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Abstract

Privacy is becoming an increasingly important issue in many data mining applications. This
has resulted in the development of several privacy-preserving data mining techniques. The
random value distortion technique is one among them. Several data mining researchers have
recently adopted this approach to mine data without losing the privacy. Random value distor-
tion attempts to hide the sensitive data by randomly modifying the data values. This paper
questions the utility of the random value distortion technique in data mining. The paper first
notes that random matrices have “predictable” structures in the spectral domain and then it
develops a random matrix-based spectral filtering technique to retrieve original data from the
dataset distorted by adding random values. The proposed method works by comparing the
spectrum generated from the observed data with that of random matrices. The paper presents
the theoretical foundation and extensive experimental results to demonstrate that in many cases
the random value distortion technique may not preserve any data privacy after all.

1 Introduction

Many data mining applications deal with privacy-sensitive data. Financial transactions, health-
care records, and network communication traffic are some examples. Data mining in such privacy-
sensitive domains is facing growing concerns. Therefore, we need to develop data mining techniques
that are sensitive to the privacy issue. This has fostered the development of a class of data mining
algorithms [1, 9] that try to extract the data patterns without directly accessing the original data
and guarantees that the mining process does not get sufficient information to reconstruct the original
data.

This paper considers an existing approach for privacy-preserving data mining by randomly
perturbing the data while preserving the underlying probabilistic properties. It explores the random
value perturbation-based approach [1], a well-known technique for masking the data using random
noise. This approach tries to preserve data privacy by adding random noise, while making sure
that the random noise still preserves the “signal” from the data so that the patterns can still be



accurately estimated. This paper questions the privacy-preserving capability of the random value
perturbation-based approach. It shows that in many cases, the original data (sometimes called
“signal” in this paper) can be accurately estimated from the perturbed data using a spectral filter
that exploits some theoretical properties of random matrices. It presents the theoretical foundation
and provides experimental results to support this claim.

Section 2 offers an overview of the related literature on privacy preserving data mining. Section
3 describes the random data perturbation method proposed in [1]. Section 4 presents a discussion
on the eigenvalues of random matrices that builds the foundation of the technique proposed here to
compromise the privacy protection introduced by the random value perturbation-based approach.
Section 6 describes the proposed random matrix-based filtering technique to extract the original
dataset. Section 7 applies the proposed technique and reports its performance for various data sets.
Finally, Section 8 concludes this paper and outlines future research directions.

2 Related Work

There exists a growing body of literature on privacy-sensitive data mining. These algorithms can
be divided into two different groups. One approach adopts a distributed framework; the other
approach adds random noise to the data in such a way that the individual data values are distorted
while still preserving the underlying distribution properties at a macroscopic level. The following
part of this sections briefly discusses these two approaches.

The distributed approach supports computation of data mining models and extraction of “pat-
terns” at a given node by exchanging only the minimal necessary information among the participat-
ing nodes without transmitting the raw data. The field of distributed data mining [10, 17] produced
several distributed algorithms that are sensitive to privacy. For example the meta-learning based
JAM system [24] was designed for mining multi-party distributed sensitive data such as finan-
cial fraud detection. The Fourier spectrum-based approach to represent and construct decision
trees [11, 16], the Collective hierarchical clustering [7] are examples of additional distributed data
mining algorithms that can be used with minor modifications for privacy-preserving mining from
distributed data. In the recent past, several distributed techniques to mine multi-party data have
been reported. A privacy preserving technique to construct decision trees [18] proposed elsewhere
[13], multi-party secured computation framework [19], association rule mining from homogeneous
[9] and heterogeneous [26] distributed data sets are some examples. There also exists a collection of
useful privacy-sensitive data mining primitives such as secure sum computation [20], secure scalar
product computation [26].

There is also a somewhat different approach and the algorithms belonging to this group works by
first perturbing the data using randomized techniques. The perturbed data is then used to extracts
the patterns and models. The randomized value distortion technique for learning decision trees [1]
and association rule learning [3] are examples of this approach. Additional work on randomized
masking of data can be found elsewhere [25].

