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Abstract

This paper considers the problem of distributed inferencing in a sensor network.
It particularly explores the probabilistic inferencing problem in the context of a
distributed Boltzmann machine-based framework for monitoring the network. The
paper offers a variational mean-field approach to develop communication-efficient
local algorithm for Variational Inferencing in Distributed Environments (VIDE).
It compares the performance of the proposed approximate variational technique
with respect to the exact and centralized techniques. It shows that the VIDE offers
a much more communication-efficient solution at very little cost in terms of the
accuracy. It also offers experimental results in order to substantiate the scalability
of the proposed algorithm.

1 Introduction

Probabilistic inferencing lies at the core of a wide range of sensor network
applications, such as target tracking, target location, and distributed sensor
calibration. Probabilistic inferencing can be viewed as the task of computing
the posterior probability distribution of a set of hidden variables, given a set
of visible variables (also known as evidence variables or observed variables),
and a probability model for the underlying joint distribution of the hidden
and the visible variables [3].

In this paper, we consider the problem of inferencing in a heterogeneously
distributed environment where each visible variable is measured in a differ-
ent node, and each node is required to compute the probability distribution
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of the hidden variables, given the visible variables. The problem of exact in-
ferencing, even when the data is centralized, is intractable, and variational
methods provide a deterministic approximation technique used in such infer-
encing [6,7]. This paper explores the possibility of variational approximation in
distributed computation for inferencing in a distributed Boltzmann machine.
The paper presents an algorithm, VIDE (Variational Inference in Distributed
Environment), which can perform probabilistic inferencing in heterogeneously
distributed environments using variational approximation.

The rest of this paper is organized as follows. Section 2 motivates and formally
defines the problem of distributed inferencing in the context of sensor network
applications. Section 3 offers a brief survey of existing work that is relevant.
Section 4 shows how the inferencing problem can be posed as a variational
optimization problem. Section 5 presents our algorithm, VIDE, which extends
the variational approach to the heterogeneously distributed environment. It
shows that variational inference in a heterogeneously distributed system re-
duces to a distributed average computation, followed by a purely local phase
of computation. Section 6 analyzes the communication complexity of VIDE.
It also presents an analysis of the energy consumption of VIDE. Section 7
presents the experimental results. Finally, Section 8 concludes this paper.

2 Motivation and Problem Definition

A large number of sensor network applications involve probabilistic inferenc-
ing. This section presents some applications, which motivate the distributed
probabilistic inferencing problem. Next, it presents a formal definition on the
distributed inferencing problem.

Consider the problem of target classification in a sensor network . An object
is present in a field of sensor networks, and several attributes of that object
are being measured by the sensors. The goal is to classify the object. If the
measured attributes are considered to be visible variables, and the class label
to be a hidden variable, then the target classification problem requires an
estimation of the probability distribution of the hidden variable given the
visible variables.

A similar problem is that of target localization in sensor networks. Several
attributes of a possibly mobile object are being measured by sensor networks.
The task is to estimate the position of the object. For example, in a battlefield
where acoustic sensor networks have been deployed, we may want to estimate
the position where a fire-arm was just triggered. Again, we can model the co-
ordinates of the object as hidden variables, and the sensor network measure-
ments as the visible variables. For that, we may need to know the probability



distribution of the hidden variables given the visible variables.

As a third example, we can consider the distributed sensor calibration problem
[5,3]. Let us suppose that some variable (e.g. temperature) is being measured
by a set of sensors. The measurements taken by the individual sensors may
have biases, depending on the measurement technique used. However, if we
have a probability model involving the true temperatures, the measured tem-
peratures, and the biases, then we can compute the posterior probability of
the true temperatures, given the measured temperatures.

All the above example are special cases of the following abstract problem:

Probabilistic Inferencing Problem. Let X = (X}, X,) be a random vec-
tor, where X, and X, consist of the hidden and the visible attributes respec-
tively. We are also given a model for the joint probability, P(xp,x,|0), where
0 is the parameter vector for the model. We wish to compute the posterior
probability of the hidden variables, given the visible variables, that is:

P(xp,%,|0)

P(Xh|xv;9) = P(Xv|9)

The probability model is usually expressed as a graphical model. We shall see,
in the next section, that performing exact inferencing in a graphical model is
an intractable problem, and so we need effective approximation techniques to
solve the problem. We shall also see, later, that variational methods provide
a deterministic approximation technique to such problems.

Another aspect common to all the above scenarios is that each node in the
network measures a distinct visible random variable, that is, the data is com-
pletely heterogeneously distributed. The naive way to perform inferencing in
such a system would be to centralize all the data at one site and then run
an inferencing algorithm. However, sensor nodes have limited battery life, and
communication accounts for the majority of the power consumption in sensor
nodes. This makes the above approach impracticable. Moreover, the system
may need to take decisions based on the inference, within real-time constraints.
In that case, the limitations in communication bandwidth is likely to restrict
the system’s capability to react within real-time constraints. Thus, we need a
way to compute the desired distribution with minimum communication. This
motivates the definition of the distributed probabilistic inferencing problem:



Distributed Probabilistic Inferencing Problem. Formally, let X, =
(XM Xx@ . XP} such that X is measured at node N; of a network.
Our problem is to estimate P(xj|x,;6) while minimizing the communication
between the nodes of the sensor network.

As mentioned earlier, the probability distribution of X is usually expressed as
a graphical model. A graphical model consists of a set of nodes, representing
the random variables, and a set of edges, representing dependencies between
pairs of random variables [7].

For concreteness, we shall consider a special kind of graphical model, known
as the Boltzmann Machine. The reasons for selecting Boltzmann machines in
this study are two-fold:

(1) The properties of Boltzmann Machines as probability models have been
studied extensively in the literature (see, for example, [29]).

