10

Preprint submitted to Elsevier Preprint

List of Figures

Guessing by exploiting the relations and classes defined by the
representation.

A process oriented perspective of the SEARCH.

(left) Building-block filtering schedule for order-5 level of

a 100-bit problem. (right) Maximum objective function
value in different generations for a 100-bit, order-5 deceptive
Trap function. The fast messy GA found the best solution.
Population size, n = 7500.

(left) Building-block filtering schedule for order-5 level of a
150-bit problem. (right) Maximum objective function value
in different generations for a 150-bit, order-5 deceptive Trap
function. The fast messy GA found the correct solution for 27
out of the 30 subfunctions. Population size, n = 8500.

Number of function evaluations vs. problem size for attaining
the optimum solution by the GEMGA in case of uniformly
scaled, non-overlapping (left) Trap and (right) MUH.

Number of function evaluations vs. problem size for attaining
the optimum solution by the GEMGA in case of uniformly
scaled, non-overlapping (left) GW1 and (right) GW2.

Number of function evaluations vs. problem size for
attaining the optimum solution by the GEMGA in case of
non-overlapping (left) uniformly scaled, Massively Multimodal
and (right) non-uniformly scaled Trap.

Number of function evaluations vs. problem size for attaining
the optimum solution by the GEMGA in case of non-uniformly
scaled, non-overlapping (left) MUH and (right) GW1.

Number of function evaluations vs. problem size for attaining
the optimum solution by the GEMGA in case of (left) Fc2 and
(right) Fes.

Flow of the S, computation for different « values.

37
37

37

38

38

38

39

39

39
39

17 December 1998

List of Tables

(left) Massively multimodal function and (right) GW1; u

denotes the number of 1-s in the string. The symbol # denotes

the don’t care position. 40
(left) MUH and (right) GW2; functions odd(0) and even(0)

return true if the number of 0-s in x are odd and even
respectively. odd(1) and even(1) are analogously defined. 40

A Perspective On The Foundation And
Evolution Of The Linkage Learning Genetic
Algorithms

H. Kargupta®! S. Bandyopadhyay ®
aSchool of Electrical Engineering and Computer Science, Washington State
University, Pullman, WA 99164-2752, hillol@eecs.wsu.edu

> Machine Intelligence Unit, Indian Statistical Institute, Calcutta, India,
res9407@isical.ac.in

Abstract

Intelligent guessing plays a critical role in the success and scalability of a non-
enumerative optimization algorithm that primarily relies on the samples taken from
the search space to guide the optimization process. Linkage learning deals with the
issue of intelligent guessing by exploiting properties of the representation. This pa-
per underscores the importance of linkage learning in genetic algorithms and other
adaptive sampling-based optimization algorithms. It develops the foundation, iden-
tifies the problems of implicit linkage learning in simple genetic algorithms, reviews
some of the early linkage learning efforts, reports some of the recent developments,
and identifies the future directions of linkage learning research.

Key words: Linkage learning, messy GAs, fast messy GA, GEMGA

1 Introduction

Optimization deals with the problem of finding solution(s) from a given search
space that extremizes the objective function value beyond a given desired
level. The suitability of an optimization algorithm depends on the nature of
the search space and the objective function. There exist many optimization
techniques that are specially designed for classes of objective functions and
the search spaces. For example, a gradient search based technique may re-
quire sufficient knowledge about the objective function in order to compute

1 Supported by the US National Science Foundation Grant IIS-9803360.

the gradient; linear programming is designed for linear objective functions,
subjected to linear constraints. These algorithms make use of their knowledge
about the search space and the objective function for guiding the search di-
rections. However, there also exist many practical problems for which such
knowledge is unfortunately not available. In this paper we shall call them
Black-Box Optimization (BBO) problems. If sufficient information to guide
the search process is not available, the most obvious way to proceed is either
to do an enumerative search or to search adaptively based on the samples
taken from the search space. Since for most of the interesting problems enu-
merative search is too expensive, a sampling based adaptive approach is often
the choice in practice. There exist many optimization algorithms like the Ge-
netic Algorithms [31], Simulated Annealing [45], and Tabu search [17] that
take the latter approach. This approach to BBO is essentially based on the
process of guessing or hypothesis formation. Intelligent guessing requires both
understanding of patterns from the data and efficient evaluation of guesses.
This process plays a fundamental role in sampling based adaptive BBO and
this paper addresses this issue in the context of Genetic Algorithms (GAs).
Like all other sampling based adaptive BBO algorithms, efficient and intelli-
gent, guessing from the collected samples is critical for scalable performance
of the GAs.

This paper points out that since sampling based adaptive guessing is fun-
damentally an inductive process, problem representation plays an important
role. Linkage learning, the main theme of this paper, addresses the issue of
efficient, intelligent guessing by exploiting the properties of the representa-
tion, in the context of genetic algorithms. The objective of this paper is to
lay the foundation of linkage learning, offer a perspective of the evolution of
linkage learning genetic algorithms over the last decade, and present some of
the recent developments.

Section 2 presents a discussion on the role of guessing and induction in BBO.
Section 3 gives a flavor of an abstraction of the concepts developed informally
in Section 2. Section 4 defines linkage learning. Section 5 illustrates the devel-
oped concepts in the light of sequence representation, typically used in most
of the evolutionary algorithms. Section 6 discusses the early linkage learning
efforts in simple GA, describes their problems, and identifies the need for a
well-designed, explicit approach toward linkage learning. Section 7 develops
a Walsh representation based approach to understand the underlying mech-
anism of different algorithms, presented in the following sections. Sections
8—10 present different versions of the so called messy GAs that pay explicit
attention to linkage learning. Section 8 describes the messy GA, its strengths,
and its weaknesses. Section 9 does the same for the fast messy GA. Section 10
presents the recent developments of the gene expression messy GA. Section
11 discusses some of the recent developments and on going research in this
area. Section 12 presents a general discussion regarding many common argu-

ments often raised regarding linkage learning. Finally, Section 13 concludes
this paper.

2 Guessing, Induction, and BBO

Guessing in absence of complete knowledge is a common event of our everyday
life. In this section we investigate the role of guessing in the context of black-
box optimization (BBO). First, let us consider a simple situation that requires
guessing. Say there is a large room full of people, possibly with money in their
pocket, and we would like to identify the person with the highest amount of
money. Let us also stipulate that we cannot search everyone’s pocket; rather,
we can only search a small fraction of the crowd.

One possible approach to address this problem is to randomly select individ-
uals from the crowd and report the one with the highest amount of money.
However, this approach is unlikely to be successful beyond the chance of ran-
dom events. A more intelligent and possibly effective way to approach this
problem is to try to detect possible patterns from the collected data; in other
words, we try to identify a relation between the amount of money that a per-
son has and some “intelligently” chosen set of features of that person. For
example, we could consider the quality of the dress, the type of watch, and
the hair-style as a set of features to determine the group of people who are
likely to have a lot of money in their pocket. So, initially we select a possible
set, of such features to be considered, and then evaluate how good these fea-
tures are individually, or may be together in groups, for identifying the class
of people with lot of money. We may conclude that cheaply dressed people
are unlikely to carry a lot of money; therefore the classes (cheaply-dressed
people and well-dressed people) defined by the feature quality-of-dress are ap-
propriate for identifying the person with the highest amount of money. Once
we note that the class of well-dressed people is likely to contain the person
that we are looking for, we can focus the search only on this class of people.
Now we may note that a new feature, type-of-watch, can further classify the
class of well-dressed people in a useful manner. We note that people who are
well-dressed and wear an expensive watch are likely to have a lot of money.
At the same time, the feature hair-style may turn out to be a bad choice and
different hair-styles may have nothing to do with the money. So we choose to
use the features quality-of-dress and type-of-watch together to define a small
class of people who are likely to contain what we are looking for. As we see,
intelligent guessing in the current context involves formation of hypotheses,
consideration of the classes defined by the individual hypothesis, evaluation
of hypotheses, and selection of appropriate hypotheses.

We consider hypotheses defined by the feature set, use it to divide the search

space into different classes, and evaluate hypotheses using samples taken from
the search domain. The set of features to which we restrict our attention may
be pre-determined or dynamically constructed during the course of the search.
We started with three features; however, in addition to the individual features,
we also noted that considering some of these features together may turn out to
be quite useful. We can certainly argue that such subsets of features should be
considered as a new feature itself. Therefore dynamic construction of features
is a clear possibility. However, it is not difficult to imagine a situation when the
number of such possible combinations of different features becomes enormous.
For any n features there are 2" different possible subsets of features. Since 2" is
an exponentially growing number, very soon we shall realize that consideration
of all such combinations may not be achievable. Therefore, we need to restrict
our scope somehow to a moderate set of hypotheses. We can now summarize
the main steps of our intelligent scheme to find the person with the highest
amount of money without checking everyone’s pocket as follows:

(1) restrict the set of hypotheses to be considered to a moderate size;

(2) consider a hypothesis and divide the search domain into different classes
using the hypothesis;

(3) take samples for evaluating the distribution properties of the classes;

(4) compare the hypotheses with each other, create an ordering, and select
appropriate hypotheses;

(5) select the better classes defined by the chosen hypotheses for further
exploration.

Although we can design different variations of the above scheme, the underly-
ing processes for hypotheses formation, evaluation through the consideration
of the class properties, and exploitation of good hypotheses for subsequent
search remain invariant. This document emphasizes these fundamental pro-
cesses of non-enumerative adaptive search.

The problem discussed above illustrates a typical situation in a BBO, where
the objective to find the person with highest amount of money is replaced by
a general computable objective function. The search space is a well-defined
domain; in this paper we shall only consider a discrete search domain. The
samples taken from the search domain are generated by the search operators
of the BBO algorithm. Despite these superficial differences, the fundamental
steps of intelligent guessing about the desired quality solution is essentially the
same as what is delineated earlier in this section. Since guessing is essentially
an inductive process, at this point it may be appropriate to make the concepts
slightly more formal following the standard literature on induction [72] (note
that we are referring to inductive learning not to mathematical induction).

