example, consider a binary domain with n = 5. Suppose
that w; has a large magnitude compared to the other Fourier coefficients for j = (00101).
This tells us that the interaction between the 3rd and 5th features plays an important role
in influencing the value of the function f. On the other hand, if wj is non-zero only for
j € {(00100), (10000)}, the function is a first order (linear) function.

The MFT can also be used to quantify the degree of nonlinearity of a function in F (as can
representations in terms of other bases). The linearity or nonlinearity of a function defined
on discrete spaces is difficult to quantify because there is no concept of (even piece-wise)
differentiability. In this paper we quantify the nonlinearity of discrete functions in terms of
a property of its Fourier spectrum.

We define the order of a function f as the order of the highest nonzero Fourier coefficient
of f. We use the notation ord(f) to denote that. In this paper we choose to quantify the
nonlinearity of a function using its order. In other words ord(f) is the degree of nonlinearity
of function f. We say a function f strictly more nonlinear than another function g if and
only if ord(f) > ord(g).

We also use a relaxed concept of the degree of nonlinearity of a function. Let us define
the distance between two functions f,g € F over a subset S of X as the squared error:
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Ds(f,9) = Yes (F(x) — g(x))". Define
ord(e, Dg, f,S) = min {ord(g) : g € F, Ds(f, g9) < €} (6)

That is, the ord(e, Dg, f,S) is the order of the lowest order function g that approximates f
“well”. We call a function g that satisfies Dg(f, g) < € an e-approzimator of f. Of course,
this depends on the set S, but we do not include it in the notation. Now, note that

Ds(fg) = Y (fx) —gx)*=)_ (Z(%‘ - ﬁj)%‘(x))

- Z (Z (a5 — B) (o — ﬁk)wj(x)wk(x))
= 15137 (05— B)* Wy u)s + 15| S (g — i) (o — i) (W, )
jex jAREX

If S = X, that is, the training set is the whole space, this expression reduces to Dx(f, g) =
[ XD Zex (05— 5;)? because of orthonormal basis. Hence Dx(f, g) < ¢ < > jex (05 — B)? <
¢/|X|. It is obvious that the best low-order approximation can be constructed by letting
B; = «; for low-order j. We start at the lowest order and assign fB; = «;. We keep going
until the error between the function g represented by the f;’s falls below €/|X|. (This lets us
determine the value of ord(e, Dg, f,S). We may need to do some additional work selecting
the coefficients of the highest order in g in order to find the best e-approximator of order
ord(e, Dg, f,S).) In other words, the best e-approximator can be found by discarding low
magnitude, high order coefficients.

The value ZjeX aJ? is called the energy of the Fourier spectrum {o4 : j € X}. It is also
called the energy of the function corresponding to the Fourier spectrum. Thus, the value
D iex (o5 — 3;)° of the last paragraph is the energy of the function f — g. Note that if
S # X, Ds(f,9) # |52 e (05 — 3;)° unless (15,%)s = 0 if j # k and 1 if j = k. Thus,
this property is a desirable one.

We are now in a position to formally define codebooks and genetic code-like transforma-
tions, and study their properties.

3 Genetic Code-Like Transformations

In this section, we show how a feature space can be transformed using a codebook in order
to construct a “more” linear representation of a function with respect to its natural repre-
sentation . Formally, a GCT, introduced in [14, 17] is a randomized transformation from an
n-dimensional space X to a kn-dimensional space X'. It works by using a transformation
(such as the one in Table 2) to produce k features for each feature in the n-dimensional space.
A set of k-dimensional codons corresponds to every possible value of each feature. This cor-
respondence is called a codebook. In Table 2, the codons corresponding to a feature value
of 0 are 100, 000, 001 and 010. Thus, the string 0000 in the 4-dimensional space could get
mapped to 100000100010 or 100100001001. It cannot get mapped to 111100000010, because



the codon 111 does not correspond to a feature value of 0. On the other hand, the string 1000
could be mapped to 111100000010. A codebook refers to the set of codons corresponding
to each feature value in the n-dimensional space, together with a probability distribution on
each such set of codons. An important characteristic of these transformations is that they
are one-to-many transformations. In particular, the transformations are invertible, as there
is exactly one string in the n-dimensional space that could give rise to a particular string
in the kn-dimensional space. In this paper, we investigate properties of Boolean codebooks
on Boolean spaces. That is, we only consider spaces X of the form [2]". The codebooks
considered are ones in which there are only two “nucleotides”. That is, the features of the
codons are Boolean. Thus, the transformed strings in the kn-dimensional space are also
Boolean strings.

A function f : X — R together with a codebook induces a function on the kn-dimensional
space as follows. Let 7 : [2]*® — [2]" be a function that returns the protein space string
corresponding to a kn-dimensional string. The function induced on the £n-dimensional space
is defined as g(x') = f(n(x’)). The induced function has several interesting properties that
we will study using its Fourier transform.