(2) Boltzmann Machines have been shown to be very useful tools in pattern
recognition problems. For example, Boltzmann Machines have been used
in recognition of handwritten digits [30]. The usefulness of such models
in face-recognition has been demonstrated in [31]. Boltzmann Machines
have also been used in biometric authentication through fingerprint recog-
nition, as described in [32].

Thus, the Boltzmann Machine constitutes a graphical model that is both well
understood, and applicable to pattern recognition problems. The present work
addresses the problem of performing inference in such a graphical model, when
each visible variable is measured or detected at a separate node.

The paper also frequently uses the term “local algorithms” throughout this pa-
per. Let us explain what exactly that means in this paper. Consider a network
represented by an abstract tuple G =<V, E,Cy,;, Dy, Pg >. V and E repre-
sent the vertex and edge sets of the undirected network-graph; C'y,;, represents
the set of all states C,; of a vertex v € V' at time t. Dy = {Dy,Dy,---Dy}
and Pg represents properties of every edge is E. The distance (distg(u,v))
between a pair of nodes u and v is the length of the shortest path between
those vertices. The a-neighborhood of a node u € V' is defined as, ', (u, G) =
{v|distg(u,v) < a}. Let each node v € V stores a data set X,. An a-local
query by some vertex v is a query whose response can be computed using
some function f(X,(v)) where X,(v) = {X,|v € Tu(v,V)}. An algorithm is
called a-local if it never requires computation of a [-local query such that
B > a. In the rest of this paper, the term local algorithm will be loosely used
for implying an a-local algorithm where « is either a small constant or a slowly
growing function with respect to the network parameters such as the number
of nodes. The next section presents a review of the related work done in this
field.



3 Related Work

As mentioned earlier, target tracking, target localization etc. are important
sensor network applications which constitute special examples of the dis-
tributed inferencing problem; in recent times, they have been studied exten-
sively (see, for example, [1], [2]). The distributed sensor calibration problem,
which is another example of the distributed inferencing problem, is described
in [5,3].

Distributed Data Mining (DDM) has recently emerged as an extremely im-
portant area of research. Distributed Data Mining is concerned with analysis
of data in distributed environments, while paying careful attention to issues
related to computation, communication, storage, and human-computer inter-
action. The data can be distributed homogeneously, where all sites share the
same schema, but each site stores attribute values of a different set of tu-
ples. Alternatively, the data can be distributed heterogeneously, where all sites
store the same set of tuples, but each site stores a different set of attributes.
In the latter scenario, each site must store some key attribute, such that the
join of the local data-sources is lossless. Detailed surveys of Distributed Data,
Mining algorithms and techniques have been presented in [22-24]. Some of
the common data-analysis tasks include association rule mining, clustering,
classification, kernel density estimation and so on. A sigficiant amount of re-
search has been done in the recent years to develop techniques for such data
analysis, suitable for distributed environments. For example, an algorithm for
distributed association rule mining in peer-to-peer systems has been presented
in [25]. K-means clustering has been extended to the distributed scenario in
[26]. Techniques for performing non-parametric density estimation over homo-
geneously distributed data have been studied and experimentally evaluated in
[27]. The problem addressed in the present paper, probabilistic inferencing in
distributed environments, is a problem in DDM, because it involves perform-
ing inferencing in a database that is distributed in a completely heterogeneous
way, with each node storing only a single visible variable.

The applicability of graphical models and belief propagation to distributed
inferencing in sensor networks has been studied in [12,13,4,3]. The underlying
probability distribution is represented as a graph, and inferencing proceeds as
a sequence of message-passing operations between nodes of the graph [14]. In
[4], such belief propagation based inferencing has been applied to scenarios
with discrete random variables; in [13], it has been applied to multivariate
Gaussian distributions.

Graphical models can be of two types: directed and undirected. In an undi-
rected graphical model, the joint probability of all the random variables is
given by the (normalized) product of local potential functions, where each po-



tential function corresponds to a clique in the graph. A representative of the
exact inferencing algorithms is the junction-tree algorithm [11] which oper-
ates on an undirected graphical model; if the original model is directed, then
it converts it to an undirected model by an operation called moralization. The
moralized graph is then triangulated, such that there are no 4-cycles without a
chord. Then, the cliques of the graph can be arranged in a junction-tree data
structure. It is important, that if two cliques have a node in common, then
they assign the same marginal probability to that node (this is called the [o-
cal consistency property). Maintenance of local consistency requires marginal-
ization and rescaling the clique potentials. But, as observed in [7], this can
take time that is exponential in the size of the largest clique in the network.
Let, for example, the nodes in a particular clique be X, X,, ..., X,,, and let
U(zy,x9, ..., x,) be the corresponding clique potential. Then, for any X; = x,
the marginal probability of X; would be given by 3=, .. . U(xy,22,...,7p)
which takes time O(2"~'). This suggests that any practical solution to the
inferencing problem must resort to approximation techniques. Variational ap-
proximation is a deterministic approximation technique that has been shown
to be suitable for this problem [6,7].

Boltzmann machines form an important and widely researched class of graph-
ical models [15]. In fact, they were the first explicitly stochastic networks
for which a learning rule was developed [16], [19] Traditionally, inferencing
and learning in Boltzmann machines was done using Gibbs sampling; later,
mean field approximations were applied [17]. Another interesting approach to
the problem is decimation, [18], which is efficient in only certain subclasses
of Boltzmann machines, such as Boltzmann trees and chains. Boltzmann ma-
chines have been applied in many pattern recognition problems, such as recog-
nition of handwritten digits [30], face recognition [31], and fingerprint recogni-
tion [32]. The present work deals with the scenario where each visible variable
in the Boltzmann machine is measured at a different node of the network,
which implies that a distributed computation is necessary to perform the in-
ferencing.