The word hypothesis may mean different things in different contexts. There-

fore, let us choose a rather well-defined set-theoretic object called relations? [9]
instead of the word hypothesis. In our previous example, different combina-
tions of the features quality-of-dress, watch-type, and hair-style correspond
to different relations. These relations divide the domain into different classes
and the class properties are in turn evaluated by taking samples. This decom-
position of BBO is illustrated in Figure 1. This figure uses similarity based
equivalence relations® and classes for the relation and class space respectively.
The search domain is the space of all four-bit binary strings. The SEARCH
(Search Envisioned As Relation and Class Hierarchizing) framework proposed
elsewhere [32, 39] makes use of this decomposition of BBO into (1) relation,
(2) class, and (3) sample spaces. SEARCH emphasizes two main important
underlying processes of BBO algorithms: (1) evaluations and construction of
partial ordering, followed by selection of good relations, and (2) evaluation
and construction of partial ordering, followed by selection of good classes.
Note that we used the phrase ‘partial ordering’ since in general there may
be cases when construction of a strict ordering among the relations and the
classes is not possible.

In SEARCH, relations that are inherently good for decision making are said to
properly delineate the search space. If we construct a partial ordering among
the classes defined by a relation, select the ‘top’ ranked classes for further
exploration, and the class containing the optimal solution is one among those
selected classes, then we say that relation properly delineates the search space.
The function ‘top’ is typically defined either implicitly or explicitly by the
algorithm. Moreover, construction of the partial ordering among the classes
requires a comparison statistic that is again provided by the chosen algorithm.
Therefore, for a given class comparison statistic and a definition of ‘top’, we
can identify a certain group of delineable relations that help identify the classes
containing the desired quality solutions.

Earlier we noted that computation is manageable only when the set of all rela-
tions to be considered is moderate. Similar argument can be made in the class
space too. Note that evaluation of a relation requires evaluation of the classes
it defines. If a relation divides the search space into a very large number of
classes, then evaluating those classes is going to be computationally expensive.
Therefore, we need to consider only a moderate number of relations, and also
only those relations that define a moderate number of classes. Let us introduce

2 A relation is defined as a set of ordered tuples. A class is a tuple of elements
taken from the domain under consideration. In this document we will primarily be
concerned with tuples taken from space of n-ary Cartesian products of the search
domain with itself.

3 An equivalence relation is a relation that is reflexive, symmetric, and transitive.
Equivalence classes are the classes defined by an equivalence relation. Similarity
based equivalence relations among a space of binary sequences define equivalence
based on the similarity among the sequences.

an index associated with the relations for representing the number of classes
that it defines. Let us call a relation of order-k if k is the logarithm of the
number of classes it defines. We would like to consider only those relations for
which £ is a small constant. Therefore, a BBO algorithm essentially needs to
detect order-k delineable relations where £ is a small constant.

This discussion points out that since induction is an essential part of BBO, a
search for appropriate relations is critical. Instead of looking for better solu-
tions from the beginning, an ‘intelligent’” BBO algorithm should

(1) first detect the structure of the search space, induce relations and classes
to capture that, and then

(2) identify desired quality solutions by guiding the search following the de-
tected structure.

The SEARCH framework captures this perspective in a formal manner. Ap-
preciating linkage learning requires understanding the foundations of this per-
spective. Therefore, before addressing linkage learning, let us briefly overview
this framework.

3 Overview Of SEARCH

This section presents a brief abstract overview of the decomposition of BBO,
following the SEARCH framework. Figure 2 presents a process oriented view
of the following major components of SEARCH:

(1) classification of the search space using relations

(2) sampling

(3) evaluation, ordering, and selection of better classes
(4) evaluation, ordering, and selection of better relations
(5) resolution

Each component is briefly discussed in more detail in the following. A relation
is denoted by 7;, where 7 is the index of the set of all relations, ¥,, under
consideration of the algorithm. Let C; be the collection of the classes, created
by relation r;. The set of relations S, actually used by an algorithm to solve the
given BBO is a subset of ¥,. Denote the members of C; by Cy;,Cy;---Chn, 4,
where N; is the total number of classes in C;.

Once the relation r; is used to generate C; the next step is to evaluate the
classes in C};. To do that we need samples from the domain of optimization.
We assume that the BBO algorithm is equipped with at least one operator to
generate new samples. This operator can be either a random sample generator

or a smarter one that exploits information from the prior relation, class, and
sample evaluations.

The next step is to construct an ordering among the classes in C;. To do so,
we need a way to compare any pair of classes. A statistic 7. can be computed
for each of the classes, and they may be compared based on this statistic.
This statistic will be called a class comparison statistic. This class comparison
statistic can be used for computing a tentative ranking among the classes in
C;. For certain choices of 7., some classes may not be compared with other
classes. This means that sometimes a total order may not be constructed.
Therefore, in general, a statistic 7, can be used to construct a partial order
on C;. Let us denote this partially ordered collection by Cj;j. Typically, BBO
algorithms use either distribution dependent or distribution free statistics for
comparing classes. A distribution dependent statistic typically uses mean and
variance information for comparing classes. On the other hand, a distribu-
tion free approach like order statistics [10] uses properties of the orderings of
class members. Once the ordering is constructed, the next goal is to select
some 1 < M; < ||C;|| top ranked classes from Cjjj. M; represents the total
number of top ranked classes that will be selected for future considerations.
Let TOP(Cy(;, M;) be a function that returns the ‘top’ M; classes of Cj1. The
exact choice of M; is likely to depend on the decision error probability in
choosing an appropriate relation and ordering construction among the classes.
For example, if sampling is insufficient, the ordering of classes cannot be re-
lied upon with high confidence, and drastic elimination of classes may not be
appropriate. Therefore, a relatively larger value of M; may be used. These M;
classes constitute the updated version of the class search space. Choosing the
parameter M; is a responsibility of the BBO algorithm.

Next, this ordering among the classes is used to evaluate the relation r; itself.
Different kinds of statistics can be used to compare relations with one an-
other. We denote this relation comparison statistic by 7, and call it a relation
comparison statistic. The set of all relations currently under consideration is
ordered based on this statistic. Note that, again, this ordering does not have
to be a total ordering. The top M, relations are kept for future consideration
and the rest are discarded, in a manner very similar to what we did for the
classes. The choice of a good 7, is not quite obvious. This is one among the
main issues that this paper considers.

Not all the relations are appropriate for a given BBO problem. A relation is
not appropriate with respect to the chosen 7. and the BBO problem if the
class (C, ;) containing the desired optimal solution is not one among some top-
ranked classes, ordered based on this statistic. If the class C,; is not among
the top M, classes, the algorithm is not likely to succeed. Let us define a
function DC(r;, T, M;) that returns a one if C,; € TOP(Cjy, M;); otherwise,
it returns a zero. For a given BBO problem, a relation r;, a class comparison

statistic 7., and a parameter M;, if DC(r;, T., M;) = 1, we say that r; properly
delineates the search space. If all the properly delineating relations needed to
solve the problem in polynomial time (along problem size, quality of solution
and reliability of the success probability) are in the given relation space V,,
then we call the problem delineable with respect to ¥,.. Recall from the previous
section that having all the required delineable relations may not be sufficient
since we can only evaluate a polynomial number of classes in polynomial time.
Therefore, we need the problem to be order-k delineable.

Not all the classes defined by a relation need to be considered. As more and
more relations are evaluated, the information gathered may be used to prune
out different classes before evaluating a new relation. Let ry be a relation that
is logically equivalent to r; A ro, where r; and 79 are two different relations;
the sign A denotes logical AND operation. If either of r; or ro was earlier
found to properly delineate the search space with certain value of M;, then
the information about the classes that were found to be bad earlier can be
used to eliminate some classes in 7y from further consideration. Black-box algo-
rithms often implement a resolution-like process to take advantage of any such
possible decomposability. If the chosen relation r; can be decomposed into a
collection of different relations, denoted by Ugr, then resolution can eliminate
bad classes using the information collected from possible earlier evaluations of
some relations in Ug7ry.

Repeated iterations of the above steps result in gradual focusing into those re-
gions of the search space which look better, using the chosen class and relation
comparison statistics. The set of all these relations r;,7;11,... used to solve
the problem is denoted by S,. Whether or not the algorithm approaches the
globally optimal solution depends on whether or not the problem is delineable,
success in finding proper relations, better classes, and sufficient sampling. A
detailed description of each of these processes can be found elsewhere [32].

As noted earlier, choice of a good relation comparison statistic is not quite ob-
vious. This question goes to the heart of the so called linkage learning problem
in genetic algorithms. The following section initiates the discussion.

4 Relation Evaluation And Linkage Learning

This paper considers the issue of relation evaluation and comparison for prob-
lems that are order-k£ delineable with respect to the given relation space. Since
the problem is order-k£ delineable the objective of the search in the relation
space is to detect relations that are very likely to properly delineate the search
space.

10

Detecting delineable relations requires first defining a good measure to evalu-
ate relations. The SEARCH framework assumes existence of such a measure;
it does not, however, provide us a good measure that can be used to evaluate
relations. Given a set of relations, their respective classes, and a sample set,
we need to identify an effective way to decide whether or not the relation is
order-k delineable. This problem is traditionally called the linkage learning
problem in the genetic algorithm literature. Although linkage learning is a
fundamental task for every inductive optimization algorithm independent of
the relation space considered, typically GAs are designed to consider similarity
based equivalence relations in a sequence representation. Therefore, the rest
of this paper will focus on this special case. The following section describes
this special case in further details.

5 Illustration: Sequence Representation and Similarity Based Equiv-
alence Relations

Consider an ¢-bit binary sequence representation similar to the case shown in
Figure 1. Let us consider Similarity Based Equivalence Relations (SBERs) in
this sequence space. There exist 2¢ such SBERs. Clearly this is exponential in
¢ and as a result we cannot consider all of them in a reasonable time for large
values of £. We need to somehow choose a polynomial number of relations from
them; moreover, the every chosen relation must have an order value less than
or equal to some constant k. One way to do that is to restrict the number of f’s
(i.e. the positions of similarity based equivalence) to at most k. This is because
an SBER with k positions of similarity based equivalence defines exactly 2*
different classes. For example, f##+# (f denotes position of equivalence, and
the # character matches with any binary value) divides the space into two
equivalence classes, 1### and 0##+#. The class 1##+# contains all the
sequences with 1 in the leftmost position, and O### contains those with
a 0 in that position. Similarly ff#+# defines classes 00#+#, 10##, 01#H#,
and 11##. SBERs in the sequence space and the corresponding classes are
sometimes called partitions and schemata respectively in the genetic algorithm
literature. Therefore, our relation space is now comprised of order-k relations.
The objective of the search in the relation space is essentially the search for

detecting the delineable ones from the set of >(=F (f) relations. Any member

of this relation space has at most 2¥ classes.