This paper explores the second approach [1] that works by adding random noise to the data set
in order to hide the individual data values of different attributes. It points out that in many cases
the noise can be separated from the perturbed data by studying the spectral properties of the data
and as a result its privacy can be seriously compromised. Before presenting the technique to do
that, let us review the randomized value distortion [1] technique in details.



3 Random Value Perturbation Technique: A Brief Review

For the sake of completeness, we now briefly review the random data perturbation method suggested
in [1]. We also discuss the procedure for reconstructing the original data distribution, as suggested
in [1].

3.1 Perturbing the Data

The random value perturbation method attempts to preserve privacy of the data by modifying
values of the sensitive attributes using a randomized process [1]. The authors explore two possible
approaches — Value-Class Membership and Value Distortion — and emphasize the Value Distortion
approach. In this approach, the owner of a dataset returns a value w; + v, where u; is the original
data, and v is a random value drawn from a certain distribution. Most commonly used distributions
are the uniform distribution over an interval [—a, a] and Gaussian distribution with mean p =0
and standard deviation . The n original data values wi,us,...,u, are viewed as realizations
of n independent and identically distributed (i.i.d.) random variables U;, i = 1,2,...,n, each
with the same distribution as that of a random variable U. In order to perturb the data, n
independent samples v, va, . . ., Uy, are drawn from a distribution V. The owner of the data provides
the perturbed values uy + vy, ug + ve, ..., u, + v, and the cumulative distribution function Fy (r)
of V. The reconstruction problem is to estimate the distribution Fy(z) of the original data, from
the perturbed data.

3.2 Estimation of Distribution Function from the Perturbed Dataset

The authors [1] suggest the following method to estimate the distribution Fy(u) of U, given n
independent samples w; = u; +v;, ¢ = 1,2,...,n and Fy(v). Using Bayes’ rule, the posterior
distribution function Fy;(u) of U, given that U + V = w, can be written as

[t fvlw = 2) fu(z)dz
25 fv(w = 2) fu(z)dz’

which upon differentiation with respect to u yields the density function

fv(w —u)fy(u)
[2o0 fv(w = 2) fu(2)dz
where fy(.), fy(.) denote the probability density function of U and V respectively. If we have n

independent samples u; +v; = w;, ¢ = 1,2,...,n, the corresponding posterior distribution can be
obtained by averaging:

Fiy(u) =

fo(u) =

fV w; — u)fU( )
Z w2 fu(2)de o)

For sufficiently large number of samples n, we expect the above density function to be close to
the real density function fy(u). In practice, since the true density fy(u) is unknown, we need to
modify the right-hand side of equation 1. The authors suggest an iterative procedure where at each
step 7 = 1,2,..., the posterior density f(]]_l(u) estimated at step 7 — 1 is used in the right-hand
side of equation 1. The uniform density is used to initialize the iterations. The iterations are
carried out until the difference between successive estimates becomes small. In order to speed up
computations, the authors also discuss approximations to the above procedure using partitioning
of the domain of data values.



4 Randomness and Patterns

The random perturbation technique “apparently” distorts the sensitive attribute values and still
allows estimation of the underlying distribution information. However, does this apparent distortion
fundamentally prohibit us from extracting the hidden information? In this section we explore this
question.

Randomness may not necessarily imply uncertainty. Random events can often be analyzed
and their properties can be explained using probabilistic frameworks. Statistics, randomized com-
putation, and many other related fields are full of theorems, laws, and algorithms that rely on
probabilistic characterization of random processes. Randomly generated structures like graphs also
demonstrate interesting properties.

Random matrices [15] also exhibit many interesting properties that are often exploited in high
energy physics [15], signal processing [22], and even data mining [12]. The random noise added
to the data can be viewed as a random matrix and therefore its properties can be understood by
studying the properties of random matrices. In this paper we shall develop a spectral filter designed
based on random matrix theory for extracting the hidden data from the data perturbed by random
noise. Our filtering approach is based on the observation that the distribution of eigenvalues of
random matrices [15] exhibit some well known characteristics. The rest of this section discusses
some of the important spectral properties of random matrices.