We first note that the induced function g depends on the codebook through n. We are
interested in choosing a codebook that reduces the nonlinearity of the function. That is,
we want a codebook for which g is relatively more linear than f in the sense introduced in
Section 2.3. To see how to achieve this, we consider a Fourier coefficient w; of g. Now,

SRR IRCICEE PP WRETCES DLW

x'€[2)kn mx'en~1(x) xe[2]" x'en~!(x)

(Here n!(x) is the inverse image of the point x under 7, or the set of all points in [2]*" that
7 takes to x.) Note that this expression depends on j only through > . ¢, 10 ¥5(x'). As
mentioned in Section 2.3, we would achieve linearity if the energy of all partitions with large
order is low — if the orthogonality property mentioned at the end of Section 2.3 holds. In
Section 6, this paper does show how this problem can be alleviated by intelligently selecting
codebooks. Note that > ¢ 1, ¥j(x') is just E(5(x'(x))), up to a constant. Here x'(x)
represents the random string to which x is transformed by the GCT. (In other words, x'(x) is
a Boolean-string-valued random vector, whose probability distribution is determined by x.)
Thus, we would like to make E(1;(x'(x))) as small as possible. The next section (Section 4)
studies factors affecting this quantity, and Section 5 identifies the key problems that need to
be solved in order to select a codebook that does so. In addition, we prove in the next section
that E(¢;(x'(x))) is a decreasing function of the order of j, apparently at an exponential rate.
This is a necessary condition for decreased nonlinearity, but not a sufficient one. The energy
of partitions of a certain order needs to be studied in greater detail for a theoretical proof of
nonlinearity reduction. However, this paper does not address the energy issue. It explores
the variation of the magnitudes of the individual coefficients. It derives analytical results to
show that randomized GCTs create a representation where the magnitudes decay very fast
to zero as we increase the order of the coefficients and thereby satisfy one necessary condition
for nonlinearity reduction. It uses experimental results to demonstrate that nonlinearity is
indeed reduced dramatically by applying randomized GCTs.

The linearization property of the codebooks is extremely useful, as we shall see throughout
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Protein feature mRNA codon
1 100, 000, 001, 010
111, 101, 110, 011

Table 2: A binary GCT. Each bit in the protein space maps to 3 bits in the mRNA space.

the paper. Although the classifier obtained is unlikely to be a perfectly linear classifier, any
learning algorithm that is biased towards linearity is likely to learn better after the GCT
is applied to the original data. The perceptron [28, 23] and decision trees [26] are just two
examples of such classifiers. The perceptron is essentially a linear separating hyperplane
of the form 6y + 2?21 0;xz; = 0, for which the d;’s are learned using a specific iterative
learning rule [31] based on gradient descent. Linear separating hyperplane classifiers for
which the coefficients are learned using other optimization techniques have also been used
for classification. The coefficients of orders 2 and higher in the MFT of any linear classifier
of this type are all zero. Decision trees are very well known and have been used with great
success for a wide variety of data mining problems. Decision trees with binary classes can be
viewed as real-valued functions over their inputs. Thus, it is possible to calculate their MF'T
[25]. It turns out that the MFT of decision trees built using C4.5 or ID3 has an ezponential
decay property [25, 24, 22]. Thus, decision trees are good approximations for functions
whose Fourier coefficients display a fall-off for higher order coefficients. We shall see in the
experiments section of this paper that the GCT does induce functions g that are learned
well by these algorithms.

We next present a further motivation for the study of E(y;(x'(x))), with a focus on
gradient descent minimization of the squared error of a function. Suppose the sample in the
original space is S C X. The elements of S are transformed to S’ C X', where |S| = |S'|. As
mentioned in Section 2.3, it is easier to calculate a good approximation to g if (15, ¥x)s =~ 0
whenever j # k. We showed in Section 2.3 that (v;,%x)s = E(1) for appropriately chosen
w. The expectation is w.r.t. a uniform distribution over S’. Now,

E(pw) = <|S,|Z¢w ) (|S|wa ) |S|ZE¢W

x/'eS’ x€eS x€S
Thus, we would like to find a codebook that minimizes the magnitude of the expectation
E(¢w(x'(x))). The following two sections attempt to achieve the goal of minimizing this
expectation by studying probabilistic properties of the codebooks.

4 Some Probabilistic Properties of Codebooks

We first express the expectation of the last section in terms of a probability. Since we are in
the Boolean case, 1);(x’(x)) can take only the values 1 and -1. Thus, E(y);(x'(x))) = 1—-2P_4,
where P_; is the probability that 1;(x’(x)) equals —1. Since the random string x'(x) depends
on the codebook and the string x in the original space, ¢;(x'(x)) depends on three factors:
the codebook, the specific partition j € [2]*", and the string x in the original space that is



being transformed. Thus, we are interested in the behavior of the probability

P_1(j,x) = P((x'(x)) = —1) (7)

We have placed emphasis on both j and x as factors affecting the value of this probability,
but the choice of codebook itself does affect this probability. Having E(;(x'(x))) = 0 is
equivalent to having P_;(j,x) = 1/2. Thus, we try to understand the conditions under which
P_,(j,x) approaches 1/2 closely.

To understand this probability, we first note that ¢;(x'(x)) = (=1 = [T"_, (=1)}**=®

=1
where x/, (x) is the k-bit codon in x'(x) corresponding to the a-th bit of the lower dimensional
point x. Thus it is a random Boolean string. Although we have used the notation x (x) to
show dependence on x, we note that x/,(x) depends only on the a-th feature of x. j, is called
a subpartition; it is simply the sub-string of j comprising the features numbered ko through
ka + k — 1. In other words, it comprises those locations of the string j that correspond to
x!,(x). This equation implies that ¢;(x'(x)) = —1 if and only if (—1)%*®) = _1 for an
odd number of features of x. Note, however, that in the cases where j, is the zero string,
we have (—1)3“"‘3(") = 1. Suppose there are ¢ values of o for which j, is not the zero string.
This is called the order of the reflection of j [17]. Further, assume without loss of generality
that j, is not the zero string for « = 1,2,...,¢. Then the probability (7) can be written as
follows:

P(number of —1s is odd) = Z H P, H (1-P,) (8)
AC g7 oclils
|A| odd

We now show that under certain conditions, this probability converges to 1/2 as the order of
the reflection ¢ — co. A subtle point to note here is that we are assuming a fixed partition j
in [2]¥" throughout the following analysis. Thus, ¢ cannot actually become arbitrarily large;
in particular, ¢ < kn. The rate at which P_;(j,x’) approaches 1/2 is dependent on the
codebook.