The rest of this paper explores linkage learning for order-k delineable prob-
lems with respect to a relation space defined by SBERs in sequence space.
However, before moving any further we would like to explain the rationale
behind choosing this special case.

First of all, representations are typically not chosen randomly. In case of our

11

toy problem of finding the person in the crowd with lot of money, we started
with a sensible set of features. For most of the real life cases, the chosen rep-
resentation is often much better than a randomly chosen one. Although there
may exist interesting problems that are not delineable with respect to their
most obvious representation, we believe that we should take one step at a
time—first develop accurate algorithms for delineable problems and then ex-
plore representation construction. We also assume that orders of the required
delineable relations are bounded by some constant k. This has a similar ratio-
nale. Most of the real world problems do not exhibit complete non-linearity
where every feature non-linearly interacts with every other feature. Typically,
non-linearity is bounded; in other words only a relatively small number of
features (with respect to £) interact with each other. Simon’s article on the
architecture of complexity [67] offers a stimulating discussion on this issue.
Although delineability and non-linearity are two separate but related issues,
bounded non-linearity in many practical problems often suffices considering
relations, defined by only a bounded number of features together.

The next issue is regarding the special case where the relation space is com-
prised on only SBERs. Although SBERS are certainly simple in nature, they
are of popular choice for many inductive learning algorithms such as Decision
trees [64], Version space algorithms [56] and others [55]. However, it is easy
to construct a problem where more complex relations are needed to capture
certain subsets of the search space. Given their popularity, simplicity, and
historical role in the development of GAs, the authors believe that using the
SBER based relation space is a good choice as a starting point for designing
and testing linkage learning algorithms.

Although the relation space contains 2¢ SBERs, the order-k delineability as-
sumptions restrict the number of effectively considered relations to a number
polynomial in £. Clearly we can come up with a polynomial time enumerative
algorithm to evaluate relations, provided we have a good measure to do so.
The objective of the rest of this paper is to offer a perspective on the efforts
to develop good relation evaluation measures and efficient polynomial time al-
gorithms that make use of them for detecting good relations. The importance
of linkage learning has been realized since the dawn of the GA research. The
following section describes the early work in simple GA [11, 20] based linkage
learning.

6 Linkage Learning In Simple GA

The simple GA (sGA) does not explicitly process the partitions (SBERs)
and schemata (classes). Therefore in sGA, there is no explicit effort to detect
significant partitions. However, the design of the GAs has been traditionally

12

motivated by different aspects of the partition and schema processing [31].
Nevertheless, the efficacy of the implicit processing has been questioned since
the inception of the GAs.

Several efforts have been made for designing simple GAs that try to detect sig-
nificant partitions and schemata. The history of linkage learning efforts dates
back to Bagley’s dissertation [2]. Bagley used a representation in which the
gene explicitly contains both the position and the allele value. For example,
string ((0 1)(2 0)(1 1)) will correspond to the string 110 in a fixed-locus rep-
resentation of the simple GA. Bagley used the so called inversion operator
for adaptively clustering the related genes that define good partitions and
schemata. The inversion operator works by reversing the order of the genes
lying in between a pair of randomly chosen points along the chromosome.
Although this mechanism was intended to generate new tightly coded par-
titions, Bagley’s work provided no mechanism for accurate evaluation of the
partitions. Moreover, introduction of the inversion operator restricted the use
of GA crossover operator and Bagley did not conclude in favor of the use
of inversion. Rosenberg [65] also investigated the possibility of learning link-
age by evolving the probability of choosing a location for crossover. Although
this approach does not rigorously search for appropriate partitions, adaptive
crossover point may be able to process schemata, with widely separated fixed
bits, better than a single point crossover. Frantz [15] investigated the utility
of the inversion operator and like Rosenberg reported that inversion is too
slow and not very effective. Holland [31] also realized the role of linkage learn-
ing and suggested the use of inversion operator despite its reported failure
in earlier studies. Goldberg and Lingle [27] introduced a new PMX crossover
operator that could combine the ordering information of the selected regions
of the parent chromosomes. They concluded that this approach has more po-
tential than the earlier approaches. Schaffer and Morishima [66] introduced
a set of flags in the representation. These flags were used for identifying the
set of genes to be used for crossover points. For different test problems, they
noted the formation of certain favorite crossover points in the population, that
corroborated their hypothesis regarding the need for detecting gene linkage.
Goldberg and Bridges [22] confirmed that lack of linkage knowledge can lead
to failure of GAs for difficult classes of problems, such as deceptive problems.
Additional efforts on linkage learning GAs can be found elsewhere [47, 62].

In addition to the growing empirical evidence of the need for well-designed ex-
plicit linkage learning algorithms in the GAs, theoretical advancements have
also started corroborating these observations. Efficacy of such implicit process-
ing of relations has been seriously questioned on theoretical grounds elsewhere
[26, 32, 70]. Thierens and Goldberg [70] showed that simple GA fails to scale
up for the class of problems with only order-£ significant partitions, unless
information about the appropriate partitions is provided by the user.

13

Among others, merger of the distinct decision making processes in relation,
class, and sample spaces into a single selection process over the population and
the lack of adequate efforts to methodically search for the appropriate order-k
partitions makes the SGA less scalable. The SGA also has some additional
problems in the context of efficient partition search. A single sample from the
search space can be used for the evaluation of all the relations under consid-
eration. This is because that sample must belong to some schema defined by
any partition. This is often called implicit parallelism in the GA literature.
Although this can be exploited in a very systematic manner when relations
are methodically processed, implicit processing of schemata makes this quite
noisy in the sGA. These observations regarding the problems of simple GA in
searching appropriate partitions and schemata resulted in the development of
a new class of genetic algorithms that explicitly search for the delineable re-
lations and classes. However, before discussing these algorithms we would like
to develop a Walsh representation based perspective of partition evaluation.
The following section discusses this.

7 Linkage Learning, And Walsh representation

As we noted in the previous section, implicit detection of delineable partitions
through the simple GA selection does not appear to be a scalable solution
to difficult linkage learning problem. However, explicit detection of linkage
requires an appropriate measure for detecting linkage. It turns out that, al-
though we cannot determine delineability of relation without the knowledge
of the desired solution, we can still define a quite accurate measure to con-
struct a partial ordering among the partitions based on their contribution to
the objective function value. This can be done in a straight forward manner
by representing the objective function using a set of suitable basis functions.
Walsh representation [5] provides one possible way to do so for SBERs in
sequence representation. In the Walsh representation, the objective function
can be viewed as a linear combination of the fitness contributions from the
different partitions. This provides a nice approach for associating a notion
of “significance” with the different partitions. The absolute magnitude of the
individual partition contribution to the objective function can be used for
evaluating and comparing the partitions.

Although a linkage learning algorithm does not necessarily have to use Walsh
representation for evaluating relations, in the rest of this paper we shall use
this approach to understand the underlying mechanism of different explicit
linkage learning genetic algorithms. We shall do so because the authors be-
lieve that Walsh representation can serve this purpose well for SBERs in a
sequence representation, at least until a better approach is developed. The
following section offers a brief review of the Walsh representation. This will be

14

followed by a discussion on the suitability of this chosen approach to compare
partitions.

7.1 Brief review of Walsh representation

Walsh functions [5] are orthogonal functions that found applications in many
different fields such as signal processing, image analysis, and others. Like
Fourier, Laplace, and other transformations, Walsh functions are often used
to transform the representation into a convenient form. Application of Walsh
transformation (WT) in understanding Genetic Algorithms was first noted
by Bethke [7]. Further investigation of this approach can be found elsewhere
(14, 18, 19, 48|. Traditionally the Walsh functions are designed for binary
sequences. However, they can easily be extended to higher cardinality repre-
sentation, as shown elsewhere [61]. Therefore all the arguments to be made in
the coming sections using WT can be extended for higher cardinality repre-
sentations. For a string (7) of ¢ binary variables, WT makes use of 2¢ Walsh
functions as a basis set, where each basis function corresponds to a unique
partition 7. They can be defined as follows:

U5(@) = (=17 W)

Where j and T are binary strings of length £. In other words 7 = ji, j2, - - J¢
and T = x1,Zg, -+ T¢. Y;(T) can either be 1 or -1. A function f(Z) can be
written using the Walsh basis functions as follows:

§(@) = X wys(a) @

where w5 is the Walsh Coefficient (WC) corresponding to the partition j as
defined in the following,

w;= ¥ f@5(a) ®)

We note from Equation 2 that the fitness function can be expressed as a
linear sum of the Walsh functions, each weighted by the corresponding Walsh
coefficients. The Walsh coefficient w; can be viewed as the relative contribution
of the partition j to the function value of f(Z). Therefore, the absolute value
of wy can be used as the “significance” of the corresponding partition 4. The
following section explains this proposition.

15

7.2 The Walsh perspective of linkage learning

The absolute value of the Walsh function reflects the relative importance of a
partition with respect to others in terms of its contribution to the objective
function. Consider an ¢-bit maximization problem and a partition j. Without
loss of generality let us assume that w; is a positive number. Let §2; be the
set of all partitions that involve at least one variable used in the partition j.
Let C’J—(.+) and C’J—(._) be the collections of schemata for which the Walsh function
¥5(7) takes a value of 1 and -1 respectively. Now if we take a member of any

of the classes in CJS_) and modify its values only over the fixed positions of the

partition j in such a way that it becomes a member of one of the classes in C’;Jr),
the overall objective function value may be increased by an amount 2wy if the
change in feature values does not cause some other partitions in {2; to decrease
the objective function value. However, in general, fixing the values of partition
J may restrict the choice of feature values in some other partitions in I'; C Q;
and as a result partitions in I'; may increase or decrease the objective function
value. The overall change in objective function value because of the changes
in partition j can therefore be computed as 1; = 2(w; + Yger, wt(-))- By
no means does the above discussion claim that the suggested relation measure
can be efficiently computed and used for constructing a partial ordering in
the relations for any general class of objective functions without adopting any
approximation. Selection of a few (polynomialy bounded) good relations re-
quires construction of a partial ordering among the relations. In other words,
we should be able to quickly identify the relations that significantly contribute
to the objective function and discard the rest. This fundamentally means that
there exists a large number of relations whose contribution to the objective
function is negligible. The order-k delineability property satisfies this require-
ment. Clearly, this property of the representation depends on the choice of the
basis functions to define the relations, and Walsh representation is unlikely to
be a universally good choice of basis for representing the relations. However,
we believe that Walsh representation works quite well for understanding the
linkage learning of SBERs.