A random matrix is a matrix whose elements are random variables with given probability
laws. The theory of random matrices deals with the statistical properties of the eigenvalues of such
matrices. Eigenvalues of random matrices offer many interesting properties. For example, Wigner’s
semi-circle law [28], which says if V' is an n x n matrix and has i.i.d. entries with zero mean and

unit variance, the distribution of eigenvalues of ‘2/;2%' has a probability density function given by

f(2) 1(2n - )2 x| < V2n
€Tr) =
0, otherwise.

In this paper, we are mainly concerned about distribution of eigenvalues of the sample covariance
matrix obtained from a random matrix. Let V be a random m X n matrix whose entries are
Vijsi=1,...,m, j = 1,...,n, are i.i.d. random variables with zero mean and variance o?. The
covariance matrix of X isgiven by Y = %V’V. Clearly, Y is an nxn matrix. Let Ay < do <--- < ),
be the eigenvalues of Y. Let

Falr) = - 30— A0,
i=1

be the empirical cumulative distribution function (c.d.f.) of the eigenvalues \;, (1 <1i < n), where

U(x):{1 x>0

0 <0

is the unit step function. In order to consider the asymptotic properties of the c.d.f. F},(z), we will
consider the dimensions m = m(N) and n = n(N) of matrix X to be functions of a variable N.

We will consider asymptotics such that in the limit as N — oo, we have m(N) — oo, n(N) — oo,
and % — @, where > 1. Under these assumptions, it can be shown that [8] the empirical

c.d.f. Fy,(z) converges in probability to a continuous distribution function Fg(x) for every x, whose
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Figure 1: Wigner’s semi-circle law: Distribution of the eigenvalues of ‘2/\‘;21“’ where V is a random
matrix takes the shape of a semi-circle.
probability density function (p.d.f.) is given by
Q\/(z'_)\min)(Amax_fv)
fQ(iU) — ono2: Amin < T < Amax (2)
0 otherwise,

where A\pip and Apax are as follows:

>\min = 02(1 - 1/\/@)2
Amax = 02(1 +1/1/Q)%. (3)

Further refinements of this result and other discussions can be found in [22, 5, 14, 2, 4, 29, 21].

5 Separating the Data from the Noise

Consider an m x n data matrix U and a noise matrix V' with same dimensions. The random value
perturbation technique generates a modified data matrix U, = U 4 V. Our objective is to extract
U from U,. Although the noise matrix V' may introduce seemingly significant difference between
U and Up, it may not be successful in hiding the data.

Random noise has well defined probabilistic properties that may be used to identify the noise
component of the perturbed data matrix U, in an appropriate representation. The rest of this
paper argues that the spectral representation of the data allows us to do exactly that.

Consider the covariance matrix of Up:

UgUpy=(U+ V)" (U+V)
=vTu+viu+vuTv +vTv. (4)

Now note that when the signal random vector (rows of U) and noise random vector (rows of V') are
uncorrelated, we have E[UTV] = E[VTU] = 0. The uncorrelated assumption is valid in practice



since the noise that V that is added to the data U is generated by a statistically independent
process. Recall that the random value perturbation technique discussed in the previous section
introduces uncorrelated noise to hide the signal or the data. If the number of observations is
sufficiently large, we have that U7V ~ 0. Equation 4 can now be simplified as follows:

T T T
U,U,=U0"U+V'V (5)
Since the correlation matrices UTU, UpT Up, and VTV are symmetric and positive semi-definite, let

UTU = QuAqua
ULU, = QpApQF, and
VIV = Q,A,QT, (6)

where @, Qp, @, are orthogonal matrices whose column vectors are eigenvectors of Utu, UpT Up,
VTV, respectively, and A,, A,, A, are diagonal matrices with the corresponding eigenvalues on
their diagonals.

