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Abstract

This paper presents an overview of an experimental mobile
and distributed data stream mining system that allows real
time vehicle-health monitoring and driver characterization.
It offers the motivation behind this application, explains
the system architecture, discusses many challenges that the
project faced, and shares some of the adopted solutions. The
main contribution of the paper is our experience in building
one of the very early distributed data stream mining sys-
tems for wireless applications that performs most of the data
analysis related tasks using light-weight on-board comput-
ing devices. This paper points out that the distributed data
mining technology can play a key role in solving real-life
problems in a mobile application environment where com-
puting, storage, power, and communication resources are
limited. The paper also illustrates how privacy-preserving
distributed data mining can play an important role in this
type of applications.

1 Introduction

Mining distributed data streams in an ubiquitous en-
vironment offers many exciting possibilities. Monitor-
ing patient health on a regular basis, security surveil-
lance, large sensor networks for defensive measures are
some examples. Data mining may play a very impor-
tant role in these applications. Several years of research
on distributed data mining [14] and data stream min-
ing have produced a reasonably powerful collection of
algorithms and system-architectures that can be used
for developing interesting classes of distributed applica-
tions for lightweight wireless environments. In fact an
increasing number of such systems are being reported in
the literature. The MobiMine system for mobile stock
monitoring/mining [9] and health monitoring system [8]
are some examples.

This paper reports the development of VEhicle
DAta Stream mining (VEDAS) system, for monitoring
and mining vehicle data streams in real-time. VEDAS is
designed to monitor vehicle fleets using on-board PDA-
based distributed data stream mining systems and other
remote modules connected through wireless networks.
Consider a nationwide grocery delivery system which
operates a large fleet of trucks. Regular maintenance of
the vehicles in such fleets is an important part of the
supply chain management. Normally commercial fleet
management companies get the responsibility of main-
taining the fleet. Fleet maintenance companies usually
spend a good deal of time and labor in collecting vehicle
performance data, studying the data off-line, and esti-
mating the condition of the vehicle primarily through
manual efforts. Fleet management companies are also
usually interested in studying the driving characteristics
for maintenance related reasons. One may also think of
many exciting possibilities such as real-time drunk driv-
ing detection through on-board analysis of vehicle data
streams. The VEDAS system aims to offer a viable
technical solution to these real-life problems. Similar
applications also arise for monitoring the health of air-
planes and space vehicles. There is a strong need for
real-time on-board monitoring and mining of data (e.g.
flight systems performance data, weather data, radar
data about other planes). The VEDAS system can also
be applied to this aviation safety domain where it moni-
tors airplanes and space vehicles instead of automobiles
and trucks.

The main unique characteristics of the VEDAS
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Figure 1: Conceptual overview of the VEDAS system.
system are as follows:

1. On-board data stream management and mining us-
ing PDAs or other comparable light-weight mobile
computing devices.

2. Distributed mining of the multiple mobile data
sources with little centralization of the data.

3. Designed to pay careful attention to the following
important resource constraints: (i) Minimize data
communication over the wireless network; (ii) min-
imize consumption of power in the on-board com-
puting device since battery power is a limited re-
source in certain classes of applications of VEDAS
where the PDA cannot be hooked up with the on-
board power supply unit all the time; (iii) minimize
on-board data storage and the footprint of the data
stream mining software; (iv) minimize computing
and memory usage for analyzing continuous data
streams.

4. Respect privacy constraints of the data.

Section 2 discusses the overall architecture of the
VEDAS system. Section 3 offers a closer look at its vehi-
cle health monitoring module. Section 4 describes driver
characterization module and consider the problem of de-
tecting unusual driving patterns in real-time. Section 5
presents the capability of VEDAS in performing dis-
tributed fleet-level analytics where preserving data pri-
vacy is important, since it involves monitoring drivers.
Section 6 presents power consumption characteristics of
a few of the data mining algorithms used in VEDAS and
argues the rationale behind some of the design choices
from the power consumption perspective. Section 7 of-
fers the future directions and the conclusions of the pa-
per.