Partitions with non-zero Walsh coefficients also reflect the underlying non-
linearity of the given problem. For example, consider an objective function
f(z1,x9, 23, 4) = f1(x1,22)+ fo(3, x4). In the Walsh representation the value
of W)y jsjsja) @0 W sy and any such other Walsh coefficient correspond-
ing to partitions involving a pair of variables, one each from the two linearly
decomposable partitions, is zero. However, note that having w, j, js,.j,) = 0
does not necessarily mean that x, x9, x3, x4 there does not exist any low or-
der interaction among these variables. For example, if the WCs coeflicients
corresponding to every order-2 partitions have a non-zero, significant WC,
then fixing the value for some (z;, ;) is going to effect every other partition

16

(%i, k) and (z;,2m). As result, we may have to consider higher-order parti-
tions, subsuming overlapping order-2 partitions. An example of this case can
be found elsewhere [21], that constructed a class of order-¢ deceptive problems
using only up to order-3 non-zero WCs. However, this by no means suggests
that partitions, higher than order-3 but less then order-£ are not needed to be
considered for learning linkage information. This is because non-linear interac-
tions among more than three variables can always be contributed by non-zero
WCs for higher order partitions.

The following section describes the first effort to develop the so called messy
GA that tries to detect linkage in an explicit manner.

8 The Messy GA: Early Efforts

The messy GA (mGA) [12, 26, 24, 25] is one among the few early efforts that
was specifically developed for linkage learning. The mGA took at least two
important steps:

(1) Separated the partition and schema spaces from the sample space and
thereby paid explicit attention to the partition and schema processing.
(2) Focused on only the order-k delineable problems.

The mGA uses a population that contained all (deterministically enumerated)
order-k schemata defined by the chosen representation. So the population size
was (f;)Q’“, where ¢ is the problem length. The population is cleverly used
to represent the partition and schema spaces during the initial stage of the
algorithm. It gradually switches the population to the sample space during the
following stages. This switching process will be more obvious once we discuss
the messy representation later in the section. The search process is distinctly
divided into two stages, namely:

e Primordial stage: Detects appropriate partitions and schemata; population
represents the partition and schema spaces.

e Juxtapositional stage: Computes intersection among the better schemata
to find the optimal solutions; once the good partitions and schemata are
detected, population gradually switches to the mode representing the sample
space.

The complexity of the mGA is O(2%¢¥). The following section describes the
mGA representation.

17

8.1 Messy representation

The mGA uses a richer representation compared to sGA in order to learn the
appropriate partitions and also to be able to use the population for represent-
ing both the schema and sample space. Just like Bagley’s GA representation
[2], the mGA gene is an ordered pair, (locus, value). The locus gives the actual
position of the gene in the decoded string and the value is any letter from the
alphabet set.

The messy GA strings can be under-specified, exactly specified or over-specified.
For example, in a 3-bit problem the string ((0 1)(2 0)(1 1)(3 1)(2 1)) is
over-specified, the string ((0 1)(2 1)(3 0)) is exactly specified, and the string
((0 1)(2 1)) is under-specified. Over-specified strings are mapped to a string
containing ¢ unique genes by left-to-right scanning of the strings on the basis
of first-come first-served preference. The over-specified and exactly specified
strings are samples from the search space. On the other hand, an under-
specified string with £ unique genes defines a schema of order-k. In mGA,
partitions are evaluated based on the quality of the schemata it defines. The
schemata defined by the under-specified strings are evaluated using a local
search template string. This template is a locally optimal string that remains
unchanged during a particular iteration of the messy GA. The template is
always exactly specified. The missing genes of an under-specified string are
filled in by the template. The incompletely specified string ((0 1)(2 1)) pro-
duces the string ((0 1)(1 0)(2 1)) once it is expressed in the context of the
template ((0 1)(1 0)(2 0)).

8.2 Messy operators

The messy GA uses two main operators: (1) thresholding selection and (2) the
cut and splice operator. The following sections describe these operators.

8.2.1 Thresholding selection

As noted earlier, the mGA population represents the complete order-k schema
space during the primordial stage. However, there must be a mechanism to pay
attention to the partitions for making sure that the schemata from different
partitions are not compared to each other. Since selection is the primary mech-
anism for comparing different schemata, the mGA imposes certain restrictions
on the selection operator. It introduces an operator called thresholding selec-
tion that tries to minimize selective competition among schemata that do not
share more than a certain threshold number (called the thresholding parame-
ter) of genes with same locus. Consider the strings ((1 0)(0 0)), ((1 1)(0 1)),

18

and ((1 0)(2 1)). The first two strings define equivalence classes 00#, 11# over
the relation f f#. On the other hand, the last string defines the class #01 over
the relation #f f. Clearly, comparing the first two makes sense, because they
are from the same relation; however, the last string must be restricted from
competing with the other two strings, since it belongs to a different relation.
The thresholding selection avoids such competition to some extent. Typical
mGA implementations use thresholding based tournament selection [8, 26].
The following section describes the mGA cut and splice operator.

8.2.2 Cut and Splice operation

The cut and splice operation simulates the behavior of crossover for strings of
different lengths. Consider the strings ((1 1)(0 1)(2 0)) and ((2 1)(1 0)(0 1)(2 1)).
The cut operation randomly picks two points, one for each string. Let us say
that it picks 2 and 3 for the first and second string, respectively. The cut opera-
tion then splits the first string into ((1 1)(0 1)) and ((2 0)). The second string is
also divided into the strings ((2 1)(1 0)(0 1)) and ((2 1)). The splice operation
swaps the split parts and generates new strings. In the current example, splice
operation generates the strings ((1 1)(0 1)(2 1)) and ((2 1)(1 0)(0 1)(2 0)).
The following section describes the overall organization of the mGA.

8.8 Organization of the messy GA

The messy GA works by iterating within two loops—the outer and inner loops.
The variable of the outer loop is the order of the partitions under consideration.
The inner loop searches for appropriate schemata of order defined by the outer
loop variable and produces solutions by combining these schemata using the
cut and splice operations. The overall mechanism is described in the following.

e Quter loop begins: The outer loop iterates over the order of the partition x.
At the initial iteration of the outer loop, x may be chosen as 1 if no other
prior information is available. Initially, the template is randomly generated.

e Inner loop:

(1) Initialization: The population is initialized deterministically with strings
of length k. It contains all the 2“(,‘;) order-x schemata. The objective
function values of all these strings are evaluated by first filling up the
missing genes from the template.

(2) Primordial phase: The primordial phase applies thresholding selection
alone for detecting the appropriate schemata. Once the good schemata
are detected by applying selection for certain number of generations, this
phase stops.

19

(3) Juztapositional phase: During this phase both thresholding selection and
cut-&-splice operators are used. Good strings are picked, cut, and then
spliced to generate better strings. As string lengths continued to grow and
become either exactly specified or over-specified strings, the population
accordingly started to represent more the sample space, rather than the
schema space.

(4) Inner loop ends: The template is set to the best solution found at the end
of the juxtapositional stage of the previous iteration of the inner loop.

e Quter loop ends. The algorithm stops when the order of partitions consid-

ered exceeds a certain value or some other stopping criterion is satisfied.

The mGA organization was very different from the previous linkage learning
efforts in the sense that it decomposed the search into two explicit stages, one
for detecting better schemata and the other for exploiting them for searching
the problem domain. Although the mGA did not explicitly use the Walsh
framework to detect the significant partitions, interpreting the mGA schema
evaluation in terms of the Walsh representation may provide us useful insight.
Let us consider evaluation of schemata defined over a certain partition jg).
Let us write all the partitions that do not involve any variable contained in the
partition j¢, in a column matrix form and denote it by the symbol Wp. Let
W, be the column matrix of all other Walsh coefficients that are not in Wp.
We can now write the “goodness” of a schema H; evaluated in the context of
a template (G) as,

f(Hy,G) = WIV,(Hy, G) + Wi U5(Hy, G) (4)

where ¥, and W5 are the corresponding column matrices of the Walsh func-
tions. The term (H;,G) denote the string generated by schema H; with the
rest of the genes filled using the template GG. Let us now consider the expres-
sion of another competing schema, Hj, defined over the same partition j,).
Since both H; and H, are defined over the same partition, only the sign of ¥,
changes. Therefore

F(Hy, G) = f(Hy, G) = W, [,(Hy1,G) — Ty(Hy, G)] (5)

The thresholding selection operator of the mGA essentially makes a decision
based on this difference when schemata from the same partition are compared
to each other. If the expression on the right side of the equation 5 is greater
than zero, schema H; is considered better than H;. Although this does not
tell us specifically about the significance of the specific partition j, it tells us
the contribution of all the partitions that involve variables from j,y. Schemata
that effectively manipulate the Walsh functions for optimizing the objective
functions grow during the primordial stage. If none of the partitions involving

20

any variable from j,y has significant Walsh coefficients then the term WpT of
equation 5 will also be insignificant compared to that of the significant parti-
tions. However, note that since the Walsh coefficients may have different signs,
the mGA schema evaluation will mistakenly conclude a W), to be insignificant
if the large WC-s cancel themselves out.

Several efforts have been made to extend this work on both abstract and ap-
plication grounds. Merkle [50] developed a parallel implementation of original
messy GA. He [54] also addressed data distribution strategies for the parallel
implementation of mGA. Additional work on parallel mGA can be found else-
where [16]. Although the population size in the primordial stage grows poly-
nomially with problem size ¢, O(¢*) is a fairly large number for any reasonable
value of k. Plevyak [63] investigated the possibility of smaller population size
in the primordial stage. Mohan [57] applied mGAs for clustering. A hierar-
chical controller based on messy GAs is reported elsewhere [30]. Whitley [73]
reported an application of mGA for feature subset selection.

However, the mGA have some problems as described in the following:

(1) Template based schema evaluation: The mGA used the template guided
schema fitness for comparing classes and relations. As noted earlier, this
template based evaluation does not necessarily correctly tell us about the
significant partitions and it can be misleading.

(2) Ezpensive enumerative search for schemata: The explicit enumeration of
all order-k schemata is very expensive (O(*¢F)).

(3) Lack of mechanism for exploiting implicit parallelism: Since different rela-
tions simply divide the sample space in different classes, the same sample
set can be used to evaluate different relations. Traditionally in the GA
literature, it is called implicit parallelism. The mGA does not exploit the
computational benefits of implicit parallelism.