The following result from matrix perturbation theory [27] gives a relationship between A,, A,,
and A,.

Theorem 1 [27] Suppose Ai (q) > Ao (q) = -+ A @) = 0, @ € {u,p,v} are the eigenvalues of Utu,
UpTUp, and VTV, respectively. Then, fori=1,...,n,

Ai(p) € [Ni(w)  An,0)s Niy(w) T A1)

This theorem provides us a bound on the change in the eigenvalues of the data correlation matrix
UTU in terms of the minimum and maximum eigenvalues of the noise correlation matrix V'V,
Now let us take a step further and explore the properties of the eigenvalues of the perturbed data
matrix U, for large values of m.

Lemma 1 Let data matriz U and noise matriz V' be of size mxn and U, = U+V. Let Qy,Qp, Qy
be orthogonal matrices and A, Ay, A, be diagonal matrices as defined in 6. If m/n — oo then

Ap = AN AT + A, where A = QZQu.

Proof:
Using Equations 5 and 6 we can write,

QpAsz; = QuAquj; + QvAvQZ
= AP = QgQuAquQp + QZQ@AWQZQP
= ANAT + QT QuAQT Q) (7)
Let the minimum and maximum eigenvalues of V' be Ay, () and Apax () respectively. It follows
from equation 2 that m/n — oo all the eigenvalues in A, become identical since lim,;, /,— 000 Amax,(v)
lim,, /n— Q00 Amin,(v) = 02 (say). This implies that, as m/n — oo, A, — oI, where I is the n x n

identity matrix. Therefore, if the number of observations m is large enough (note that, in practice,
number of features n is fixed), VIV = Q,A, QT = UZQUQg = ¢2]. Therefore Equation 7 becomes

Ap = ANAT + QT QA QT Q,
Ap = AAAT + A, (8)
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If the norm of the perturbation matrix V' is small, the eigenvectors @, of UpT Up would be close
to the eigenvectors QgQu of UTU. Indeed, matrix perturbation theory provides precise bounds on
the angle between eigenvectors (and invariant subspaces) of a matrix U and that of its perturbation
U, = U +V, in terms of the norms of the perturbation matrix V. For example, let (z,,\,) be
an eigenvector-eigenvalue pair for matrix UTU and € = |[VTV |3 = onax(VTV) be the two-norm
of the perturbation, where omaX(VTV) is the largest singular value of VTV. Then there exists an
eigenvalue-eigenvector pair (zp, Ap) of UpT U, satisfying [27, 23]

€

§—¢€’

tan(Z(zy,zp) < 2

where ¢ is the distance between ), and the closest eigenvalue of UT U, provided € < §. This shows
that the eigenvalues of UTU and UIZUP are in general close, for small perturbations. Moreover,

2

§—¢€’

A — 2" Upzy| < 2

where z* is the conjugate-transpose of z. Consequently, the product A = QZQH, which is the
matrix of inner products between the eigenvectors of UTU and UpT Up would be close to an identity
matrix; i.e., A = QZ’QU ~ I. Thus equation 8 becomes

Ap = Ay + Ay (9)
Suppose the signal covariance matrix has only a few dominant eigenvalues, say Ay ) > -+ >
Ak,(u)s With A; ) < € for some small value € and i =k +1,...,n. This condition is true for many

real-world signals. Suppose Ay (,) > Ay (y), the largest eigenvalue of the noise covariance matrix. It
is then clear that we can separate the signal and noise eigenvalues A,, A, from the eigenvalues A,
of the observed data by a simple thresholding at A; (,).

Note that equation 9 is only an approximation. However, in practice, one can design a filter
based on this approximation to filter out the perturbation from the data. Experimental results
presented in the following sections indicate that this provides a good recovery of the data.

6 Random Matrix-Based Data Filtering

This section describes the proposed filter for extracting the original data from the noisy perturbed
data. Suppose actual data U is perturbed by a randomly generated noise matrix V in order to
produce U, =U + V. Let up; = u; +v;, i =1,2,...,m, be m (perturbed) data points, each being
a vector of n features.