Equation 8 can be made more manageable by assuming that the probabilities P, take r
distinct values. Note that since there are 2k — 1 different possible nonzero values for sub-
partitions j,, P((—1)"™* = —1) can take 2¥ — 1 distinct values. (Of course, assuming that
the lower dimensional string is fixed.) r is the number of distinct values assumed by the
probability among those sub-partitions present in j. Thus 1 < r < ¢. To simplify notation,
we use: BP(p,q,1,7) =[]}, (‘fg)pl;(l —pg)®%~ts. Here q; + -+ + ¢, = q. qg is the number
of subpartitions for which P, = pg. g is the number of —1’s actually occurring among those
subpartitions for which the probability is ps. We can rewrite the probability P_;(j,x) as
follows.

PLG,x)= Y,  BP(p,qlr) 9)
{1s}:21 " 1godd

We present here a proof that this expression converges to 1/2 as ¢ — oo, provided
gg — oo for some 3. We note here that there are many possible modes of behavior for the
gps as ¢ — oo, ranging from all of them diverging to oo to none of them diverging to oo.
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Note that for r = 1, the above expression reduces to w, which converges to 1/2

as ¢ — oo. Assume w.l.g. that [, is the component of 1 that diverges to oo. We can show
that
] 1

P_1(j,x) — 3 (10)
The rationale behind this observation along with the detailed steps of the derivation can
be found in Appendix I. The analysis presented in Appendix I does not prove that the
convergence holds in the case when none of the ggs diverge to oo, our experiments (see for
example Figure 1) indicate that this is true as well. We note here that the convergence
of P_1(j,x) to 1/2 is exponentially fast. For the case r = 1, it is exponential: P_(j,x) =
w, which shows this. When r > 2, the proof by induction shows that it is exponential
in ¢.. Now, large values of ¢ are not in an exact relationship with large values of the order,
or number of nonzero bits in, j. However, high-order strings j do tend to correspond to
large values of q. Thus, the above proof tells us that the reduction in the value of a Fourier
coefficient is roughly exponential in the order of the partition j.

As mentioned earlier, this shows that there is a reduction of nonlinearity in the sense
of Section 2.3. Note, however, that we are not able to control ¢ — each string j € X' has
a fixed value of q. Thus, while the above analysis gives us an idea about the behavior of
the probability, it does not tell us how to construct a codebook that will help us achieve
P_1(j,x) =~ 1/2. In order to tackle that problem, we note that P_;(j,x) is a continuous
function of the pgs and converges to 1/2 as pg — 1/2. This is shown in Figure 2, where
the rate of convergence is higher when the probabilities approach 1/2. Thus, the ideal we
should aim for is to have pg ~ 1/2 for every subpartition of j. The next section deals with
the problem of constructing codebooks that achieve this goal.
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5 Codebook Design Factors

Codebooks that minimize F(1¢w(x'(x))) are desirable for the current application. We first
need to find out the best possible solution that we can ever get. This section explores
this question and concludes that there exist no GCT that satisfies the ideal scenario where
pp = 1/2 for every partition. However, the analysis shows that as we increase the codon-size,
the space of all GCTs become increasingly populated by codebooks that are close to the ideal
scenario. Therefore, for codebooks with large codon-sizes a randomly generated GCT may
have the desirable properties.

In order to study the behavior of codebooks at the subpartition level, we first introduce
some notation. We also introduce the parity matriz, which allows for an efficient formulation
of the problem.

We would like to create a codebook {Cy, C1}, such that Cy U C; = [2]F, where C is the
set of codons corresponding to a bit value of 0 in the protein space and C is the set of
codons corresponding to 1. In order to be able to focus on subpartitions, we shift notation
a bit. In the remainder of this section, j denotes a subpartition and x denotes a codon.

As mentioned at the end of the last section, our goal in the design of a codebook is
7(j,7) = P(¢;(x) = —1|b = i) = 1/2, where b denotes a single feature in the protein space,
i denotes its value, and x is a random k-dimensional string (the codon). Let u(j,¢) denote
the expectation E[¢;(x)|b = i]. Note that this is defined for a single subpartition and codon,
and is different from the expectation of the last section, which was for the entire partition.
The relation p(j,i) = 1 — 27(j,7) holds. The random bit-string x is chosen according to the
distribution assigned to strings in Cy and C}.

There are several possible directions for optimization of the codebook:

1. We can try to achieve p(j,7) = 0 for most values of j. That is, u(j, i) may be large
(close to 1) for a few subpartitions j, but is mostly equal to 0.

2. We could choose a codebook that minimizes max; |(j,7)|. That is, we may have many
non-zero expectations for individual values of j, but in no case is the deviation severe.

3. We could try to minimize } . [u(j,4)| or Y ;(u(j,7))*. These give a more balanced
codebook. The former gives equal weights to all nonzero expectations, whereas the
latter penalizes large nonzero expectations more than small ones.