The following section describes a major extension of the mGA that tries to
address the second and third problems listed above.

9 The Fast Messy GA

The fast messy GA (fmGA) proposed elsewhere [23, 32] made an effort to
reduce the cost of deterministic initialization by using the so called prob-
abilistically complete initialization (PCI) and building-block filtering (BBF)
techniques. Each of them is briefly described in the following sections.

21

9.1 Probabilistically complete initialization

The basic idea behind the probabilistically complete initialization is that all
the 2% (f;) schemata can be defined using a much smaller number of strings,
when the string length is higher than k. In other words, strings represent
multiple schemata over different partitions at the same time. The number
of ways a string of size ¢/ > k contains a gene combination of size k may
be calculated by assigning £ genes to the string and then choosing the total
number ways ¢' —k genes can be created from /— k genes. This is simply (ﬁ,j kk).

Note that the total number of strings of size ¢' created with ¢ genes is (fﬁ,).

Thus if we take ng = (ﬁ,) (ﬁ,__ kk) string samples each of length ¢ randomly, on

average there will be one string that will have the desired gene combination
of size k; n, decreases exponentially as the string length ¢ increases. Further
details can be found elsewhere [23].

9.2 Building-Block filtering

During the primordial phase of fmGA, thresholding selection increases the
proportion of the better strings. However, in addition to that, the string
length needs to be gradually reduced from length ¢ to k. Gradual reduc-
tion of string length is accomplished by increasing the number of copies of
the strings by applying thresholding selection, followed by random deletion of
genes. This process of detecting the good schemata by thresholding selection
and gene deletion is called building-block filtering. Consider the sequences of
string lengths generated by successive applications of gene deletion, denoted by
AOAD @ XN | The initial string length A(® = ¢ and the final string
length AW) are chosen to be some number close to k. Selection continues for
some number of generations with constant string length A(*) to produce more
copies of the better strings. Note that these are selection-only generations and
therefore no new function evaluation is needed. This is followed by random
deletion of genes which reduce the string length to A1), These shorter strings
are then evaluated and the same process of thresholding selection and gene
deletion continues until A = AX)_ Since gene deletion is applied only after a
certain number of applications of the thresholding selection, the exact sched-
ule for string reduction needs to be carefully designed. Kargupta [32] proposed
one way to do that. However, this process turned out to be somewhat unsta-
ble and success depended on the tuning of the schedule. In order to overcome
this problem, Kargupta [32] proposed an iterative process that applied the
fmGA multiple times for every order in order to assure better performance.
The following section presents the overall organization.

22

9.8 Organization of the fmGA

Like the original messy GA, the fmGA goes through a level-wise processing
of schemata. The selection-only primordial stage is replaced by a primordial
stage that uses thresholding selection and gene deletion for filtering out the
good schemata along with the probabilistic initialization of population. The
working of the fmGA is very similar to that of the original messy GA. The
main differences of the fmGA are the following: (1) probabilistically complete
initialization, (2) gradual reduction of string length by random deletion of
genes during primordial stage, and (3) multiple iteration within the each level.
The following section presents some experimental results.

9.4 FEzxperimental results

The fmGA was tested on different classes of problems [32]. This paper reports
only a small fraction of the results. It reports the performance for boundedly
deceptive problems that require only k-bit interactions using the modified BBF
scheduling technique proposed elsewhere [32]. The deceptive trap [1] function
is defined as, f(z) =k if u=k; f(x) =k—1—u otherwise; where u is the
unitation variable, or the number of 1-s in the string x, and k is the length of
the sub-function. This function is widely reported to be difficult for simple GA
since low order partitions lead sGA toward the wrong direction. If we carefully
observe this trap function, we shall note that it has two peaks. One of them
corresponds to the string with all 1-s and the other is the string with all 0-s. For
£ = 200, and k£ = 5, the overall function contains 40 sub-functions; therefore,
an order-5 bounded 200-bit problem has 2%° local optima, and among them,
only one is globally optimal. As the problem length increases, the number of
local optima exponentially increases.

Problems comprised of order-five trap functions are constructed by concate-
nating non-overlapping order-5 sub-functions. Figures 3 and 4 show the per-
formance of the fmGA for 100-bit and 150-bit problems respectively. The
population is kept to 7,500 and 8,500 respectively. This was done following
the population sizing equation for fmGA described elsewhere [23, 32]. The
total number of function evaluations for the 100-bit and 150-bit problems are
100, 5000 and 425,000 respectively. Note that the number of function eval-
uations for the 100-bit problem is larger than that for the 150-bit problem
because in the former case, the fmGA found the best solution after several
iterations; on the other hand, the fmGA could not improve the best solution
of the first iteration using additional iterations. Since these are relatively big
problems and population sizes are quite large, only order-5 level of the fmGA
is run with a locally optimal template in order to reduce the computation time.

23

The following section summarizes the conceptual strengths and weakness of
the fmGA.

9.5 Strengths and weaknesses of the fmGA

The fmGA replaced the enumerative initialization (O(¢*)) of the original messy
GA by an O(¥) probabilistically complete initialization. Since the building-
block filtering schedule can have at most O(¢) steps, the overall sample com-
plexity of the primordial phase is O(¢?). This computational benefit is fun-
damentally based on the fact that the fmGA exploits the power of implicit
parallelism, defined earlier. This is the main conceptual contribution of the
fmGA.

However, the fmGA has some weak points too. The main problem is that the
fmGA assumes that the thresholding selection is perfectly capable of restrict-
ing the schema competition to only those that belong to a single partition. It
turns out that thresholding selection cannot maintain that reliably for the pe-
riod of time needed to reduce the string length to O(k) from ¢ [32]. Although
Kargupta [32] suggested a multiple iteration based approach to reduce this ef-
fect, this resulted in an increased number of function evaluations. So, although
the population sizing in fmGA is drastically reduced by using strings of length
O(¥), the detection of schemata from the strings using thresholding selection
and gene deletion appears to be difficult. Merkle [51] has proposed a frame-
work to analyze fmGA-like linkage learning algorithms that use tournament
selection with thresholding, and building-block filtering. He posed the prob-
lem of selecting BBF filtering schedule and other parameters as a constrained
optimization problem in which the objective function is directly related to
the expected effectiveness. He also derived the Kuhn-Tucker conditions for
the optimality of a parameter set of a generalized version of the fmGA. Par-
allel implementations of the fmGA have also been developed and discussed
elsewhere [52, 53].

The fmGA can also be understood in the light of Walsh representation. The
fmGA uses an initial string of length close to the problem length. Therefore
the contribution of the templates is initially minimal and, as the BBF process
continues, the role of the template in schema evaluation continues to increase.
Since the string length is greater than that of the schema of length & (as in the
case of mGA), the size of W decreases and that of W increases. However
for any pair of two different strings the number of Walsh functions that take
different value is exactly 2¢7!. Therefore the total number of non-zero terms
in equation 5 remains the same. As the string length gets reduced by gene
deletion, different subsets of elements in the Walsh difference matrix (right
hand side of equation 5) take non-zero values. As a result the fitness of a

24

schema, embedded in a string, changes. Clearly, this results in evaluation of a
schema based on different members of the schema; however, it is not clear how
this approach can be used for more precise information regarding significant
partitions.

The following section describes a gene expression based messy GA that keeps
the string length to the problem size ¢; however it replaces fmGA schema
detection technique by a more efficient and scalable technique.

10 Gene Expression Based Messy GAs

The recent past has witnessed a series of efforts on the development of a new
class of messy GAs, called the Gene Expression Messy Genetic Algorithm
(GEMGA) [4, 34, 40, 35, 33, 36, 37, 38, 42]. The GEMGA tries to detect
significant partitions using a scalable approach motivated by the natural pro-
cess of gene expression. This paper reports the latest version of the GEMGA
described in detail elsewhere [4, 37, 38, 42].

10.1 Population sizing and representation

In order to detect a schema, the GEMGA requires that the population con-
tain at least one instance of that schema. The population size in GEMGA is
therefore, m = c)*, where c is a constant and) is the alphabet size. Although
we treat c as a constant, c is likely to depend on the variation of fitness values
of the members of the schema. Note that the population size is independent
of the problem size £. For all the experiments reported in this paper, the
population size is kept constant.

In GMEGA, the strings are always exactly specified. A GEMGA gene is a data
structure that contains the locus, value, and capacity. The capacity field is used
facilitating the schema detection process in the GEMGA. The chromosome
also contains a dynamic list of lists called the linkage set. It is a list of weighted
lists. Each member of this collection of lists, called locuslist, defines a set of
genes that are related. Each locuslist also contains three factors, the weight,
goodness, and trials. The weight is a measure of the number of times that the
genes in locuslist are found to be related in the population. The goodness value
indicates how good the linkage of the genes is in terms of its contribution to
the fitness. The trial field indicates the number of times the linkage set has
been tried.

25

10.2 Linkage learning in the GEMGA

Linkage learning in the GEMGA is accomplished using three processes, namely:
(1) Transcription and (2) PreRecombinationExpression, and (3) Recombina-
tionEzpression.

The GEMGA Transcription operator detects local symmetry in the fitness
landscape by noting the relative invariance of the fitness values of chromo-
somes under transformations that change the value of one dimension, one at
a time. It changes the current value of a gene to a different value, randomly
chosen from the alphabet set, and notes the change in fitness value. If the fit-
ness deteriorates because of the change in gene value, that gene is identified as
the symmetry breaking dimension. On the other hand, if the fitness improves
or does not change at all, the gene is marked as a symmetry preserving 4
dimension. Finally, the value of that gene is set to the original value and the
fitness of the chromosome is set to the original fitness. This process contin-
ues for all the genes and finally all the genes that are tentatively marked as
symmetry breaker are collected in one set, called the initial linkage set. The
mechanism of the transcription operator can be understood in terms of the
WGCs. Since any two unique binary strings have exactly 2! Walsh functions
with different values, identifying the contribution of half of all the Walsh coef-
ficients requires only one bit difference between the strings. In other words, if
we subtract the fitnesses of two strings X; and X, (where they differ only in
one position) the difference gives us the contribution of all partitions involving
that position. The GEMGA explicitly notes the fitness difference by changing
the value only along that dimension. If (f(X;) — f(X3)) is very close to zero,
we can neglect the contribution of all the Walsh coefficients in the matrix
W, to the fitness of string X. If (f(X;) — f(X3)) is a large number, then
W, significantly contributes to the fitness value of the string. This partitions
can be implicitly listed to be significant by simply marking the dimension
under observation. The GEMGA only marks the fitness symmetry breaking
dimensions; therefore, only those dimensions that decrease the fitness upon
changing the value in only one dimension are marked. Since this information
is imprecise, the GEMGA adopts two other steps for identifying the significant
partitions precisely.