The proposed filtering technique first calculates the covariance matrix of the perturbed data
Up. Using the distribution of eigenvalues of the covariance matrix, and the theory of random
matrices, the covariance matrix of U, is decomposed into a noise part and an actual data part. The
eigenstates corresponding to actual data are then used to reconstruct the actual data.

In the following section, we discuss the proposed filtering procedure. We first explore the
case where the distribution Fy (v) of the random noise V (including the variance) is known, as
required by the random value perturbation scheme [1]. Next we discuss how the noise variance
can be estimated from the eigenvalue distribution of the perturbed data. The reader should note
that the random value perturbation scheme provides information about the noise distribution. So
estimation of the noise variance is not necessary. We explored that case in order to develop a
broader understanding about the performance of the proposed filtering technique.
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Figure 2: Flowchart of the spectral filtering technique.

6.1 Known Noise Variance

When the noise distribution Fy (v) of V' is completely known (as required by the random value
perturbation technique [1]), the noise variance o2 is first calculated from the given distribution.
Equation 2 is then used to calculate Ajpqe and A, which provide the theoretical bounds of the
eigenvalues corresponding to noise matrix V. From the perturbed data, we compute the eigenvalues
of its covariance matrix Y, say A\ < Ao < --- < A,,. Then we identify the noisy eigenstates \; <
Ai1 < -+ < Ajsuch that A; > Ay and Aj < Ajye,. The remaining eigenstates are the eigenstates
corresponding to actual data. Let, A, = diag (A, Ait1,...,A;) be the diagonal matrix with all
noise-related eigenvalues, and A, be the matrix whose columns are the corresponding eigenvectors.
Similarly, let A, be the eigenvalue matrix for the actual data part and A, be the corresponding
eigenvector matrix which is an n x k matrix (¥ < n). Based on these matrices, we decompose
the covariance matrix Y into two parts, Y; and Y, with Y =Y, +Y,., where Y, = AUATAZ’, is the
covariance matrix corresponding to random noise part, and Y, = AuAuAf, is the covariance matrix
corresponding to actual data part. An estimate U of the actual data U is obtained by projecting
the data U, on to the subspace spanned by the columns of A,. In other words, U= UpAuA%f.

6.2 Unknown Noise Variance

When the noise variance o2

noise variance is then used to filter the perturbed data. In order to estimate the noise variance o
we first compute the eigenvalues of the covariance matrix Y of the perturbed data W. A histogram
of the eigenvalue distribution is plotted and compared to that of the theoretical noise eigenvalue
density function fg(z) given in equation 2. Note that the density function fg(z) depends on the
variance o2. Typically, the theoretical density function fq(z) is a good fit to the left portion of the
histogram of the computed eigenvalues, corresponding to small eigenvalues. The larger eigenvalues
that do not fit this theoretical density function correspond to the actual information part of the
perturbed data. An iterative procedure is employed to obtain the value of o that results in the
best fit of fo(z) to the observed histogram.

is unknown, we first estimate it using the perturbed data. The estimated
2
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Figure 3: Estimation of original sinusoidal data with known random noise variance.

7 Experimental Results

Our proposed method is used on datasets of different sizes which have some trend in their values.
The actual dataset is distorted by adding Gaussian noise (Normally distributed random numbers
with zero mean and specific variance), and our proposed technique is applied to recover the actual
data from the perturbed data with the knowledge of noise distribution (noise variance in particular).
Experimental results show this method estimates the pattern and gives close estimation of individual
values of actual data. Figure 3 shows one such estimation of data when the actual data has sinusoidal
trend.

The distribution of eigenvalues shows (Figure 4) the method accurately distinguishes between
noisy eigen values and eigenvalues corresponding to actual data. Note that the estimated eigenvalues
of actual data is very close to eigenvalues of actual data and almost overlap with them above A;qz.
The eigenvalues of actual data below the A;,;, are of very small values and are negligible. Thus ,
even though there are no estimations corresponding to them, the estimation of actual data is fairly
accurate.