Approximation algorithms often provide practical solutions to problems that
are intractable. Approximation algorithms can be classified into two broad
categories: probabilistic approximation algorithms (or randomized algorithms)
[34] and deterministic approximation algorithms. In a probabilistic approxi-
mation algorithm, the output of a problem instance depends on both the input
and the output of a psuedo-random number generator. Deterministic approxi-
mation techniques, on the other hand, do not have any element of randomness
involved. Variational approximation constitutes an important technique that
falls under this category. Usually, the variational approach to solving a prob-
lem involves defining an objective function that is optimized at the solution to
the problem, and then searching for an optimum of that function. Often, this
search is done in a restricted subset of the solution space, which makes the



technique computationally tractable. A typical example is the Finite Element
Method (FEM). Suppose we wish to solve a differential equation, for which
deriving a closed-form solution is difficult. As described in [7], the variational
approach to solving this problem involves defining a variational objective func-
tion, and then searching for a solution that optimizes this objective function.
However, since it is not practicable to search in the space of all functions, we
consider only those functions that can be expressed as linear combinations
of a finite set of basis functions. Thus the problem reduces to evaluation of
the coefficients of these basis functions, which is a search problem in finite
dimensional space.

Jordan, Jaakkola et al [6], [7] have developed the framework for applying varia-
tional optimization to graphical models, where exact inferencing is intractable.
They have addressed problems like inferencing, parameter estimation using
Expectation Maximization (EM) and Bayesian parameter estimation. How-
ever, their work assumes that the data is centralized.

The standard variational mean-field approximation for inferencing in Boltz-
mann machines is to assume that the hidden variables are independant, given
the visible variables (this is described formally in the next section). This paper
demonstrates the applicability of this approach in the distributed scenario.

Paskin et al [3] have developed a junction-tree based framework for performing
exact inferencing in distributed graphical models. However, they do not adopt
a variational approach.

Vlassis et al [9] have applied the variational EM approach to compute the
parameters of a mixture of Gaussian distribution. In [10], they have shown that
the variational formulation, when applied to the homogeneously distributed
scenario, reduces to a distributed average computation problem. We, too, have
used distributed average computation as an essential part of our algorithmy;
however, we are concerned with the heterogeneously distributed scenario, and
the graphical model we choose is the Boltzmann machine.

This paper demonstrates that the variational approximation technique is ap-
plicable to the problem of probabilistic inferencing in heterogeneously dis-
tributed environments. In particular, it makes the following contributions:

e [t extends the variational formulation of the probabilistic inferencing prob-
lem to the heterogeneously distributed scenario.

e Based on this formulation, it presents a deterministic approximation al-
gorithm, VIDE (Variational Inferencing in Distributed Environments), for
solving this problem.

e [t presents theoretical analysis and experimental evaluation of the accuracy
and communication cost of VIDE, and establishes VIDE as a communication-
efficient technique for solving the distributed inferencing problem.



In the next section, we consider the problem of probabilistic inferencing in a
Boltzmann machine, and its variational formulation.

4 Background

In this section, we first briefly review the variational method as a determinis-
tic approximation technique for solving problems, applicable when finding the
exact solution is too expensive. Then, we present the problem of inferencing
in a Boltzmann machine, and explains why solving it naively is intractable.
Finally, we present the variational mean-field technique for solving the infer-
encing problem.

4.1 The Variational Approximation Technique

In this section, we develop the basic ideas of variational approximation. To
illustrate the technique, we shall use a simple problem: linear regression. The
variational technique, as applied to this problem, is explained in detail in [7];
this section presents a brief summary of that discussion.

Illustrative Example: Linear Regression Consider a linear function f :
R? — R. The task is to find f, given the values of y; = f(x;), for 1 <i < n
and {x;: 1 <i<n}C R?. Since f is linear, the problem reduces to finding
the weight vector w € R? such that y = f(x) = w’x.

The exact solution w* to this problem is given by

w*=C"'b
where
C = Z XiXiT
i=1
and

n
b = Z YiXi
i=1



Although, in this problem, we have a closed form expression for the exact
solution, computing the exact solution involves computing the inverse of C,
which can become expensive, if the dimensionality d is large.

The variational method attempts find a solution to a given problem by opti-
mizing an objective function.Depending on the nature of the objective func-
tion, and on the technique used to optimize it, the solution obtained using the

variational method may be exact or approximate.

For the linear regression problem, let us define the following objective function:

J(w) = %(w* — W) C(w — w)

which is the distance between the approximate solution w and the exact so-
lution w* weighted by the matrix C.

Thus, J(w) > 0and J(w) =0 w =w"

Thus, the variational formulation of this problem is simply:

Minimize:

J(w) = %(w* —w)TC(w —w)

Although the expression for J(w) involves w*, which we do not know, we can
still use the fact that w* = C~'b, to prove that:

1 1
J(w) = 5loTc—lb —w'b+ 5chw

which is an expression for J(w) that does not contain w*. Finally, the above
expression indicates that minimizing J(w) is equivalent to minimizing the
following function:

1
J(w)=—-w'b+ §WTCW



This variational formulation is very useful. In this example, the objective func-
tion J(w) is quadratic in w and hence, convex (this, however, is not the case
in many other problems where the variational approximation is applied). As
a result, a simple gradient descent will converge to the global minimum.

Thus, the key step in solving a computationally difficult problem by the vari-
ational method, involves defining an objective function, which is optimized
at the exact solution. Having defined this function, the problem then reduces
to a search problem that aims to find an approximate optimal point of this
function.

In the next section, we formally define the problem of probabilistic inference
in a Boltzmann machine; we argue that exact solution to this problem takes
exponential time. Then, we demonstrate how the variational method is used
to obtain an approximate solution.