We next introduce the parity matriz, which helps in analysis of the codebooks. In what
follows, matrices and vectors are represented in boldface. The parity matrix is a matrix
whose elements represent the parity between x and j. We define the parity matrix A, for
k-bit codons as Ay = ((¢5(x)));x- Thus, each row corresponds to a subpartition and each
column corresponds to a codon. We assume that the partitions and codons appear in their
natural order. The parity matrices for codons of orders 1 and 2 follow.

N ; T loo 01 10 11

A | ‘0 1 A 00 1 1 1 1
1= 0 1 1 2= 01 1 -1 1 -1
1 1 -1 10 1 1 -1 -1
11 1 -1 -1 1 |

12



The parity matrix has many interesting properties. It is nonsingular: note that, in general,

Apot | Ay
A, =
* { Apr | —Ax }

Non-singularity of Ay can be proved inductively using this identity. Also note that the
element-wise product of two rows of A, always results in a row of Ay.

We now re-state the codebook design goals in terms of the parity matrix. Note that the
first row of Ay, corresponding to the partition 00...0, is not significant. Partition the parity
matrix as follows:

By is a (2 — 1) x 2F matrix. Each row of By corresponds to a nonzero subpartition. Selection
of a codebook is reflected in the matrix by first post-multiplying by a permutation matrix Py,
(thus permuting the columns) and then partitioning the resulting matrix. In other words,
with C, = B;Py, selecting a codebook leads to a partitioning of C; as C, = [Cg : C}C],
where CY has order (2¥ — 1) x p and C}, has order (2F — 1) x (2F — p). Here p is the size of
the set of codons corresponding to a bit value of 0 in the protein space, and the columns of
C¢ correspond to the codons that a bit-value of 7 is transformed to for s = 0 or 1.
Assume that we use the individual probability distributions (f?, f3, ..., f7) and (f{, f3, ..., fo )

on the codons corresponding to 0 and 1 respectively. Thus f;f > (0 and Zj f} =1fori=0,1.
Define fo = (f7, f3, .. fy)" and fi = (f{, f3, ., f_,)"- Then the elements of the vectors

C.f; equal the lists of conditional expectations yu(j,¢) for ¢ = 0, 1. The design goals can be

restated as minimizing ||C%f;|| for a suitable definition of the norm ||-||. In particular, min-
imizing ||C%f;|| corresponds to optimization 1 if || - || is the counting norm, to optimization 2
if || -|| is the £, norm, and to optimization 3 if ||- || is the £; or ¢, norm. (The counting norm

of a vector is defined as the number of non-zero components of the vector, and is not strictly
a norm since it does not satisfy the linearity property. This does cause problems with the
analysis of the first design goal. However, as we show later in this paper, design goal 1 is
easier to achieve than the other design goals and does not require the use of the norm.) We
observe that in the language of matrices, selecting a codebook translates to choosing the
permutation matrix Py, the codon-set size p, and the distributions f;.

A natural question is: can we select a codebook that achieves ||CLf;|| = 0?7 We now state
a lemma which shows that this is not possible.

Lemma 1 (Impossibility of Finding a Perfect Codebook) For any choice of p(p # 0
or 2%), Py and f;, we have Cif; # 0 for one of the partitions (corresponding to 0 or 1).

Proof: See Appendix II. B

Thus, it is not possible to construct a perfect codebook. Given this, the next natural
step is to optimize the codebook by minimizing the norms described above with respect to
choice of p, P, and f;. The next section describes methods of doing this for some of these
norms.
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Protein feature mRNA codon
0 000, 001, 010, 011
1 100, 101, 110, 111

Table 3: A 3-bit codebook that minimizes the counting norm.

6 Minimizing the Norms to Optimize Codebooks

The methods for minimizing the various norms are different. The easiest to minimize is the
“counting” norm, which is described in the next subsection.

6.1 Minimizing the Counting Norm

We know that Cif; cannot be the zero vector. Thus the smallest possible number of nonzero
entries is 1. We show here that it is possible to find a codebook that yields a nonzero
expected value for just one partition j by giving a method for constructing such a codebook.

We specify the codebook in terms of its codons as follows. Assume that the codon size is k.
We assign the codons for a bit value of b to be the elements of the set T, = {x € [2]F|x¢ = b}.
Here x( refers to the first bit of the binary string x. Thus, this is a symmetric codebook
(one for which the number of codons for each “amino acid” is the same). As an example,
the codebook for codons of length 3 is given in Table 3.

6.2 Minimizing the ¢/, Norm

As mentioned before, the £, norm penalizes large deviations from 0 more and small deviations
less. This is required in some situations. Minimizing the £ norm is simplified by the fact that
the norm is invariant under choice of the minimization parameters (p, permutation matrix
P; and f;), as proved in the Lemma below. As a consequence, any codebook is as good as
another for minimization of the /5 norm. We first introduce a slightly different formula for
the norm that we are trying to minimize.

As stated before, we would like to minimize the norm ||C.f;||o. Notice that this expression
is the same as the expression ||Cyf||o, where f is a 2% x 1 vector with an added restriction
(either the first p components or the last 2¥ — p components are zero, and ), f; = 1, where
fi here represents the i-th component of f).

Lemma 2 (Invariance of the /, Norm) The norm ||Cif||2, where Cy = ByPy, is inde-
pendent of the choice of p, Py and the probability vector f.