The theory of random matrix based filtering can be extended for dataset having single feature,
i.e when the dataset is in the form of a vector containing data points.The whole vector is divided
into a fixed no of vectors having equal length, and all of these vectors are added to form a matrix.
The matrix is then distorted by adding random noise in the same way as before and is disclosed.
The same method is applied to this matrix to estimate the original data. After the data matrix
is estimated, its columns are concatenated to form the single vector. The performance of the
estimation remains nearly same as compared to multi-featured data in the form of a matrix.

We tried to replicate the experiment reported in [1] using our method to recover the triangular
distribution. We used a vector data of 10000 values having a triangular distribution. The individual
values of actual data are within 0 and 1. We split the data vector into 50 columns, each having 200
values, and added a Gaussian random variable with mean 0 and standard deviation o = 0.25 to each
data value. We then applied our algorithm to recover the actual data from the distorted data with
the known noise o = 0.25. Figure 5 shows estimation of the distribution. The distorted distribution
looks nowhere close to the actual triangular distribution, but the estimated distribution looks very
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Figure 4: Distribution of eigenvalues of actual data, and estimated eigenvalues of random noise and
actual data.

similar to the original distribution. This shows that our method recovers the original distribution
closely. Figure 6 shows a chunk of data, their values after distortion by random numbers, and
their estimated values. Note, the estimated values are pretty close to actual values, whereas the
distorted values are far apart. Figure 7 shows the error in estimation of of the actual data for the
whole dataset ( 10000 points ). The estimation error remains within —0.3 to 0.3 in this experiment.
So, our method can recover the distribution of data as well as their individual values closely. That
is where it questions the privacy preserving ability of randomized value perturbation technique
reported in [1].

Quality of recovery depends upon relative noise content of the data. If the relative noise
compared to actual dataset increases very much, the recovery method performs poorly. We define
the term ‘Signal-to-Noise Ratio’ (SNR) to quantify the relative amount of noise added to actual
data to perturb it.

Value of Actual Data

SNR = Value of Noise Added to the Data

As the noise added to the actual value increases, the SNR decreases. Our experiments show
that this method predicts the actual data reasonably well up to a SNR value of 1.0 (i.e. 100%
noise). The results shown in Figure 3 is the case of mean SNR value nearly 2, i.e. noise content is
50%. Figure 6 shows a datablock where mean SNR is 1.9. As the SNR goes below 1, the estimation
becomes too erroneous. Figure 8 shows the difference in estimation accuracy as the SNR increases
from 1. The dataset used has sinusoidal trend in its values.The upper figure shows the estimation
corresponding to 23% noise(mean SNR = 4.3), and the lower figure shows estimation corresponding
to 100% noise (mean SNR = 1.0). Figure 9 shows the variation of estimation error with change
in SNR value. As the SNR value decreases, mean error in estimation shows an increasing trend,
though the variation is not linear and has some erratic behavior.

In case of unknown noise distribution, the method estimates the noise variance first. From
the eigenvalues of covariance matrix of actual data, a histogram of the eigenvalue distribution is

10
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Figure 5: Original data has 'Triangular’ distribution. Though perturbed data distribution does not
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Plot of a Fraction of dataset,Estimated vs Actual Signal
0.9 T T T T T T

—-- Values ———>

=+ Estimated data y
= Actual data

== Perturbed data !
I I I I I I I

0 5 10 15 20 25 30 35 40 45 50
—-= No of instances-—->

Figure 6: Plot of individual values of a fraction of dataset used in Figure 5.0ur method gives close
estimation of individual values.

obtained, and this is compared with best possible theoretical density function given by Equation
2. The variance corresponding to the best fit gives the estimation of the noise variance.