4.2 Boltzmann Machine

Consider a random vector X, comprised of binary random variables having
range {0, 1} (we are interested in finite-state distributions; thus a k—ary ran-
dom variable can be expressed as a finite sequence of binary random variables,
and so assuming the random variables to be binary does not lead to any loss of
generality). Some of the components of X are visible, while others are hidden.
Let X}, be the vector containing only the hidden components, and let X, be
the vector containing only the visible components, such that X = (X, X,).

We assume that the distribution of X is a Boltzmann machine with parameter
vector #. That is,

P(xlf) = 7 exp(~®(x; 6))

where

(I)(X; 9) = —(Z Hi,jxixj + Z 9101‘2)

1<j i

is the energy function, and

Z =Y exp(—0(x;0))



is the normalizing constant, called the partition function.

The basic inferencing problem is to compute the probability distribution of
the hidden variables, given the visible variables,

P(xp,x,|0)

P(Xh|xv;9) = P(Xv|9)

Actually, if the distribution P(x|f) is a Boltzmann machine, then the distri-
bution P(xp|x,;0) is also a Boltzmann machine, given by

1
P(xp|x,;0) = A exp(—P.(xy;0))

where

Oc(xif) =—( D Bigw+ Y Oi)

1<J; Ti,Tj EXp TiEXp

such that the indices 7, 7 vary only over the hidden variables, and

950 = 92'0 + Z Hi,jxj

Cvjexv

This is because, if, for any ¢, 7, both X;, X; are hidden, then they continue to
contribute the quadratic exponent 0; jz;2; in the numerator. Otherwise, if, say
X; is hidden and Xj is visible, then x; becomes a constant, so the exponent
becomes linear in z;; this explains why 67, has a contribution 6; ;z;, when X;
is visible. Finally, when both X, X; are visible, then the exponential of 0; ;z;z;
becomes a constant, and is included in the overall normalization constant Z..

The normalization constant, Z,. is, then, the partition function of this new
Boltzmann machine. Exact computation of the partition function, however, is
intractable because

Ze = exp(—D.(xs;0))

which is a summation over all possible values of the hidden variable vector
xp, € {0,1}, where H is the number of hidden variables. The number of terms
in this summation is,therefore, 27 . Since this is exponential in the number of
hidden variables, we need approximate techniques to estimate the distribution.



4.8 Variational Mean-Field Approximation

Variational methods try to approximate P(xy|x,;#) by a distribution Q(xp)
which is computationally tractable. In particular, the mean-field approxima-
tion assumes that () factorizes completely across the hidden variables,

Q(Xh) = H Qz(xz)

To quantify the accuracy of the approximation, we use the following standard
objective function [8,6,7] (which is to be maximized):

Q(Xh)
exp(—P.(xy; 0))

J(Q)=—>_Q(xx)In

Now if we define each of the individual marginal distributions @); to be a binary
distribution with mean p;, that is,

Qi) = i (1 — ) ="

then the parameters p; that maximize J(Q) are given by the set of mean field
equations (one for each y;):

i = o (d0; 505+ 05)

Jj>i

where o(z) = 1/(1 + e ?) is the logistic function.

The following section presents our algorithm, VIDE, for solving this problem
in a distributed setting, such as in a sensor network environment.

5 Variational Inferencing in Distributed Environments (VIDE)

Consider the case when X, = {X(V, X . X®1} such that the i’ visible
variable, X(?), is measured at node N; of a network. This corresponds a vertical
partitioning of X,, in which, at any instant of time, the i** attribute of x,,
2{) is stored in the i*" node N;. Also, each node knows the parameters of the
distribution 6. Given that at any instant of time, node N; measures XV = z(),
we want each node to be able to compute the distribution P(x,|x,;6) by



computing the solution vector p to the mean field equations. We propose an
algorithm, VIDE, described in algorithm 1 which solves this problem in a
distributed manner.

Algorithm 1 VIDE for node k
Input: The following are the arguments to VIDE:
(1) The value of the visible variable X(*¥) measured at this node.
(2) The value of ¢, ; for every pair of random variables X;, X;
(3) The value of 0,y for every random variable Xj.
Output: The mean y; of the marginal distribution under the variational ap-
proximation, for every hidden variable X;.

Let p be the number of nodes in the network.
for each hidden variable X; do
Y; < Distributed_Average({6; jx; : ©; € X, })
05 < Oio +p -
Also, initialize u; < %
end for
while p has changed significantly in the last iteration do
for each hidden variable X; do
pi <= 0(Xjsi 1 + )
end for
end while
return u

— =
= O

The computation can be broken down into two phases, which must be per-
formed by each node:

(1) Calculate, for each 1,

05 = b+ > bz,

T EXy

(2) Iteratively, find a fixed point solution for the mean-field equations, as
Y = o (3 Oin + 05)
j>i

where ¢ denotes the number of iterations. This can be done in a purely
local fashion, as each node already knows 65, (for every i), and all the
other parameters in the above equation are stored locally.

The crux of the computation, therefore, lies in computing sums of the form
s =3P | s; where each s; is stored in a different node. Now, if we assume the
network (not the data it measures) is static, then we can write the sum as

s =ps



where

is the arithmetic average of {s;}¥_;.

Thus we can compute the sum in a distributed fashion by computing the
corresponding average, and then multiplying it by the number of sites.

If the network is dynamic, however, then we will also need a distributed algo-
rithm for estimating the network size. Fortunately, algorithms for estimating
network size from local information exist [20]. However, in our experiments,
we have considered only static networks.

Of the several algorithms for distributed average computation, we choose the
Al algorithm proposed by Mehyar et al.[28]. This can be considered as one
implementation of the Distributed_Average function used by VIDE.