Proof: See Appendix II.
Thus, minimization of the /5 norm is not an issue. We proceed to a more interesting
norm, the /., norm.
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Figure 3: Distribution of the /., norm for codon sizes 3, 6, and 10. These were estimated
by randomly generating 60 codebooks of each order and creating histograms of the /., norm
for each order.

6.3 Minimizing the /,, Norm

As mentioned in the last section, minimizing the /., norm means minimizing the maximum
expectation x(j,7). That is, we wish to find the codebook whose £, norm equals

min max |u(j,?
Lip max k(3,9
i€{0,1}

Figure 8 shows how the norm of the optimal codebook behaves as the codon size increases,
assuming a uniform distribution on the codebook corresponding to each feature in the original
n-dimensional protein space, and p = 2¢¥~!. The /£, norm decreases rapidly with the size
of the codebook. Finding an optimal codebook may be difficult in this case because of the
combinatorial optimization problem involved, viz. finding a number p, a permutation matrix
Py and a distribution f; that optimize the norm. However, Figure 3 indicates that searching
for near-optimal codebooks using a randomized search algorithm may yield near-optimal
results. In addition, this is not an expensive process because near-optimal codebooks once
found can be stored in a table, eliminating the need for expensive re-calculation of these
codebooks.

This section presented methods of finding optimal and near-optimal codebooks with
respect to three different criteria: the counting norm, the /5 norm, and the ¢,, norm. Op-
timizing these norms gives us codebooks that make the vector of codon-wise probabilities
approach 1/2 more closely. As pointed out in Figure 2, this leads to faster convergence of
P_; (see Section 4) to 1/2. The next section shows simulations and experimental results
performed using the codebooks found using the techniques of this paper.

7 The Perceptron and the XOR Function

Section 4 noted that the randomized GCTSs construct a representation with reduced nonlinear
dependence among the features, and that the reduction grows exponentially with respect to
the order of the corresponding partition. In this section we test this hypothesis in the
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following manner. We consider the Perceptron [28], a linear classifier, and the nonlinear
XOR problem. An n-bit XOR problem is defined as follows:

f(x) = 1 If x contains odd number of 1-s
| 0 Otherwise.

The Perceptron cannot learn the XOR problem [23] since it is a linear classifier. However,
we apply Perceptron on a representation of the XOR constructed by randomized GCTs
and test its performance. If the higher order nonlinearity is sufficiently reduced by the
transformation then the Perceptron should be able to learn the problem. In fact that is
exactly what we observed.

Our experiments apply the Perceptron to learn the XOR in a representation constructed
by the randomized GCT-s. During the learning stage we present the domain members to
the Perceptron. Once the learning is over the trained Perceptron is tested on the domain
members. In order to measure the performance of a Perceptron we define mis-classification
ratio as the ratio of the number of mis-classifications and the number of entries in the
testing data set. For all the experiments reported here, the training data set is drawn from
the entire domain using uniform distribution. The testing data set is also comprised of
the entire domain. Table 4 shows the GCT-s used for the experiments reported here. We
consider three different code-books with different codon sizes. Codons are assigned with
uniform probability.

Although the representation of the Perceptron uses the input Boolean features them-
selves, not their Fourier transformation themselves, the observations remain valid. This is
because x.j = w for any order-1 partition j. In other words, for a linear representation,
the input features are related to their respective Fourier transformation through a linear

transformation, comprised of a translation and a scaling.

01, 10 0 | 001, 101, 110, 111
100,11 1 | 000, 010, 011, 100

0001, 0110, 0111, 1010, 1100, 1101, 1110, 1111
1 | 0000, 0010, 0011, 0100, 0101, 1000, 1001, 1011

Table 4: Three code books defined by 2, 3, and 4-bit codons.

All the experiments consider code books with equal number of codons for both 1 and
0. Our analysis does not require that. It was just one of the experimental choices that we
made. We plan to report results with unequal codon distributions in the future.

Figure 4 (left) shows the average mis-classification error of the Perceptron with no trans-
formation. Figures 4 (middle) and (right) show the performance in a representation that
uses GCT-s with codons of size two and four respectively. The average error is computed
over 10,000 independent sessions. These figures show that a three-bit XOR problem can be
learned almost perfectly using the code-book of size two. The error-ratio grows up to 0.5
as we increase the problem size. The figures also show that the code-book with codons of
size four is capable of learning up to five-bit XOR problem accurately. The following section
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Performance of perceptron for X-OR problem Performance of perceptron for X-OR problem
without GCT GCTis applied ( codon size - 2)
Performance of perceptron for X-OR problem
GCT is applied ( codon size - 4)

Order of X-OR problem Order of X-OR problem
2 4 6 8 10
Order of X-OR problem

Figure 4: Average mis-classification ratio vs. problem size (number of input variables) for
(left) no transformation, (middle) code-books with codon size two, and (right) code-books
with codon size four. The reported result is an average of 10,000 independent runs.

considers an additional set of experiments that demonstrate the performance of the proposed
algorithm for larger problems with bounded nonlinearity.

8 Learning Problems with Bounded Nonlinearity

The XOR functions considered in the previous section are fully nonlinear where all the fea-
tures interact with each other. Learning a function like XOR requires observing all the
domain members. However, for function with only a subset of nonlinearly interacting fea-
tures, all domain members may not be needed for learning. In other words, a fraction of
domain members can be used for learning the model. This section presents experiments with
such boundedly nonlinear functions.