To get the best estimation of variance, the algorithm estimates noise variance from the best
fit curve several times. In each trial , the variance estimation algorithm starts with a very small
variance value near zero, create the theoretically generated distribution and measures the mean
square error between it and histogram of eigenvalues of actual data. It then increases variance
by a small value, again computes the mean square error and compares it with the previous error
to get the minimum error and corresponding variance. The algorithm does the said operation
up-to a threshold value of variance, and stores of the variance corresponding to minimum mean
square error between theoretically generated density function curve and histogram of eigenvalues
of actual data.That value of variance is treated as the estimated value of noise variance for that
particular trial.In our experiment, we used 100 such trials for each variance estimation. After the
set of estimates are calculated from all trials, the distribution of estimated variances is checked for

11
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Figure 7: Plot of estimation error for experiment reported in Figure 5. The error is limited within
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Figure 8: A higher noise content (low SNR )leads to less accurate estimation.SNR in upper figure
is 1, while that for lower figure is 4.3.

outliers in them. The mean p; and standard deviation o; of the estimates are calculated , and
values lying outside the span pq £ 20 are discarded. During each trial, if the algorithm does not
get best fit within a predefined threshold value of variance, it stores that threshold value of variance
as the estimation. These values are also treated as outliers at the end and are discarded.

After discarding the outlier estimations, an average of the rest of the estimates are taken to
get the actual estimate of noise variance. We have noticed that discarding the outliers and taking
average of the remaining number of estimate improves the estimation accuracy to a large extent.
Once the noise variance is estimated, the same technique is applied as before to estimate the original
data. Figure 10 shows the estimation of actual data having 300 values and a sawtooth trend with
SNR. value of 4.25 when distribution of noise is not known. The average over 100 estimates of noise
variance after discarding the outliers gave an estimated variance of 0.83452 where the actual noise
variance is 0.85. Although not all the estimates are always so close, on an average, the difference
between the estimated variance and true variance remains within 10% of the actual variance in all
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Figure 9: Variation of mean estimation error with change in SNR values. As SNR decreases, mean
estimation error shows an increasing trend.
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Figure 10: Estimation of actual data when the noise distribution is not known.

our experiments. Figure 11 shows the distribution of eigenvalues of actual data, estimated noise
and estimated data for experimental result reported in Figure 10.

8 Conclusion and Future Work

Preserving privacy in data mining activities is a very important issue in many applications. This
paper illustrates a noise filtering technique by which true data values can be estimated from the
perturbed values (by random noise). This raises questions against the claim of preserving privacy
by perturbing data with random numbers and disclosing the perturbed dataset as well as the prob-
ability distribution of the random number generator. The proposed approach works by comparing
the empirically observed eigenvalue distribution of the given data with that of the known distribu-
tion of random matrices. The theoretically known values of upper and lower limits of the spectrum
(eigenvalues) are used to identify the boundary between the eigen-states due to noise and that of
the actual data.
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Figure 11: Distribution of eigenvalues of actual data, estimated data and estimated noise when
noise variance is not known.

This random matrix based approach to separating the information bearing and noisy eigen-
states has potential computational advantages. Indeed, since the upper bound Ay, of the noisy
eigenvalues is known a priori, one can easily use a suitable numerical technique (e.g., power method
[6]) to compute just the few largest eigenvalues. Once these eigenvalues and corresponding eigen-
vectors are computed, one can obtain the actual-data-part of the covariance matrix, which can be
subtracted off from the total covariance to isolate the noise-part of the covariance. The proposed
approach is simple, and retrieves actual data with reasonable precision. For the datasets considered
in this paper, our experimental results support this claim. So, the method of perturbing data with
random number to hide their original value is not a very reliable method to preserve privacy.

This work points out a potential problem in the existing literature. However, it leaves open
the problem of coming up with methods which can actually preserve privacy without destroying
statistical properties of the original dataset. We believe that this can be done by first narrowing
down the specific pattern that we want to preserve through randomized perturbation. We hope
that this work will encourage data mining researchers to design privacy-preserving techniques that
pay careful attention to the properties of random noise and their effect on preserving privacy.
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