2 An Overview of the VEDAS Architecture

VEDAS is an experimental mobile data stream mining
environment where the mobile devices perform various

Figure 2: VEDAS system connected to a car. The scantool
is connected to the car through the OBD-II connector. A
GPS device is connected for location information and the
iPAQ downloads the data from the car for analysis.

non-trivial data mining tasks on-board a vehicle in
real-time. VEDAS analyzes the data produced by
the various sensors present in most modern vehicles.
It continuously monitors data streams generated by a
moving vehicle using an on-board computing device,
identifies the emerging patterns, and reports these
patterns to a remote control center over low-bandwidth
wireless network connection, if necessary. This section
presents an overview of the architecture of the system
and the functionalities of different modules.

The current implementation of VEDAS mines and
monitors only the data generated by the vehicle’s on-
board diagnostic system and the Global Positioning
System (GPS). It is currently implemented for WinCE
based mobile devices like Personal Digital Assistants
and handheld computers. The overall conceptual pro-
cess diagram of the system is shown in Figure 1. It
shows multiple vehicles installed with the VEDAS soft-
ware which can be concurrently monitored by a cen-
tral site. The vehicles can have different types of com-
puting devices ranging from PDA’s to special-purpose
tablet PCs monitoring and collecting and analyzing the
data generated by the vehicle. Any standard commer-
cial data network can be used for the wireless commu-
nication. The VEDAS system is comprised of four im-
portant components:

1. Hardware interface for the on-board diagnostic
(OBD-II') data bus that couples with our software.
This module was developed in-house for interfacing
with the on-board OBD-II data bus. It also
contains a GPS module.

2. On-board data stream management and mining

TOBD-II is a standard for on-board data generated by the

vehicle established by Society of Automotive Engineers.



module: The VEDAS system offers a communica-
tion system and a run time environment for per-
forming on-board data analysis and management.
The on-board PDA-based module monitors, man-
ages the data stream, and triggers actions when un-
usual activities are observed. The on-board module
connects to the desk-top-based remote control sta-
tion through a wireless network. The system allows
the fleet managers to monitor and model vehicle
behavior remotely without necessarily downloading
all the data to the central monitoring station over
the expensive wireless connection.

3. Remote desktop-based control station for fleet
managers: The VEDAS control station supports
the following main operations (i) Interacting with
the on-board module for remote management, mon-
itoring, and mining of vehicle data streams. (ii) In-
teractive statistical data analysis. (iii) Interactive
online PCA-based vehicle health regime monitor-
ing. (iv) Visualization of the driving characteris-
tics.

4. Privacy management module: This module plays
an important role in the implementation of the
privacy policies. For example, the fleet drivers may
have a quite justifiable objection against continuous
monitoring of their driving behavior. However,
they may be willing to allow the management to
analyze the data for detecting drunk drivers as
long as the privacy of the sober drivers is not
compromised.

The following sections explain the hardware and soft-
ware design of these components of VEDAS.

2.1 Interfacing with the On-board Data Bus
Most modern vehicles generate a large amount of data
continuously using the sensors that monitor the different
process parameters in various sub-systems (e.g. trans-
mission system, engine system, and fuel system) in a
vehicle.

The VEDAS system accesses these data streams by
connecting a PDA (or PDA-like device) to the OBD-II
data bus on a vehicle. In 1996, to comply with Envi-
ronment Pollution Agency’s emission norms US govern-
ment made the interface to OBD-II of vehicles manda-
tory for all vehicles. OBD-II was developed as a stan-
dard by SAE to provide a mechanism for universal in-
spection and diagnosis. The OBD-II interface can be
used to access a rich set of generic and manufacturer
specific parameters collected from various sensors in the
car. On-board Diagnostic data is collected by connect-
ing a serial cable with the OBD-II data bus with appro-
priate middleware. The OBD-II interfacing hardware
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Figure 3: The system architecture for the on-board data
management and mining module. It also shows part of the
control station module.

module that we have developed (shown in Figure 2) can
be used to sample only the desired set of features at reg-
ular intervals and it can be controlled by the software
on the PDA or remotely through the control station in-
terface. In addition to the OBD-II interface we also
have a Garmin GPS device connected to the PDA. The
GPS device provides geographical location information
for the vehicle, which in conjunction with the vehicle
performance data may be used for model building and
analysis. The GPS-based functionalities of the system
is still under development.