Distributed Average Computation. In this section, we describe the dis-
tributed averaging algorithm used by VIDE. Each node k stores a scalar, 2y,
and an estimate gy of the global average. It is the aim of the algorithm to
achieve the condition: y;, ~ %Ele z;. Algorithm 2 describes the algorithm in
brief.

Intuitively, the algorithm works as follows. Each node k starts by setting
its average estimate to the value it stores, i.e., yp = zr. At each time step,
it communicates its current estimate of the average with some immediate
neighbor; then, these two neighbors adjust their estimates so that the two
estimates are now closer, and such that their sum is conserved. Thus, after a
sufficient number of such updates have occurred in the network, the average
estimates of all the nodes will be very close to one another. Since their sum
will still be the sum of all the values stored in the network (sum of the average
estimates is conserved in an update), these estimates will be close to the true
average across the network. For a more detailed study of the algorithm, the
reader is referred to [28].

It is clear, from lines 1 and 2 of algorithm 1 that VIDE needs to invoke the
distributed averaging routine once for each hidden variable X ,(ZZ). Conceptu-
ally, the A1l algorithm runs forever at each node. In the implementation of
VIDE, however, the the averaging process terminates when a predetermined

maximum number of messages have been passed in the network.



Algorithm 2 Al_Average({z;}!_,) for node k
Input: The following are the inputs to the algorithm:
(1) z, the value stored in node k, and,
(2) 7k, the step-size parameter used by node k for averaging.
Output: y, ~ %Ele 2
1: Initialize: y, = 2z
2: while true do
3:  while Every neighbor 7 such that ¢ < k has not updated k£ do

4: if such a neighbor ¢ initiates update with node k£ then
5: if k£ is already executing an update with some other neighbor j
then
6: Send negative acknowledgement (NACK) to node i. A NACK
message will cause this update operation to fail, and will have no
effect on the state of the network.
T else
8: Increment = v (y; — i)
9: Update for node k:
Yk = Y + Increment
10: Send Increment to node .
11: Update for node i:
yi = y; — Increment
12: end if
13: end if

14:  end while

15:  Now sequentially initiate update with every neighbor m such that m >
k.
16: end while

In the next section, we present a theoretical analysis of the accuracy of
VIDE, as a function of the communication complexity.

6 Analysis

In this section, we present error bounds for VIDE, and show that the bounds
become exponentially tighter, as the number of messages exchanged increases.
Then, we derive an expression for the energy consumption of VIDE, which is
important from a sensor network viewpoint.

Throughout this analysis, we assume that H is the number of hidden variables,
and V' is the number of visible variables.



The accuracy of VIDE will be affected by the following factors:

(1) The error in computing the parameters {6}, using the distributed
averaging algorithm. As more messages are exchanged, this error becomes
smaller.

(2) The error in computing {u;}/2, by solving the mean-field equations, as
the result of the error in {05 }2,.

First, we consider the error due to the distributed averaging algorithm. Then
we see how this affects the error in VIDE’s results.

6.1 Error in Distributed Averaging

Our error analysis will be based on the analysis presented in [28]. Let us
assume that there is a network with V' nodes, and each node 7 stores a scalar
z;. Bach note wishes to estimate z = 3.7, ;. Let y;(¢) be the estimate of this
average, at node ¢ and time ¢. Initially, y;(0) = z; for all ¢, and the conservation
property of the algorithm guarantees that 7(t) = /_, y:(t) = z for all times
t.

To quantify the convergence properties, the authors of [28] use the following
metric:

P(t)y= 3 |yit) —y;(t)]

1<i<j<V

Thus, at time ¢, P(t) is the sum of the difference in the average estimates
between every pair of nodes. The minimum value of P(t) is 0, which happens
when every node has exactly the same estimate for the average.

It is shown in the paper that given any time ¢, there exists ¢ > t such that
there has been at least one update in each link, during the time interval [¢, #'].
Further,

where v* = mingmin{yg, 1 — v}

The authors use this result to demonstrate that



lim P(t) =0

t—00

We will take this analysis one step further, and present a convergence rate.

First, we assume that there exists 1" > 0 such that within any time interval of
length 7', there is guaranteed to be at least one update along each link. Such a
restriction is desirable in any practical implementation of the eventual update
assumption.

Then, the time interval [0,¢] contains at least |%| subintervals of length T
applying the above result, we get

We use this to prove the following result.

Theorem 6.1 Let U be the number of updates that occur in the time interval
[0,t], and let L be the total number of links in the network. Then,

_ SN
w(t) — 2 < PO)(1 - 8113

Proof Note that since U is the number of updates that occured in the interval
[0,t], then U is proportional to the number of messages exchanged. Also, since
the number of links in the network is L then U < tL which implies

*

P(t) < PO)(1 ~ 87) 77!

Finally, if we assume, without loss of generality, that

yi(t) <ya(t) < ... < yy(t)

then it is easy to see that, for all 7, |y;(t) — 7(t)| < |y1(t) — yv(t)| and that



lyi(t) —yv(t)| = | Z (i(t) — yira (1))

< Z |yz yz-l—l )| S P(t)

This gives us the convergence rate of the averaging algorithm:

lyi(t) — 2| < P(0)(1 — 8%)L )

which completes the proof. O

In VIDE, we compute each 67, using the above algorithm (here, 7 is an index
that refers to the 4 hldden variable), and so the above convergence rate
applies to each such 6.

In the next section we show how the error in solving the mean field equations
depends on the error in computing these average estimates.

6.2 Error in Solving the Mean Field Equations

After the distributed averaging phase, each node will have its estimate of 67,

corresponding to the i** hidden variable X ,(l). In the subsequent phase, each

node solves the system of mean-field equations, to estimate the mean j; of
each hidden variable X ,(f). This is purely local computation; the error in this
computation originates from:

(1) The error in ¢, for each hidden variable X,(Zi),
(2) The error tolerance € such that the iterative algorithm:

Y = o (3 00 + 65)

j>i

stops when ||u+) — || < e



Out of these, the second factor does not, in any way, affect the communication
complexity of our algorithm. Smaller values of € will lead to more iterations of
a purely local computation. Hence, we will concentrate only on the first factor,
and assume that given {6¢ 0}Z o, the mean field equations are solved exactly.