8.1 Disjunction of Multiple XOR Problems

We have noted earlier that the code-book of fixed codon size is capable of classifying XOR
problem of certain order (Figure 4) accurately. However to understand the effect of GCT on
nonlinearity, we need to consider problems with lesser nonlinearity (then XOR).

Consider the following disjunctive function constructed using a collection of smaller XOR
functions: ¢(x) = f(x1) V f(x2) V...V f(xm) where each f(x;) is defined as follows,

F(x:) = 1 If x; contains odd number of 1-s
Y71 0 Otherwise.

Our experiments apply the Perceptron to learn a new function, ¢ constructed by the random-
ized GCT-s. Earlier in the case of XOR, during the learning stage we presented the entire
domain member to the Perceptron and once the learning is over the trained Perceptron is
tested on the domain members. However as we are considering a less nonlinear function ¢

17



Testing performance of perceptron for problems with 2-bit nonlinearity Testing performance of perceptron for problems with 3-bit nonlinearity

" problem size
problem size

Figure 5: Average testing mis-classification ratio vs. problem size (number of input variables)
with two (left) and three (right) bit nonlinearity for code-books with codon size three. The
reported result is an average of 1,000 independent runs.

Training performance of perceptron for problems with 2-bit nonlinearity Training performance of perceptron for problems with 3-bit nonlinearity

T T T T T T T T
8 10 12 14 2 4 6 8 10 12 14 16
problem size

Figure 6: Average training mis-classification ratio vs. problem size (number of input vari-
ables) with two (left) and three (right) bit nonlinearity for code-books with codon size three.
The reported result is an average of 1,000 independent runs.

here, instead of presenting the entire domain to the Perceptron we present a random subset
of the domain member to the Perceptron and for testing we use rest of the domain members.

8.2 Experimental Results

Figure 5 presents the average testing mis-classification error of the Perceptron trained over
a representation constructed by the code-book with codon size three and using only 60% of
the domain member. The average error is computed over 1,000 independent trials. The top
left most figure shows that a ten bit ¢-function with two bit nonlinearity, can be classified
almost perfectly using only 60% of the domain member and three bit codon. The graph on
the top right shows similar testing error variation for the three bit nonlinearity, except that
the size of the ¢ -function that can be properly classified is twelve. The training error is
reported in Figure 6. It is low for all cases.
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Testing performance of 8-bit problem (2:bit nonlinearity), with increasing training data size Testing performance of 10-bit problem (2-bit nonlinearity), with increasing training data size

is applied (codon size - 3) GCT is applied (codon size - 3)

T T T T T
10 30 50 70 90
percentage of data used for training

T T T T T
10 30 50 70 90
percentage of data used for training

Figure 7: Average testing mis-classification ratio calculated over 1,000 learning sessions with
different percentage of the data in use for different problem sizes of order eight (left) and
ten (right) respectively.

Having investigated the effect of GCT on a simplified nonlinear problem, another inter-
esting question is about the percentage of training data required to classify ¢ accurately.

Next we present experimental result for the function ¢ with fixed number of nonlinearly
interacting features per sub-function (f(z;)). The variation of accuracy is presented with
respect to increasing fraction of the entire domain used to train to the Perceptron. Once
the learning is over trained perceptron is tested on rest of the domain members. Figure 7
presents the average mis-classification error of the Perceptron trained over different fraction
of the domain member, starting from 5% to 90% of the actual data set, keeping nonlinearity
constant (2-bit). The average testing error is computed over 1,000 independent sessions. The
left most figure shows to classify 8-bit problem (¢) accurately we need 60% of the domain
member. The error ratio comes down to 8% when 60% data is in use. The graph on the
right shows a similar error variation for 10-bit problem size, except for the fact that we need
at least 30% of the domain member to classify it accurately.

The set of simulations in the next study consists of a set of experiments on an XOR
problem of varying degrees of nonlinearity, from 2 bits to 8 bits. The XOR is taken over all
the bits. For this set of experiments, we computed the training error of the perceptron. The
performance of a perceptron learned on the data, transformed using codons of different sizes,
is shown in Figure 9. As can be seen, there is a clear decrease in the training error as the
order of the codon is increased, for all the problems. This indicates that it becomes easier to
approximate the transformed function with a linear function as codon size increases. Also
as expected, XOR problems of higher order are more difficult to approximate using a linear
function, but these too show a decreasing trend in the training error.

Figure 11 shows the extent to which a codon of a certain size is useful. It contains two
plots: one for an n-bit XOR problem on an n-bit input, and one for an n/2-bit XOR problem
on an n-bit input. The n-bit XOR, of n inputs is computed by XOR-ing all n bits. The n/2-
bit XOR on n bits is computed by computing the disjunction of the XORs of the first n/2
bits and the last n/2 bits. This plot is intended to show what codon sizes are required if we
are to approximate the function on the higher dimensional space induced by the GCT with
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Codebook norm versus codon size Errors of XOR problems of different order
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Figure 8: The £, norm of near-optimal code- Figure 9: Perceptron errors on transformed
books of varying orders. XOR problems of varying order.

a linear function. For each codon size, the graph plots that value of n for which the error
exceeds 0.3. There is a clear increasing trend for this value as the size of the codon increases,
which tells us that we can solve more difficult problems by using a larger codon size.