2.2 On-board Data Strearn Management and
Mining The data collected through the OBD-II inter-
face is first analyzed by the data mining software run-
ning on the on-board PDA. The on-board system archi-
tecture is shown in Figure 3. So far we have used two
different PDA architectures for testing the VEDAS sys-
tem: (i) Compaq iPaq Pocket PC is a thin, lightweight
portable WinCE 3.0 based personal digital assistant. It
has a Intel StrongARM 206MHz RISC based micropro-
cessor with 32MB of RAM and 16 MB of ROM. (ii) HP
Jornada 690 is a WinCE 2.1 based handheld PC. It
runs on a 133MHz 32-bit Hitachi SH3 processor and
has 32MB of RAM.



The on-board system is designed to communicate
with the central control site using low bandwidth chan-
nels such as the Cellular Digital Packet Data (CDPD)
wireless network (used in the experiments reported in
this paper). CDPD is a data transfer technology which
uses cellular phone technology at speeds up to 19.2 Kbps
to get mobile data access. A large fraction of the data
mining tasks is performed on-board the vehicle to avoid
the high communication costs associated with the cel-
lular network and also to maintain the privacy.

The data collected through the OBD-II bus is
buffered and managed by the Data Stream Management
(DSMS) system. The DSMS provides a mechanism to
systematically control the access to the data. It offers
a variety of data management primitive operations that
are used to support continuous statistical queries over
the stream data. The data set consists of both real
and categorical data. For the experimental results
presented in this paper we used data from two Ford
car models: 2001 Ford Focus and a 2003 Ford Taurus.
We collected both the generic OBD-II parameters and
the manufacturer enhanced parameters. Experimental
results reported in this paper used a data set comprised
of 64 real valued parameters. In addition, the system
also had access to many discrete attributes that often
show the status of various sub-systems and fault codes.

The on-board module keeps track of different sta-
tistical aggregates like the mean, variance, and covari-
ances. The Data Stream Management System (DSMS)
module provides basic primitive operators for comput-
ing these statistical aggregates. This allows efficient ex-
ecution of the continuous queries needed for monitor-
ing the statistical properties of the observed parame-
ters. The computed statistics are used for performing
different normalization operations on the data. They
are also used for monitoring the changes in the under-
lying distribution, if any.

After pre-processing, the on-board module reduces
the dimensionality of the data and constructs a low di-
mensional representation of the data. The current im-
plementation supports the following techniques for con-
structing the new representation: (i) incremental Prin-
cipal Component Analysis (PCA) [7]; (ii) incremental
Fourier transformation; (iii) online linear segmentation.
All of the above techniques do not necessarily have to
run all the time. They can be turned on and off re-
motely using the control station interface of the VEDAS
system.

The VEDAS system also supports a collection of
light-weight unsupervised techniques to analyze the
data streams and they are listed in the following: (i) in-
cremental clustering; (ii) generating cluster descriptions
using techniques from computational geometry; (iii) a
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Figure 4: The functional architecture of the central control
station.

collection of statistical testing and analysis techniques.
Currently the VEDAS on-board module does not sup-
port any supervised or predictive technique. However,
we plan to explore this aspect in future.

The data stream mining techniques in the VEDAS
on-board module are designed and implemented with
due attention to the on-board resource constraints.
Most of the algorithmic implementations are very differ-
ent from their traditional counterparts for desktop en-
vironments. For example, performing incremental PCA
for real-time monitoring with limited computing com-
puting, power, and memory is a very challenging task
and the standard algorithmic implementations for desk-
top applications do not work very well. Rather ap-
proximate techniques that demand only occasional eigen
analysis do work well in practice. Moreover, energy
consumption, privacy issues, and limited communica-
tion bandwidth introduce many constraints that made
building VEDAS a challenging experience. Rest of this
paper shares some of these challenges in details and de-
scribes the adopted solutions. However, before that let
us discuss the central control station module which pro-
vides the interface to the fleet manager for monitoring
the vehicles in the fleet.