Let Ap; be the error in computing u(z; the mean of the marginal distribution @);
13

corresponding to the i*h variable X,". Let A#5, be the error in computing 65,
incurred by the distributed averaging algorithm. Then, we have the following
result:

Theorem 6.2 If {|Af5,|}L, are small enough so that we can ignore error
terms of order 2 and hzgher, then,

[Api| < Z 10:.3 1A ps] + [A67]

Jj=t+1

Proof We have,

1
1+ exp (=[]0 05 i + 05])

Hi =

= f({uj};{:i—l—la z‘c,o)

Considering only first order errors, we have,

zof of
Api= Y 7 =Apj+ -~ A0,
iS5 0wy ! o[
Taking magnitude on both sides yeilds,
I of of
Al = 3 SLap +—Lnv
j:zi;d op; 005 0
of
< Z Au ‘ ABE,
i ! 005




Now, it is straight-forward to calculate these partial derivatives:

of exp (_[Zf:Hl 0; 115 + eic,o])

Oy (U exp (<[00 O+ 050)))?

which gives,

of

< |0
O |

> i,j|

and,

of exp (=[5 05 + 050])

005 (L4exp (=[XIi 0im + 050)))?

which gives,

<1

of
905

Combining these inequalities, we get

H
1Al < 37 10511 Ap;| 4 |AG ]

j=i+1

which proves the theorem. O

Theorem 6.2 gives a recurrence relation for {Ap;}/L,, in terms of {A#fy}. The
following theorem provides the solution to this recurrence.

Theorem 6.3 For 0 <:< H —1,

H
|Apwil < [AO,|S(H — i, k)

k=H—1



where, S(I,1) =1 for 1 <1< H, and for 1 <1< m < H we have,

m—I+1

S(lvm) = Z Z |9i1,i2||9i2,i3|"'

r=2 [=i1<is<...<ir=m

0i, i, |

Proof We prove this statement by Mathematical Induction on .
Basis [i = 0] This follows directly from Theorem 6.2.

Induction Let us assume the induction hypothesis to be true for ¢, and then
we prove it for ¢ + 1.

Now, from Theorem 6.2

|Apm—@n] < |A9;{f(i+1),0| + Z 10 —i1), 15| | Aper -]

j=0
i H
< |A9?{—(i+1),0| + Z |9Hf(z'+1),Hfj|( Z |A91§,0|S(H - J k))
j=0 k=H—j

i H
= |A9§{f(i+1),0| + Z Z |9Hf(i+1),Hfj||A9g,0|5(H —J k)

j=0k=H—j

H 7
= A5 ol + D D 1Or—(ir1),m—sl| A0 o|S(H — 5, k)

k=H—i j=H—k

H i
= |A9;I—(i+1),0| + Z |A912,0| Z |9Hf(z'+1),Hfj|5(H = J k)
k=H—i j=H—k

H
= |A9§{f(i+1),0| + Z |A91§,0|S(H - (2 + 1)7 k)

k=H—1



H
= Y |AG|S(H - (i+1),k)
k=H—(i+1)

which proves the induction hypothesis. O

If we extend the definition of S(-,-) so that S(I,m) = 0 if [ > m, then we can
restate Theorem 6.3 as

H
|Apum—i| <Y 1A o|S(H — i k)
k=1

where 0 <1 < H — 1. Equivalently we can write,

H
[Ap| <7 1A oIS (0, k)
k=1

where 1 <17 < H.

Theorem 6.3 expresses the error |Ay;| in the computing the mean p; of the
marginal distribution of X }(ZZ). If we define the variational mean vector as p =
(p1, pi2, ---, fozr), then the following theorem gives the error ||Ag|| in computing

the variational mean, as a function of the error in distributed averaging.

Theorem 6.4
H
Au]] < D7 |AG] | M (k)
k=1
where
H
M(k) =" S(i, k)
i=1

Proof Since

= (fo, fi2, e flrr)



we have

A:U’ = (Aula AMZ: B3 A/LH)

Thus,

H
ALl <D 1A

=1

H H
< S5 |AG [5G, k)

=1k=

.
—_

H H
ZZ|A9k0|S i, k)

=1 1=

>
—

= 3 IA0| (X (i, k)

H
= > A0 oM (k)

k=1

where M (k) = =2, S(i, k). This completes the proof. O

Finally, we can combine Theorem 6.1 and Theorem 6.4 to express the error
in the variational mean vector, as a function of the number of updates in the
network. The next theorem presents this result.

Theorem 6.5

*

8v* v
< vaa - S

for some constant 8 > 0.

Proof From Theorem 6.1 it follows that for all 1 < k < H,

8v*

= )L%J

|AG o < VPL(0)(1 -




In the above inequality, V' appears as a multiplicative constant because, com-
puting {9,2,0},?:1 involves computing sums, which, in turn are computed in a
distributed fashion, by first calculating averages, and then multiplying by the
network size, V.

Thus, from Theorem 6.1 and Theorem 6.4 we have,

H
1Aul] < 3 10 | M (K)

k=1

— S VRO - 1)
P ’ vz
&v* v
= Vﬁ(l - ‘;YQ )LLTJ
where

"

B =" M(k)P(0)
=1

This completes the proof. O

Our theoretical analysis establishes that the error decreases exponentially as
the number of updates (and hence, the number of messages) increases.

Now we will derive an expression for the energy consumption of VIDE.