These results can be explained from the perspective of the concept ord(e, Dg, f,S), de-
fined in Section 2.3. Let us agree to call a function e-linear if its ord(e, Dg, f, S) = 1. That is,
we call it e-linear if it can be approximated well by a linear function. Then Figure 9 can be
interpreted as showing the e for which e-linearity is achieved in the higher dimensional space,
for different codon sizes. Thus, for an order 2 XOR problem, 0.2-linearity is achieved in the
higher dimensional space with a codon size of 2. For an order 4 XOR problem, 0.2-linearity
is achieved with a codon size of 3. For an order 6 XOR, it is achieved with a codon size of
8. Figure 11 shows the largest problem size for which 0.3-linearity is achieved using a codon
of a specified size. For an n-bit XOR, a codon size of 3 gives 0.3-linearity up to problems of
size 6. A codon size of 4 gives 0.3-linearity up to problems of size 7, and so on.

8.3 Additional Experiments

This section reports additional classification experiments using the GCT-based representa-
tion construction technique.

Classifying Tomography Images

This set of experiments considered a dataset describing diagnosing of cardiac Single Pro-
ton Emission Computed Tomography images (available from UCI Machine Learning Data
Repository). The data consisted of 267 samples of 22 binary features and 1 binary classifi-
cation each. We compared the performance of perceptrons on the both the untransformed
data and the data transformed by codebooks with codons sizes ranging from 2 to 20. 100
trials were done for each size of codebook. Our results show a clear reduction in nonlinearity
resulting from the application of the GCT. The Perceptron learned the untransformed data
within an error rate of 20.5% or 0.205. Figure 10 shows the performance of the perceptron
on the transformed data. This particular experiment reports training and testing using the
complete data set. However, we have also performed experiments with different proportions
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Figure 10: Average testing mis-classification ratio calculated over the complete data set for
different codon sizes.

of the data set and noted similar results. Codebooks with codons of size 2 exhibited a MSE
of .191. where codebooks with 10 bit codons exhibited a MSE of .073, and codebooks with
20 bit codons showed a MSE of only .0006.

Classifying Stock Market Data using GCTs, Perceptrons, and C4.5

The data considered in this set of experiments is stock market data, parsed from various
web-sites publishing stock quotes. The data downloaded consisted of quotes of stock prices
for various scripts, along with several continuous and discrete valued features of interest.
The stock data was pre-processed into Boolean attributes, with the Boolean classification
being equivalent to “up” or “down” — that is, a rise or a fall in the value of the script.
Two different experiments were tried on this data. Performance of a simple linear classifier,
the perceptron, was compared to C4.5 in the first set of experiments. The data for this
set of experiments had 25 features in 97 rows. The classification accuracy of C4.5 on the
untransformed data was found to be 12.4%, or 0.124. There is a significant reduction in the
error, which disappears completely at a codon size of about 4. This indicates that the GCT's
enable us to approximate the function with a linear function with almost zero error for this
small data set. While this result was interesting, it should be noted that the data was too
small.

The second experiment conducted on the stock data used a larger data set, with 6390
rows and 19 features. A perceptron run on the untransformed data produced an error of
37%. C4.5 gave a training error of more than 16% when applied to the untransformed data.
The results when C4.5 was used on the transformed data are summarized in Figures 12,
13 and 14. The first point in Figure 12 (i.e. the one corresponding to a codon size of 1)
represents the performance of C4.5 on untransformed data. This figure shows the training
error of a C4.5 tree learned on transformed data as a function of the size of the codons
used to transform the data. The error shows dramatic improvement with increase in codon
size. Figure 13 shows how the size of the decision tree (number of nodes) changes. The tree
size exhibits an interesting pattern, increasing drastically up to a codon size of 3, and then
falling off gradually. The depth of the trees built is shown in Figure 14. As is seen from
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Figure 12, the error of all trees learned using transformations with codon sizes greater than
4 is less than 0.05. Tree depth does not change significantly, as seen in Figure 14. As noted
elsewhere [25, 24|, the depth of a decision tree and the magnitude of its Fourier coefficients
are intimately related. In particular, a decision tree has depth d if and only if all its Fourier
coefficients of order greater than d are zero. Thus, if the error of a decision tree of depth
d is less than €, it means that ord(e, Dg, f,S) < d, where f is the function represented by
the decision tree. We conclude here that ord(0.05, Dg, f,S) is less than 12 when codons
of size 4 and above are used. The same two graphs also tell us that ord(0.04, Dg, f,S) is
less than 11 when codons of sizes 7 and above are used. The ord(e, Dg, f, S) of the induced
function decreases as the size of the codon used increases. In addition, this graph represents
an increase in accuracy without a corresponding increase in nonlinearity. This suggests that
for a fixed value of the error, one would get a shallower C4.5 tree (demonstrating a decrease
in nonlinearity).

9 Summary, Future Work and Conclusions

This paper extends the work on randomized GCTs begun elsewhere [14, 17]. Results in these
works indicated that it was possible to obtain a relative linearization of nonlinear functions
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using randomized transformations resembling the translation process in nature. This paper
is an attempt to study the effects of choosing a particular codebook on the linearization
of a function under a systematic theoretical framework. The theory is developed using the
MEFT for representing functions defined on discrete spaces. An examination of the effects
of codebooks on orders of nonlinearity is initially conducted at a macroscopic level (see
Section 4). It is shown that the overall reductions in nonlinearity depend heavily on the
properties of the codebooks at the level of individual codons. Probabilistic properties of
codebooks are then studied at this level to come up with a set of criteria for good codebooks.
Section 6 offers several techniques for finding codebooks according to the criteria in Section 5.
Experimental results corroborating the claims in the paper, using the perceptron and decision
trees, are then presented.