2.3 Central Control Station Module The Con-
trol Station module consists of a server running on a
desktop with a database to store fleet and driver infor-
mation. The system architecture for the control station
is shown in Figure 4. The main features of the control
station system are as follows:

1. The control station has a visualization module
which can be used to view both local models and
the fleet level global models. Figure 5 shows
the visualization module for an individual vehicle
health monitoring data.



2. It provides an interface to control the data mining
operations on-board the vehicles. It can also
request the vehicles for local models if needed.

3. The control station has an event management ser-
vice which complements the unusual event detec-
tion module that runs on-board the vehicles. In
case of any “unusual” event, the on-board module
notifies the event management module at the con-
trol station which in turn draws the attention of
the user.

4. The control station can also be linked with a
Geographical Information System which provides
mapping tools using the GPS information conveyed
by the vehicle. This information can be used in
conjunction with the locally built models to gain
better information about the system.

The following section discusses some of the VEDAS-
modules in details.

3 Vehicle Health Monitoring

The vehicle health monitoring module of VEDAS is re-
sponsible for tracking the operating characteristics of
the vehicle and detecting abnormal patterns from the
vehicle health data. This module estimates the distribu-
tion of the data using different incremental parametric
and non-parametric techniques. In this section, we dis-
cuss only one of them that makes use of an incremental
operating regime identification technique. It identifies
the safe operating regime of the vehicle in the low di-
mensional eigenspace of the covariance matrix by first
clustering the data and then capturing the clusters using
techniques from computational geometry. We assume
that initially when the vehicle is certified to be in good
health condition, we can observe its behavior, gradually
generate the clusters, and then use the stable cluster de-
scriptions to define the healthy operating regimes of the
vehicle. Later, during the monitoring phase, the mod-
ule simply notes whether or not the observed data point
falls within the safe operating regime in the projected
state space of the vehicle. If it does then everything is
okay; otherwise the module raises a flag and reports un-
expected behavior. The main steps of this process are as
follows: (1) Principal Component Analysis(PCA)-based
projection of the data; (2) incremental clustering in the
projected space; (3) construction of cluster descriptions
using techniques from computational geometry. Each of
these components is further described in the following.

3.1 Issues in On-board PCA-based Representa-
tion Construction PCA is a mathematical procedure
which transforms a number of correlated variables into
a smaller number of uncorrelated variables called prin-
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Figure 5: Control station interface: Visual representation
of the safe operating regimes.

cipal components. PCA performs eigen analysis on the
covariance matrix of the data. This symmetric matrix
is converted into a tridiagonal form using Householder
reduction and then eigen-analysis is performed by using
the QL algorithm with implicit shifts [5]. The eigen-
vectors corresponding to the relatively large eigenvalues
are used to project the data into a new space. These
eigenvectors capture most of the variance in the data.

Changes in the driving characteristics may intro-
duce changes in the eigenvectors of the covariance ma-
trix. Such changes must be quickly detected in order
to properly represent the underlying projected state-
space. Therefore, continuous monitoring of the un-
derlying eigenspace is important for vehicle health and
driver monitoring applications. However, recomputing
the eigenvectors on a regular basis is difficult to do in
real-time; it can be overwhelming in a resource con-
strained environment.

VEDAS contains an incremental PCA computation
module that makes clever use of matrix perturbation
theory for determining when to run the PCA computa-
tion module and when not to. It determines the upper
bounds on the changes in the eigenvectors and eigenval-
ues over time. Let us assume that the module already
performed the PCA on the data block X;_;. Now it
receives another data block X;. The question is the fol-
lowing: Should we update the covariance matrix and
recompute PCA? Matrix perturbation theory may be
used for detecting large changes in the spectral distri-
bution without necessarily recomputing the PCAs.