6.3 FEnergy Analysis

This section presents an analysis of the total amount of energy spent by the
sensor nodes in VIDE. For simplicity, we shall make the following assumptions:

(1) Since a major part of a sensor node’s energy is spent in communication,
we shall focus only on communication, and ignore the othe factors, whose
contribution to the total energy spent is usually much smaller. Also, we
shall ignore the effects of interference.



(2) We shall use the Rayleigh Fading model to calculate the energy require-
ments [33].

We begin by defining some parameters. Let Ny be the noise power, © be the
minimum value of singal to noise ratio for successful transmission, d,,., be the
transmission range of a node, p, be the required minimum success probability
of a message transmission, and a be the attenuation coefficient.

Then, the following theorem gives an expression for the minimum amount of
energy required by VIDE to achieve a desired accuracy.

Theorem 6.6 The total energy Evipr required by a sensor network perform-
ing VIDE is related to the error Ap as follows:

| Aul|/V de ON,
log ey —Inp,
where
8 *
€y — 1— ‘;,YZ

and the other symbols have the same meanings as in the preceding theorems.

Proof Theorem 6.5 shows that

|5
[Ap| < VBT

which can be rewritten as:

Uy sllonlivp
gev

This gives a lower bound to the number of updates required:

log(|Aul/V D)

U>LT
log ey



Now, in each update operation, the node that initiates the update sends its
current average estimate. The receiver node updates its average, and sends
back the amount by which it has changed its average. This is done for each
hidden variable. Thus the total number of floating point numbers communi-
cated during one update is 2HU. We also consider this to be the total number
of messages required for an update, assuming that one message is required per
floating point number.

It is shown in [33] that for each unit of communication, the amount of energy

. S . a N, . . .
spent in transmission is Fj = %(20 (our notation slightly differs from

that in [33]). Thus the total amount of energy spent by the sensor network is
bounded by:

Evipe > 2HUE],

That is,

log(|Au|/V )  d7a:ONo

max )

Evipg > 2HLT
log ey —Inp,

which completes the proof. O

Our communication analysis shows that as the number of messages exchanged
in the network increases, the error drops exponentially.In the next section, we
present experimental results that validate this claim.

7 Experimental Study

This section presents the results of our experimental evaluation of VIDE. It
begins by defining the objectives of the experiments; then it describes the
experimental setup, and finally, it presents the results.

7.1  Objectives

Clearly, the accuracy of the variational approximation depends of the accuracy
of the distributed average computation. In our experiments, we wanted to see



how close the distributed variational approximation was to the variational
approximation done centrally.

Let p° be the solution vector to the mean field equations computed by the
centralized variational approximation. That is, u¢ is the mean of the i** hidden
random variable under this approximation. Let, in the distributed scenario,
the solution vector to the mean field equations computed by the j* node be
£, Then the relative error for node j is err(j) = ||u¢ — p@||/]|xc||. The
maximum relative error, then, is maz_err = max;{err(j)}.

We wish to observe the rate of decrease of max_err as the number of messages
per node increases in the network.

Next, we discuss the experimental setup.

7.2 Ezperimental Setup

In each experiment, we first generated the parameters of the Boltzmann ma-
chine, by selecting the value of each parameter in a uniformly random way,
from the interval [0, 1). We use these parameter values both for the centralized
and the distributed inferencing. Ideally, we would want to learn the Boltzmann
machine parameters from a training data set, and then perform testing. How-
ever, we have not yet addressed the problem of learning these parameters in a
heterogeneously distributed environment. So we test only the inferencing ca-
pability of VIDE: given an arbitrary setting of the parameter values, we want
to know how accurate VIDE is compared to centralized variational inferencing.

Then, we generate a data-set in which each vector represents and assignment
of binary values to the visible variables. For each such vector, the solution
to the mean-field equations is computed both in a centralized way, and in a
distributed way, using VIDE. The maximum relative error maz_err is then
computed (as discussed above).

We have tested VIDE using both synthetic data sets, and real life time series
data sets, as described below.

Synthetic Data Sets Synthetic data sets consist of uniformly randomly
generated binary vectors with V' dimensions, where V' is the network size, and
hence, the number of visible variables. The number of hidden variables, H,
has been varied as follows:

e For IV =100, we have selected H € {1,2,3,4,5,10}.
e For IV =200, we have selected H € {2,4,6,8,10,20}.



e For VV =500, we have selected H € {5,10,15,20,25}.

Real-life Time Series Data Sets The real-life time series data sets used in
this paper have been downloaded from (http://www.cs.ucr.edu/~eamonn/
time_series_data/). We have used two data sets, Adiac and 50words. In
future, we would like to test VIDE with many more real life data sets.

These data-sets consist of vectors of real numbers. We have transformed these
vectors to binary vectors using local gradient based discretization. If the value
of an attribute of the vector increases from one time-instant to the next,
then in the binary version of the vector, that attribute is assigned a value 1,
otherwise it is assigned a value 0.

The hidden and visible variables were chosen as follows:

e Adiac. Each vector, in this dataset, has 177 attributes. We chose the left-
most 100 attributes to be visible, and the next H to be hidden, where
H €{1,2,3,4,5,10}. The remaining attributes were ignored.

e 50words. Each vector, in this dataset, has 271 attributes. We chose the
leftmost 200 attributes to be visible, and the next H to be hidden, where
H €{2,4,6,8,10,20}. The remaining attributes were ignored.

We now present the results of our experiments.

7.3 Ezperimental Results

As mentioned earlier, we wish to measure the accuracy of VIDE as a func-
tion of communication bandwidth. In each of the plots that follow, the z-axis
represents the number of messages communicated by each node, where we as-
sume that it takes a single message to communicate a floating point number.
The y-axis represents the maximum relative error, max_err, averaged over a
specified number of trials (also mentioned in the figures).

First we present the results for synthetically generated test data.