The PreRecombinationExpression finds the significant partitions and schemata
more precisely by collecting population wide statistics. An £ x £ conditional
probability matrix is formed by collecting initial linkage set information from

4 Increase in fitness for maximization problem is not considered “symmetry-
breaking” since it does not contradict the objective of the optimization. Moreover,
we choose to use the word symmetry since its definition directly alludes to trans-
formations of the state.

26

different randomly selected chromosomes of the population. The i, j-th entry
of this matrix indicates the probability of the occurrence of gene 7, when gene
j is present in a linkage set. This matrix is usually constructed using a user
given NoOfLinkageFEzpt times. For each row ¢ of the conditional matrix, its
maximum value is computed, and the genes that have their probability values
close to the maximum value are included in the linkage set for .

After the PreRecombinationExpression phase, the GEMGA Recombination
operator is applied iteratively on pairs of chromosomes. The GEMGA recombi-
nation uses the linkage sets for selecting regions of the parent chromosomes to
be exchanged during the crossover. Linkage sets of the offsprings are modified
based on the change in fitness from the parent to the children chromosomes.

Details about the algorithm can be found elsewhere [4, 42]. The population size
in GEMGA is required to be O()*). The overall complexity of the GEMGA
is estimated to be O(*¢). The following section demonstrates the linear time
performance of the GEMGA for different classes of additively decomposable
problems, where each subproblem is comprised of 5 variables.

10.3 Organization of the GEMGA

The overall structure of the GEMGA is summarized below:

(1) Randomly initialize the duly sized population.

(2) Execute primordial expression stage: Detect schemata that capture local
fitness symmetry by the so called transcription operator. Since population
size m = cA¥, this can be done in time O(A*¢).

(3) PreRecombinationEzpression: Identify schemata that capture fitness sym-
metry over a larger domain. This only requires comparing the chromo-
somes with each other and no additional function evaluation is needed.

(4) Execute recombination expression stage:

(a) GEMGA recombination: The GEMGA uses a recombination opera-
tor, designed using motivation from cell meosis process that combines
the effect of selection and crossover. Reconstruct, modify schema link-
age sets and their parameters.

(b) Mutation: Low probability mutation like simple GA. All the experi-
ments reported in this paper used a zero mutation probability.

The following section presents the test results.

27

10.4 Test Results

The performance of GEMGA is tested for five different problems, namely i)
Deceptive trap (Trap), ii) Mihlenbein (MUH), iii) Goldberg-Wang function 1
(GW1), i) Goldberg-Wang function 2 (GW2) and v) Massively-Multimodal
function (MULTI). Each of the functions is constructed by concatenating
order-5 sub-functions (both overlapping and non-overlapping versions are con-
sidered). Functions MULTI and GW1 are defined in Table 1. MULTI is a mas-
sively multimodal function of unitation where the global optima is a string of
all 1-s (assuming that length of the sub-function is odd). Functions G W2 and
MUH are defined in Table 2. Functions GW1 and GW2 are discussed in detail
elsewhere [40]. In MUH The global optima is the string of all 0-s while all the
strings having a number of trailing 1-s constitute the local optima. Unlike the
case for Trap, here the building block corresponding to the global optima has
a significant amount of overlap with the local optimas.

10.4.1 Results : Uniform scaling and non-overlapping sub-functions

Figures 5—7(left) show the number of sample evaluations needed to find the
globally optimal solution for problem sizes ranging from 100 to 1000. The
results are the average values obtained over ten runs when the problem sizes
range from 100 to 500, and over five runs for problem sizes beyond 500 to
1000. For these test problems the sub-functions are uniformly scaled and non-
overlapping. The population size is 200, chosen as described earlier in this
paper. It is kept constant for all the problem sizes. In each case we see that
the number of function evaluations required for attaining the optimal value
linearly depends on the problem size.

10.4.2 Results : Non-uniform scaling and non-overlapping sub-functions

Scaling offers difficulty to any BBO algorithm that uses a selection like oper-
ator for selecting better solutions from the search space. The problem is that
any such sample is an instance of many different classes defined over the search
space, and the contribution of different classes in the overall objective func-
tion value may be different. Some classes may contribute higher than other
classes. For large problems with a large degree of scaling effect, this can lead
to a suboptimal convergence for the less scaled optimization variables.

The effect of scaling on the performance of GEMGA is investigated for Trap,
MUH and GW1 functions, for problem sizes of 100, 200, 300, and 500. As
earlier, each function is a concatenation of order 5 sub functions. A linearly
increasing scaling factor for each set of 5 sub-functions is taken. For example -
a 500 bit problem has 100 sub-functions. The first 5 sub functions (bits 0 - 24)

28

are scaled by 1, next 5 sub-functions (bits 25 - 49) are scaled by 2, and so on.
Figures 7(right)—8 show the results obtained for ten independent runs of the
algorithm for the non-uniformly scaled Trap, MUH, and the GW1 functions.
The GEMGA is found to solve all the problems successfully in linear time.

10.4.83 Results : Uniform scaling and overlapping sub-functions

This section presents preliminary test results for two overlapping test func-
tions Fc2 and Fc3 developed elsewhere [59]. These functions are constructed
as follows: Fe2(x) = 37-) MUH(s;) where the s;-s are overlapping 6-bit sub-
strings of x. The first bit does not contribute to the fitness value. Function
Fc3 is defined as follows: Fe3(x) = $5-) MULTI(s;) Figure 9 presents the ex-
perimental results for Fc2 and Fc3. Population size is kept at 200. The results
are averaged over ten runs.

10.5 Strengths and Weaknesses of the GEMGA

The main contribution of the GEMGA is the new scalable technique for de-
tecting good partitions and schemata. Although the GEMGA transcription
operator does not precisely identify the significant WCs, it does filter out the
significant bits individually that participate in significant partitions. More-
over, the PreRecombinationExpression and Recombination Expression stages
further filter out the good schemata using population-wide statistics.

The GEMGA representation is also rich enough to handle this partial in-
formation about the significant partitions and gradually improve the linkage
estimation. The experimental results presented in the previous section clearly
demonstrate the linear time performance of the GEMGA for a wide range of
problems. A comparison between the number of function evaluations needed
for solving the trap function by the fmGA and the GEMGA will make the
progress obvious.

However, the GEMGA performance can be further improved by establishing
the significant partition detection process on a solid foundation. The current
GEMGA primordial stage does not provide precise information about the sig-
nificant partitions. This issue needs to be formally investigated. The following
section suggests one possible approach to do that.

29

11 Other Recent Efforts And Future Directions

The fundamental importance and potential of linkage learning algorithms have
gradually started drawing serious attention of several researchers. There ex-
ists several dimensions of the current linkage learning research. This section
presents a brief overview of the current efforts.

Harik recently introduced the Linkage Learning GA (LLGA) [29, 28]. The
LLGA tries to learn linkage by exploiting the so called exchange crossover
operator and the probabilistic expression based representation. The LLGA ap-
pears to work nicely particularly for problems in which construction of a linear
ordering among the partitions is not so difficult. In a recent work [49] rela-
tions between compressed introns and the LLGA representation is discussed.
Smith and Fogarty [68] reported a technique for evolving genetic linkage and
to exploit it for adapting the recombination strategy. They reported superior
performance of their linkage learning evolutionary algorithm over traditional

GA.

A linkage learning approach similar to the GEMGA can be found elsewhere
[44]. This approach makes use of a GEMGA-like filtering approach to detect
the good partitions and schemata. In a recent work [60] a new linkage learning
algorithm LINC is proposed. The LINC algorithm works by checking second
order non-linearity. It considers feature pairs and performs O(¢?) experiments.
Let us define 5_](1 = f(TZ) — f(.’L'Z), (Sfj = f(f]) - f(iZIJ), and
8fij = f(..7iT;..) — f(...xiz;..); where z; is a boolean variable and T; = 1 —z;.
The LINC algorithm detects linkage by exploiting the fact that if two features
i and j have pair-wise non-linearity then |§f;; — 0f;i — 0 f;| > €, where € is a
constant.

A principal component analysis based construction of representation for per-
forming evolutionary optimization has been developed elsewhere [71]. Kazadi
[43] proposed a similar approach to explicitly detect generalized schemata,
that he calls conjugate schemata. His approach proposed a second order non-
linearity detection technique in the continuous space, similar to what the re-
cently proposed LINC algorithm uses in the discrete boolean space. A differ-
ent technique for detecting the significant relations using a dependency tree
based approach has been proposed elsewhere [3]. This approach also exploits
the second order non-linearity and estimates a second order approximation
of the underlying relations; they reported superior performance of their algo-
rithm over other techniques that do not explicitly try to search and exploit
relations. A new algorithm called RGDA is developed elsewhere [58, 59] that
again considers only second order non-linearity and offers O(¢?) performance.
Although linkage learning by detecting second order interaction may work
well for many problems, it is not difficult to construct a problem where this

30

may not be sufficient and in fact can be misleading. Therefore, more compre-
hensive approaches for detecting most of the significant partitions need to be
investigated.

One possible approach is to detect the significant partitions by explicitly ap-
proximating the WCs. This approach is currently being investigated by the
first author and his students. Note that the WCs can be grouped into different
subsets by defining schema like equivalence classes over the space of all indices
of the WCs. For example, we can define the sets woy = {woo, wor, wo2, wos},
wyx = {wWio, W11, W12, w13}, and similarly wys, wsx. Define, S, = 3 gcpr—+ wiﬂ,
where A is the alphabet set of the representation. Now note that if any of the
individual w,g-s has a magnitude greater than some threshold value 6, then
S, must have a value greater than 0?. Therefore, if S, < 6?, then none of
the Walsh coefficients with an index string starting with «a has a significant
magnitude. Figure 10 schematically illustrates the flow of the algorithm. At
every node of the tree we compute S,, and if S, at the i-th node is less than
6? then none of its children can have an S, value greater then 6 and therefore
the subtree can be discarded. If the number of non-zero Walsh coefficients is
bounded by a polynomial, we should be able to discard many such sub-trees
just by checking the S, at the root of the sub-tree. Using this idea, a poly-
nomial time algorithm has been developed elsewhere [46] for learning certain
classes of boolean functions. Their approach is based on approximate compu-
tation of S, using a randomly chosen sample set. A similar approach is also
being explored by Thierens [69]. The following section answers some of the
common criticisms against linkage learning algorithms.