Let us note that the covariance matrix is a sym-
metric matrix. Let C;_; be the covariance matrix at
time ¢t — 1. Let 7; and A; be the i-th ranking eigen-
vector and the corresponding eigenvalue such that A; >



Ay > ---Ag. Therefore 7; represents the most domi-
nant eigenvector, 2 represents the second-most domi-
nant eigenvector, and so on. Let C; be the new covari-
ance matrix updated from C; ;. Let £ = Cy — Cy_4.
Note that E is symmetric. Let /\11 > /\'2 > /\'k be
the dominant eigenvalues of the perturbed matrix Cy;
let 'y; > 'y; > 'y; be the corresponding eigenvectors.
Using matrix perturbation theory [16] we can write,

' 4||E||r
3.1 n-—nll £ —=o
( ) || ! 1” 5— \/§||E||F
(3.2) A=A < V2IE|F

Where 6 is the difference between the A; and
A2 of the matrix C;_ 1, sometimes called its eigen-
gap. The Frobenius norm of a matrix E is defined as
IEllFr = 3225 Eizj)l/2. Equation 3.1 assumes that
8 > v/2||ATA||r. Bounds like this can be very useful in
designing triggers to initiate re-computation of PCA all
over when the underlying distribution has considerably
changed. Using this approach the data stream is contin-
uously monitored for changes in spectral distribution.

Any change in distribution results in construction
of new models which are then transmitted to the control
station. In addition to this, various boundary conditions
are checked to find irregular patterns in the vehicle
performance. In case of an error an alarm is generated
at the control station. The on-board system processes
the data so that it can be utilized to perform further
advanced data mining operations. Various parameters
for controlling the data mining algorithms can be set
from the control station and data and generated models
can be communicated on demand. The following section
presents the incremental clustering module used for
identifying the safe operating regimes.

3.2 Issues in On-board Incremental Clustering
The main objective of this module is to identify a collec-
tion of polygonal representations in the projected space
that correspond to the safe operating regimes. VEDAS
tries to address this problem by first clustering the data
incrementally. The incremental approach is essential
since the data sets cannot be stored on-board for long
time. The storage resource constraints simply do not
allow storing large quantity of data. Therefore, we need
to incrementally construct clusters and generate cluster
descriptions for efficient summarization of the clusters.

The current implementation of VEDAS uses a novel
incremental k-means clustering algorithm to separate
the set into k safe regimes, where k is determined
by empirical observations. For each of these safe
regimes we compute a polygon to represent it. As
new data arrive from a sliding window, we re-cluster

after including selected points in the sliding window
along with the points making up the vertices of our
polygons in presence of information about the estimated
distribution within the clusters. This approach has
the benefit of maintaining information from the entire
data set without requiring us to store all of the past
observations.

One of the main challenges in this scheme is to find
an appropriate way for constructing polygonal repre-
sentations of the clusters. VEDAS uses a Delaunay Tri-
angulation based polygonization approach as described
in [11] to get an accurate and efficient description of data
clusters. Since this method is capable of capturing non-
convex clusters, it offers a large improvement over a sim-
ple convex hull-based cluster representation. The basic
algorithm consists of 3 phases. Let D = d;,ds,ds,..,d,
be our set of n data points where d; = (x;,y;) is an or-
dered pair on the Cartesian plane, and let ID(d;) be the
cluster identifier for each point d; where 1 <i <n. Af-
ter clustering the points in our data set, we provide the
set D, as well as I D(d;) for each point d; in D as input
to the polygonization algorithm. In phase 0 we compute
the Delaunay Triangulation of D. Delaunay Triangula-
tion gives us a graph where each edge is the side of one or
two triangles. Let T; = d;, d;, dj, be one of our Delaunay
triangles, where d;, d;, and dy are the vertices of T;. The
triangle T; possesses the property that its circumcircle
contains no point from the set D. In phase 1, each edge
e = d;, d; from the Delaunay Triangulation is labeled as
either an inter-cluster edge or an intra-cluster edge. The
edge e is an inter-cluster edge if ID(d;) # ID(d;)and e
is an intra-cluster edge if ID(d;) = ID(d;).