Experiments with Synthetic Data The dependence of max_err on the
number of messages per node, for networks of size V = 100, V' = 200, and
V' =500 are demonstrated in Figure 1, 2 and 3 respectively.

Experiments with Real-life Time Series Data The dependence of max_err
on the number of messages per node, for networks of size V' = 100 (correspond-
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ing to data set Adiac) and V' = 200 (corresponding to data set 50words) are
demonstrated in Figure 4 and 5 respectively.

7.4  Remarks

Let us consider the experiment with synthetic data, with number of visible
variables V' = 100. As indicated by Figure 1, the maximum relative error falls
exponentially, as the number of messages per node increases. This means that
the behavior of centralized variational inference can be closely approximated
even with a modest amount of communication.
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Another interesting parameter to note from Figure 1 is the rate at which
the maximum relative error decreases as the number of messages per node
increases. It is seen Figure 1 that this rate decreases, as the number of hidden
variables, H, increases .At H = 1, the maximum relative error falls very
sharply. But at H = 10, the rate of decrease is very low.

The reason for this is that, during the distributed average computation phase,
the amount of data communicated between a pair of nodes, during each update
operation, increases linearly with H. This means, for the same communication
bandwidth allowance, the number of update operations will be higher, leading
to greater accuracy, if H is lower. In particular, let U be the number of updates.
Each pairwise update involves the exchange of 2H floating point numbers.
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Assuming that one message is required for communicating each floating point
number, the total number of messages required, then, is 2HU (as shown in the
proof of Theorem 6.6), and the number of messages per node is n = 2HU/V .
We can rewrite this as

Thus, for the same number of messages per node, the number of updates is
greater when the V/H is greater, that is, when H is smaller compared to V.

The above analyis also suggests that if we change V' and H keeping their ratio
constant, then the rate of decrease of the maximum relative error should be
comparable.

This conjecture is strengthened by the results reported in Figure 2, Figure 3,
and even by the experiments done with real-life data, as shown in Figure 4 and
Figure 5. We see that the curves corresponding to H = 1,V = 100 (Figure
1), H=2,V =200 (Figure 2), H = 5,V = 500 (Figure 3), H =1,V = 100
(Figure 4) and H = 2,V = 200 (Figure 5) all have the same shape. Moreover,
they correspond to the same value of V//H which is 100. Other sets of curves
having the same V// H have the same property: the rate of decrease of maximum
relative error is similar.

We next present experimental results to demonstrate the scalability of VIDE.
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7.5  Ezxperimental Results: Scalability

In this section, we investigate the scalability of VIDE. In order to evaluate the
scalability of VIDE, we need to examine how the number of messages trans-
mitted per node increases with network size, in order to achieve a given level
of accuracy, for a given number of hidden variables. We consider scalability
both for synthetic and real-life time-series data.

Scalability: Synthetic Data. The scalability of VIDE with synthetic data
is demonstrated in Figure 6. In this figure, the z-axis denotes the desired level
of accuracy. Since accuracy increases as the maximum relative error decreases,
we define accuracy as the negative of the maximum relative error. In the y-axis,
we plot the number of messages necessary to transmit per node, for various
network sizes.

Remark. It isseen from Figure 6 that for reasonably high levels of accuracy,
the plots for the three network sizes are very close to each other. This indicates
that for a given accuracy level, the number of messages transmitted per node
increases very slightly, as the network becomes larger. This demonstrates that
VIDE is extremely scalable with synthetic data.

Next, we investigate the scalability of VIDE with real-life time-series data.
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Scalability: Real-life time-series data. For real-life time series experi-
ments, we select the same data sets, Adiac and 50words, as described earlier.
The scalability of VIDE with real-life data is demonstrated in Figure 7. In
this figure, the z-axis denotes the desired level of accuracy. Since accuracy
increases as the maximum relative error decreases, we define accuracy as the
negative of the maximum relative error. In the y-axis, we plot the number
of messages necessary to transmit per node, for various network sizes. For
V' =100, we use the Adiac dataset; for V = 200, we use the 50words dataset.

Remark. It isseen from Figure 7 that even when the network size is doubled,
the number of messages transmitted per node, for a given level of accuracy,
increases very slightly. This indicates that VIDE is scalable even with real-life
data.

To summarize, the experimental results show that the communication re-
quirements for VIDE are modest; even with limited communication-allowance,
VIDE can achieve sufficiently accurate results. Moreover, VIDE is a scalable
technique, because the communication requirements per node increases at a
very slow rate, as the network becomes larger. Thus, our experimental study
establishes VIDE as a deterministic approximation technique for performing
distributed inferencing, in a communication-efficient and scalable manner.This
seems to empirically back up the claim for local behavior. The next section
concludes the paper.



8 Conclusion and Future Work

Distributed data mining problems are often challenging because of commu-
nication bandwidth limitations. A lot of contemporary research in this field
aims at finding probabilistic approximation algorithms for solving these prob-
lems. This paper takes a different approach, and explores the applicability of
deterministic approximations to distributed data mining problems. In partic-
ular, it demonstrates the applicability of a deterministic approximation tech-
nique, the variational method, to the problem of distributed inferencing in
a graphical model. It extends the variational formulation of the probabilistic
inferencing problem to the heterogeneously distributed scenario. Based on the
variational formulation, it presents a deterministic approximation algorithm,
VIDE, for distributed inferencing. The theoretical analysis and experimental
results shown in this paper indicate that VIDE is a communication-efficient
solution to the problem of probabilistic inferencing in heterogeneously dis-
tributed environments.

Natural extensions of this work would involve exploring whether other dis-
tributed data mining problems can be formulated using the variational opti-
mization framework, and whether the variational method leads to communi-
cation efficient techniques for solving these problems. We would like to inves-
tigate these issues in the future.
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