12 Discussions

Linkage learning or, in general, searching for relations and classes, plays an
important role in blackbox optimization. Unfortunately, there has been a ten-
dency to consider linkage learning as an esoteric research issue that may not
have any relevance to the GA practitioners. This paper clearly pointed out
that this is not true. Detection of linkage in GAs plays a critical role since
GAs are fundamentally based on induction. Linkage learning research some-
times also faces another line of criticism. Sometimes it is argued that linkage
learning may be important in GAs but not in other evolutionary algorithms.
It is true that the linkage learning problem has been traditionally defined in
the context of a relation space, comprised of similarity based equivalence rela-
tions. However, the need for detecting relations and classes is universal for all
BBO algorithms. So if any other model of evolutionary computation aspires
to perform scalable optimization, it has to define its relation space and there
must exist a counterpart of linkage learning for that relation space.

31

Yet another common criticism is that the linkage learning GAs are time con-
suming, complex, and do not give satisfactory performance. Before addressing
this issue, we must realize that even approximate detection of the significant
partitions is a difficult problem, and a good algorithm for that will revolution-
ize many different fields such as signal processing, machine learning, cryptog-
raphy, and others. There do not exist very many fields of science and engi-
neering that have addressed this issue of approximate and efficient detection
of significant partitions. While the early linkage learning efforts were primarily
designed for breaking the ground and understanding the basic research issues,
linkage learning evolutionary algorithms are starting to get more realistic and
more efficient. A comparison among the performances of the different messy
GAs will clearly demonstrate the evolution of one class of linkage learning
GAs. Although the recent linkage learning GAs typically offer sub-quadratic
performance for problems that can be solved using order-£ delineable relations
and several real-life applications in large scale data mining [41] and optimiza-
tion [42] are currently under way, the authors believe that the linkage learning
algorithms are still in the exploratory stage. We need a lot of hard work on
both theoretical and experimental ground. However, there is no doubt that the
scalable evolutionary algorithms of the 21st century are going to need efficient
mechanisms for relation and class search. The following section concludes this

paper.

13 Conclusions

This paper presented a conceptual foundation of linkage learning, described
some of the earlier linkage learning GAs, and identified the relatively new
state-of-the-art efforts. It started by noting that intelligent guessing plays an
important role in non-enumerative inductive BBO. Scalable success of such al-
gorithms require inducing patterns from the sampled data. Relations defined
through the representation offer one way to capture such patterns. Linkage
learning addresses the issue of efficient, scalable detection of appropriate re-
lations. Therefore the designers of future evolutionary algorithms should pay
careful attention to linkage learning. Since the relation space for even moder-
ately interesting cases is extremely large and designing a measure for relations
evaluation is quite difficult, there are plenty of tough challenges in this research
area. So far the research has resulted in: (1) sub-quadratic-time approximate
algorithms for problems, that can be solved using order-k delineable similarity
based relations, (2) different techniques for evaluating relations, (3) different
approaches to preserve and disseminate the information regarding good re-
lations and classes among the population members of a GA. These results
await immediate applications and they can be incorporated in the current GA
practice for enhanced, scalable performance.

32

We should realize that the simple GA is unlikely to offer scalable performance
unless the related feature variables defining good delineable relations are rep-
resented adjacently in the chromosome. This essentially implies availability
of significant knowledge about the problem. If such knowledge is not avail-
able a priori and the problem is reasonably large enough then linkage learning
techniques should be employed in order to adaptively detect the appropriate
delineable relations. A spectrum of different sub-quadratic techniques listed
in this paper may serve as the starting point for such purpose. In addition,
techniques for preserving, updating, and propagating the linkage information
should be employed. The current state-of-the-art linkage learning algorithms
can also offer help in doing so. Although we have just began to scratch the
surface, an increasing number of linkage learning techniques for improving the
scalability of the existing evolutionary algorithms are starting to be available.

Acknowledgements

This work is also currently supported by National Science Foundation Grant
I1S-9803360. The first author would like to like to acknowledge the support
from US Army, and Air Force Office of Scientific Research for a portion of
the work presented here, that was performed at Illinois genetic Algorithm
Laboratory.

References

[1] D. H. Ackley. A connectionist machine for genetic hill climbing. Kluwer
Academic, Boston, (1987).

[2] J. D. Bagley. Dissertations Abs. Intl., 28-12 (1967) 5106B. (Univ. Micro-
films No. 68-7556).

[3] S. Baluja and S. Davies. Tech. Rep. CMU-CS-97-107, Dept. of Comp.
Sc., Carnegie Mellon Univ., Pittsburgh, (1997).

[4] S. Bandyopadhyay, H. Kargupta, and G. Wang. In Proc. of the IEEE
Intl. Conf. on Evolutionary Computation, IEEE Press, (1998) 603.

[5] K. G. Beauchamp. Applications of Walsh and Related Functions. Aca-
demic Press, USA, 1984.

[6] R. Belew and M. Vose, editors. Foundations of Genetic Algorithms, San
Mateo, CA, (1996).

[7] A.D. Bethke. Tech. Rep., Univ. of Michigan, Logic of Computers Group,
Ann Arbor, 197 (1976).

[8] A. Brindle. Genetic Algorithms for Function Optimization. Unpublished
doctoral dissertation, Univ. of Alberta, Edmonton, Canada, (1981).

33

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algo-
rithms. Massachussets: MIT Press ; New York: McGraw-Hill, (1990).

[10] H. A. David. Order statistics. John Wiley & Sons, Inc., New York, (1981).

[11] K. A. De Jong. Dissertation Abs. Intl., 36/10, (1975) 5140B. (Univ.
Microfilms No. 76-9381).

[12] K. Deb. Univ. of Ill. at Urbana-Champaign, Ill. [lliGAL Report no. 91004,
Genetic Algorithms Laboratory, Urbana, (1991). and Doctoral disserta-
tion (1991), Univ. of Alabama, Tuscaloosa.

[13] S. Forrest, editor. Proc. of the Fifth Intl. Conf. on Genetic Algorithms,
San Mateo, CA, (1993).

[14] S. Forrest and M. Mitchell. Proc. of the Fourth Intl. Conf. on Genetic
Algorithms, (1991) 182.

[15] D. R. Frantz. Non-linearities in genetic adaptive search. Dissertation
Abs. Intl., 33/11 (1972) 5240B-5241B. (Univ. Microfilms No. 73-11,116).

[16] G. Gates. Parallel messy genetic algorithms for the modelling the protein
folding structure. Master’s thesis. (1994), Air Force Inst. Of Tech.

[17] F. Glover. ORSA J. on Computing, 1 (1989) 190.

[18] D. E. Goldberg. Complex Systems, 3/2 (1989) 129. (Also TCGA Report
88006).

[19] D. E. Goldberg. Complex Systems, 3/2 (1989) 153. (Also TCGA Report
89001).

[20] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. (1989), Addison-Wesley, New York.

[21] D. E. Goldberg. IlliGAL Report No. 90002, (1990), Univ. of Ill. at Urbana-
Champaign, Ill. Genetic Algorithms Laboratory, Urbana.

[22] D. E. Goldberg and C. L. Bridges. Bio. Cyber., 62 (1990) 397. (and
TCGA Report No. 83005).

[23] D. E. Goldberg, K. Deb, H. Kargupta, and G. Harik. Proc. of the Fifth
Intl. Conf. on Genetic Algorithms, (1993) 56.

[24] D. E. Goldberg, K. Deb, and B. Korb. Complez Systems, 4 (1990) 415.

[25] D. E. Goldberg, K. Deb, and B. Korb. Don’t worry, be messy. Proc. of
the Fourth Intl. Conf. on Genetic Algorithms, Morgan Kaufmann, San
Mateo, CA, (1991) 24.

[26] D. E. Goldberg, B. Korb, and K. Deb. Complex Systems, 3/5 (1989) 493.
(And TCGA Report 89003).

[27] D. E. Goldberg and R. Lingle. In J. J. Grefenstette, editor, Proc. of an
Intl. Conf. on Genetic Algorithms and Their Applications, (1985) 154.

(28] G. Harik. Learning Linkage to Efficiently Solve Problems of Bounded
Difficulty Using Genetic Algorithms. PhD thesis, (1997), Dept. of Comp.
Sc., Univ. of Michigan, Ann Arbor.

[29] G. Harik and D. E. Goldberg. In Belew and Vose [6].

[30] F. Hoffmann and G. Pfister. Presented on IFSA July, (1995), Sao Paulo.

[31] J. H. Holland. Adaptation in Natural and Artificial Systems. Univ. of
Michigan Press, Ann Arbor, (1975).

[32] H. Kargupta. SEARCH, Polynomial Complexity, and The Fast Messy

34

Genetic Algorithm. PhD thesis, (1995), Dept. of Comp. Sc., Univ. of IlL
at Urbana-Champaign, Urbana, IL 61801, USA. And IIliGAL Report
95008.

[33] H. Kargupta. Presented in STAM Annual Meeting, (1996) as the winner
of the 1996 STAM Annual Best Student Paper Prize.

[34] H. Kargupta. In Proc. of the IEEE Intl. Conf. on Evolutionary Compu-
tation, IEEE Press, (1996) 814.

[35] H. Kargupta. In Proc. of the IEEE Intl. Conf. on Evolutionary Compu-
tation,(1996) 631. IEEE Press.

[36] H. Kargupta. In C. Poloni D. Quagliarella, J. Periaux and G. Winter,
editors, Genetic Algorithms in Engineering and Comp. Science., Chapter
4. (1997), John Wiley & Sons Ltd.

[37] H. Kargupta. In Computational Aerosciences in the 21st Century, (1998),
Kluwer Academic Publishers.

[38] H. Kargupta and S. Bandyopadhyay. In Lecture Notes in Comp. Sc.:
Parallel Problem Solving from Nature, Springer-Verlag, (1998) 315.

[39] H. Kargupta and D. E. Goldberg. In Belew and Vose [6], 291.

[40] H. Kargupta, D. E. Goldberg, and L. W. Wang. LAUR-96-27-48 (1996).