While this paper addresses many issues in codebook design, several topics still need to
be addressed:

1. Deeper investigations into the properties of the expression in Equation 9 may yield
better insights as to what properties of the probability vector p yield the most uniformly
low values for P_;(j,x).

2. A better and more efficient method for finding codebooks optimized for the £,, norm
needs to be found. The method presented in this paper essentially exploits the fact
that the probability of finding a good codebook is high, and is a simple random search.

3. Note that this paper does not claim that the GCTs construct a more efficient (complexity-
wise) representation. GCTs construct a representation that can be solved using linear
techniques. An analysis of the energy distribution of the spectrum is essential for
identifying the cases where the new representation is more efficient.

4. While the results of this paper do indicate that GCTs linearize functions, techniques for
generalizing the model built using the transformed data to the entire lower dimensional
domain need to be studied. This may involve some derandomization (i.e. finding a
function that is relatively deterministic, yet retains crucial properties of the randomized
GCTs). An alternative approach is to find a way to use the model learned on the
transformed data set to induce an accurate model on the entire lower-dimensional
space.

5. Our use of GCTs currently considers only discrete data. It is worthwhile to inves-
tigate the applicability of randomized GCT-like techniques to functions defined over
continuous feature spaces and mixtures of continuous and discrete feature spaces.

6. The exact effect of GCTs on the Fourier spectrum of a function needs to be studied in
greater detail. To illustrate this, we consider the experiments on stock-market data,
where GCTs produce almost complete linearization for smaller data sets, but do not
produce complete linearization for larger data sets, for most of the codon sizes that
we have experimented with. The underlying noise and non-stationarity of the stock-
market data may have a role in that. As explained in Section 8, it is clear that some
degree of linearization is taking place. An identification of the extent of linearization
that takes place for a given set of data would prove useful.
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In summary, this paper presents an introductory analytical treatment of a promising new
linearization technique. There are many areas that are as yet unexplored, and further steps
need to be taken before the randomized GCT technique can be used as a machine learning
and data mining tool.
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Appendix: 1

Detailed derivation of Equation 10:

P.G,x) = Y, BP(p.qlr)
1Y} lgodd
qr -
= > BP(p,qlr-1)) (l >pl;(1 — p) b
LY 7" igodd lreven N7
qr —
£ Y sreatlr-n Y (Y)ka-pye
LY 7" igeven lrodd "
— ar\ i r—ls
- Z (l,«)pT (1_p1")q Z BP(paqalaT_l)
lreven 137 1godd
qr -
+ Z <l )p'lrr(l_pr)(h b Z BP(p7qa17T_1)
lrodd " 137! lgeven
— 1/2- Y  BP(p,ql,r—1)+1/2- > BP(p,q,lr—1)
137" igodd 137" igeven
= 1/2- > BP(p,qlr-1)+ Y  BP(p,qlr—1)
Y7 godd Y7 igeven

1 1
- EXI:BP(paqalar_l)_é

The convergence in the above derivation holds because the induction hypothesis implies that
each of the two smaller sums in the final expression converges to 1/2 if gz — oo for every £.
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Appendix: II

Lemma 3 (Impossibility of Finding a Perfect Codebook) For any choice of p(p # 0
or 2F), Py, and f;, we have Cif; # 0 for one of the partitions (corresponding to 0 or 1).

Proof: It is enough to prove that Cj is a full row-rank matrix for some i. In order to do
this, we define D, by

1 11---1
— 1
Ax . Dy
e 1 -

where Dy, is bottom right (2% —1) x (2¥ —1) sub-matrix of A;. The matrix D, is nonsingular.
We can write Dy recursively as

Dy Dy

Dk_1 . _Dk—l

Using this recursion, and assuming that Dj_; is a nonsingular matrix, it is easy to show
inductively that for y € R2*~!, D,y = 0 implies y = 0. Thus Dy, is nonsingular for every k.
In particular, this implies that the set of columns of Dy is linearly independent. Note that
the matrix By, equals [1 : D], where 1 = [11---1]". Thus, in any partition of Cy, which is
just a column-wise permutation of By, into C9 and Cji, at least one of these, say Ci, two
matrices will consist of only columns from Dy. Thus CLf; # 0, since f; # 0. This completes
the proof. W

Lemma 4 (Invariance of the ¢, Norm) The norm ||Cif||2, where Cy = ByPy, is inde-
pendent of the choice of p, Py and the probability vector f.

Proof: Minimizing ||Cif|| is equivalent to minimizing ||Cyf||3, which equals [Cif]" [Cif] =
[ByPif]T[ByPif] = fTPTBIB,P,f. Now Aj is a Hadamard matrix, and hence we have
ATA, = 2117 where 1 is the 2F x 1 vector of 1s. (It is easy to verify this directly as well.)
Now,
T [ 17 T, RT kqqT

and we deduce from this that BB, = (2 —1)117. (This too can be verified directly.) Thus,
||Ckfl|3 = fTPTBIB,P.f = fTPL (2% — 1)117P,f = (2% — 1)fT117f, since 1Py, = 17 for
any permutation matrix Py. This completes the proof. Note that the expression for ||C.f||3
finally simplifies to (2" — D)fT117f = (2 - 1)(>_, fi)? = (2 -1). &
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