[41] H. Kargupta, E. Johnson, E. Riva Sanseverino, H. Park, L. D. Silvestre,
and D. Hershberger. Tech. Rep. EECS-98-001, School of Electrical Engi-
neering and Comp. Sc., Washington State Univ. (1998).

[42] H. Kargupta, E. Riva Sanseverino, E. Johnson, and S. Agrawal. To be
published in Intelligent Data Analysis in Sc.: A Handbook by Cartwright,
H., Oxford Univ. Press, (1998).

[43] S. Kazadi. In Proc. of the Intl. Conf. on Genetic Algorithms, (1997), 10.
Morgan Kaufmann.

[44] C. Kemenade. Explicit filtering of building blocks and genetic algorithms.
Personal communication, (1996).

[45] S. Kirpatrick, C. D. Gelatt, and M. P. Vecchi. Science., 220/4598 (1983)
671.

[46] S. Kushilevitz and Y. Mansour. In Proc. 23rd Annl. ACM Symp. on
Theory of Computing, (1991), 455.

[47] J. R. Levenick. In R. K. Belew and L. B. Booker, editors, Proc. of the
Fourth Intl. Conf. on Genetic Algorithms, Morgan Kaufmann, San Ma-
teo, CA, (1991) 123.

[48] G. E. Liepins and M. D. Vose. Complex Systems, 5/1 (1991) 45.

[49] F. Lobo, K. Deb, D. Goldberg, G. Harik, and L. Wang. In Genetic Pro-
gramming: Proc. of the Third Annual Conf., San Francisco, CA, (1998)
9551.

[50] L. D. Merkle. Master’s thesis, (1992), Air Force Inst. Of Tech., WPAFB
OH 45433.

[51] L. D. Merkle. PhD. dissertation (1998), Air Force Inst. Of Tech., WPAFB
OH 45433.

[52] L. D. Merkle and Lamont. G. B. In Appl. Computing (1994), Proc. of
the 1994 Symposium on Applied Computing, New York, The Assoc. for

35

Computing Machinery.

[63] L. D. Merkle, G. H. Gates, and Lamont. G. B. In Appl. Computing,
(1998), Proc. of the 1998 Symp. on Applied Computing. New York: The
Assoc. for Computing Machinery.

[54] L. D. Merkle and G. B. Lemont. In Forrest [13] 191.

[55] R. S. Michalski. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell,
editors, Machine learning: An artificial intelligence approach, Tioga Pub-
lishing Co, (1983) 323.

[56] T. Mitchell. Machine Learning. McGraw-Hill, USA, 1st edition, (1997).

[57] C. K. Mohan. In C. H. Dagli, L. I. Burke, Fernddez, and J. Ghosh, edi-
tors, Intelligent Engineering Systems Through Artificial Neural Networks,
ASME Press, New York, (1993) 831.

[58] H. Muhlenbein and G. Paab. In Parallel Problem Solving from Nature -
PPSN 1V, Berlin, Springer, (1996), 178.

[59] H. Miihlenbein and A. O. Rodriguez. Schemata, distributions and graph-
ical models in evolutionary optimization. Personal Communication.,
(1997).

[60] M. Munetomo and D. E. Goldberg. IIliGAL report 98012, Univ. of Ill. at
Urbana-Champaign, (1998).

[61] C. K. Oei. Walsh function analysis of genetic algorithms of nonbinary
strings. Unpublished master’s thesis, (1992). Univ. of Ill. at Urbana-
Champaign, Dept. of Comp. Sc.

[62] J. Paredis. In L. Eshelman, editor, Proc. of the Sizth Intl. Conf. on
Genetic Algorithms, San Mateo, CA, (1995) 359.

[63] J. Plevyak. A messy GA with small primordial population (1992).

[64] J. R. Quinlan. Machine Learning, 1/1 (1986), 81.

[65] R. S. Rosenberg. Simulation of genetic populations with biochemical
properties. Dissertation Abs. Intl., 28/7 (1967) 2732B. (Univ. Microfilms
No. 67-17, 836).

[66] J. D. Schaffer and A. Morishima. In J. J. Grefenstette, editor, Proc. of
the Second Intl. Conf. on Genetic Algorithms, (1987) 36.

[67] H. A. Simon. In The Sciences of the Artificial, MIT Press, Cambridge,
Massachusetts, USA, (1981) 192.

[68] J. Smith and T. Fogarty. In Proc. of the IEEE Intl. Conf. on Evolutionary
Computation, IEEE Press, (1996) 826.

[69] D. Thierens. Personal communication. (1998).

[70] D. Thierens and D. Goldberg. In Forrest [13], 38.

[71] H. Voigt and H. Muhlenbein. In Proc. of the Second Intl. Conf. on Evo-
lutionary Computation, (1995) 172.

[72] S. Watanabe. Knowing and guessing - A formal and quantitative study.
John Wiley & Sons, Inc., New York, (1969).

[73] D. Whitley, R. Beveridge, C. Guerra, and C. Graves. In B. Punch, editor,
Proc. of the Seventh Intl. Conf. on Genetic Algorithms, San Mateo, CA,
(1997) 568.

36

Fig. 1. Guessing by exploiting the relations and classes defined by the representation.
—GOOD RELATIONS] [BAD RELATIONS]

[RESOLUTION [« RELATIONS |———=|RELATION EVALUATION |

CLASSES |

CLASS EVALUATION

[GOOD CLASSES| [BAD CLASSES |

Fig. 2. A process oriented perspective of the SEARCH.

100 T 100 T T T
String Iength - # ,-% 7
Threshol ding paraneter -x- | 05 |- F T oy H B
— ; X
x H Ed 1 *
-] 90 |- I i ; *
g H oo H *]
s > 85 - P ; i i
H . 5 L 3)}‘ * x
H L e, Z | et % % H
= 60 g 80 ¥ h * i
= * E Z : : i *
H 8 - e Lx * i ! H
g 50 ¢ (S H * i M
= = i i i M]
3 a0 b N 8 0¥ X x | x
2 . e 3 | i] ¥ ¥
= L “x £ Lx i i i
g w e e s o i | £
H o " 2 B ; j !
a 20 x. o g 60 i H * i
e o, : i x F
wl e 1 5 i = o
ol Rz Maxi mum obj ective function val ue -x--
. 50 . . . h h h !
50 60 o 50 100 150 200 250 300 350 400 450
Generati ons

Fig. 3. (left) Building-block filtering schedule for order-5 level of a 100-bit problem.
(right) Maximum objective function value in different generations for a 100-bit,
order-5 deceptive Trap function. The fast messy GA found the best solution. Pop-

ulation size, n = 7500.

37

String length and threshol di ng

160 T 150
String length -e— x)l?"‘
Threshol ding par aneter - Maxi num obj ecti ve function val ue -x-— X
140 ¥~ 140 <A
= 7
" % H %
q s h
%% = i
120 b X0] 130 i
%0 z 7
AN S
100 | LN 3 120 o
x_e H e
X e 2 :
80 xR e 110
X, o z
x_ o z ?
LR e -
60 . 3 100 5
40 X Se = 90 il
X S, % -
% %o, g !
Foo 2 E
20 Hx S sl |
Treeen, ot
R R
0 . . ! 70 . . .
0 20 4 60 100 120 20 40 100 120 140
Primordial Generations

Fig. 4. (left) Building-block filtering schedule for order-5 level of a 150-bit problem.
(right) Maximum objective function value in different generations for a 150-bit,
order-5 deceptive Trap function. The fast messy GA found the correct solution for
27 out of the 30 subfunctions. Population size, n = 8500.

Number of function evaluations

Number of function evaluations

MUEH +

500 600
Problem size

300 400 500 600

Problem size

900 1000

Fig. 5. Number of function evaluations vs. problem size for attaining the optimum
solution by the GEMGA in case of uniformly scaled, non-overlapping (left) Trap
and (right) MUH.

Number of function evaluations

Number of function evaluations
~

Gw2 +

500 600 700 800 900
Problem size

1000

500 600
Problem size

300 400

700 800 900 1000

Fig. 6. Number of function evaluations vs. problem size for attaining the optimum
solution by the GEMGA in case of uniformly scaled, non-overlapping (left) GW1
and (right) GW2.

38

Number of function evaluations

Scaled TRAP +

200 300 400 500 600 700 800 900 1000 100 150 200 250 300 350 400 450 500
Problem size Problem size

Fig. 7. Number of function evaluations vs. problem size for attaining the optimum
solution by the GEMGA in case of non-overlapping (left) uniformly scaled, Massively
Multimodal and (right) non-uniformly scaled Trap.

., X10

Number of function evaluations
I

Scaled MUEH +

14 Scaled GW1 +

iy
S

Number of function evaluations

150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500
Problem size Problem size

Fig. 8. Number of function evaluations vs. problem size for attaining the optimum

solution by

the GEMGA in case of non-uniformly scaled, non-overlapping (left)

MUH and (right) GW1.

Number of function evaluations

=
S

®

Number of function evaluations
©

~

. L L L . 4 L L L . .
120 140 160 180 200 220 240 260 280 300 100 120 140 160 180 200 220 240 260 280 300
Problem size Problem size

Fig. 9. Number of function evaluations vs. problem size for attaining the optimum
solution by the GEMGA in case of (left) Fc2 and (right) Fe3.

/\
A N

AN A/\

000 001 010 011 100 101 110 111

\\
\\

o

Fig. 10. Flow of the S, computation for different o values.

39

Table 1
(left) Massively multimodal function and (right) GW1; u denotes the number of 1-s
in the string. The symbol # denotes the don’t care position.

Multi-modal GW1

MULTI(x) = u+2 x f’(x) | GW1l(x) =4 if x=1#1#0

where, =8 if x=1#0#0

f’(x) = 1 if odd(u) =10 if x=0#1#0
= 0 otherwise = if x=0#1#0

Table 2
(left) MUH and (right) GW2; functions odd(0) and even(0) return true if the number
of 0-s in z are odd and even respectively. odd(1) and even(1) are analogously defined.

Miihlenbein GW2

MUH(x) =4 if x=00000 | GW2(x) =10 if u=0
=3 if x= 00001 =8 if u=k
=2 if x=00011 =7 if u=1 and odd(0)
=1 if x=00111 =2 if u=1 and even(1)
=0 if x=01111 =4 if u=k-1 and odd(1)
=3.5 if x=11111 =3 if u=k-1 and even(1)
=0 otherwise. =0 otherwise.

40