Next we proceed with phase 2 where the algorithm
extracts the boundary edges by analyzing every intra-
cluster edge. An inter-cluster edge cannot be a bound-
ary edge since it joins two different clusters. Therefore,
the polygonization algorithm disregards all inter-cluster
edges in phase 2. Lee et al. describe all of the pos-
sible cases that each intra-cluster edge may fall into.
After proceeding with their analysis, we have a graph
PG(D), which contains precisely enough oriented edges
to construct a polygon representation of each C;. The
edges are oriented such that the interior of the polygon
is to the left of those edges making up its boundary. Fi-
nally, in phase 3 the algorithm finds the circular paths in
PG(D). Each path represents the edges of exactly one
polygon and each polygon represents one of our clusters
C;. This gives us a polygonal representation of each of
the clusters.

One downfall of this algorithm, which may be worth
noting, is that the shape of one cluster can be affected
by points not contained in that cluster. However,
our initial experiments show that this method does
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Figure 6: Observations from a vehicle with dirty air filter fell
outside the polygons representing the safe operating regimes.

indeed provide a better alternative to a convex hull-
based approach to define clusters. We are also exploring
density based clustering techniques to create an even
more efficient and accurate description of the clusters
which includes both the shape and density parameters.

We used two data sets collected from vehicles with
known health problems in our experiments. The first
data set (Figure 6) is from a vehicle with a dirty air
filter. The second data set (Figure 7) is generated after
leaving one of the engine spark plug caps open. As we
see in both figures, the faults generate data points which
fall outside the boundaries of the polygons defining
the normal operating regimes and thus recognized as
outliers by the system. The following section discusses
the problem of detecting unusual driving patterns.

4 Detecting Unusual Driving Patterns

One of the main objectives of VEDAS is to character-
ize the driving characteristics and to detect the unusual
patterns in order to aid the driver and the fleet man-
agers quickly detect problems. For example, drowsy
driving can be life threatening and the drivers them-
selves may be highly interested in getting a response
from the on-board module in case it detects patterns of
drowsy driving. Moreover, managers of hazardous ma-
terial transportation fleets may be interested in quickly
detecting drunk driving. VEDAS has a module to de-
tect anomalous driving and vehicle behavior patterns
and this section presents a brief overview of that mod-
ule.

Deng et al.[4] divide time series recognition ap-
proaches into two categories: parametric and non-
parametric. Parametric methods assume that there
is an underlying model that generates the time series.
The detection of the unusual event in the time series
is thus equivalent to the classification of the underlying
models. Recently, Hidden Markov Model (HMM) [13],
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Figure 7: Observations from a vehicle with faulty spark
plugs fell outside the polygons representing the safe operat-
ing regimes.

Auto Regression Moving Average [4] and neural network
based methods have been used for solving this problem.
Instead of using models, non-parametric methods ex-
tract the patterns from the normal series such as the
mean, variance, frequencies, peaks and valleys, and try
to find the interesting patterns from the new series. Sev-
eral other techniques using ideas from negative-selection
mechanism of the immune system, one-class Support
Vector Machines and Self-Organizing Maps have been
proposed elsewhere.

VEDAS offers a combination of both parametric
and non-parametric techniques to monitor the data
streams. For example, it deploys auto-regressive mod-
els and other statistical models. However, in this paper,
we mainly discuss the non-parametric techniques used in
VEDAS. We present a relatively simple but effective ap-
proach used in the current version of VEDAS for finding
abnormal patterns from the OBD-II data based on hy-
pothesis testing and Fourier spectral analysis. Since lin-
ear segmentation requires linear computation time and
fast Fourier transformation requires O(nlog(n)) time,
they are suitable for implementation on a platform with
limited resources.

4.1 Background In order to illustrate the unusual
driving detection capabilities of VEDAS, we use simu-
lated drunk driving data generated by a driving simu-
lator - Live For Speed (LFS)2. A data replay analyzer
F1PerfView 3 is used to display detailed customizable
driving data from one or more RAF files in conjunc-
tion with a 2D top-down view of the path on the track.
The simulated data set was generated by noting some
of the following known characteristics of drunk driving;:
(1) Braking erratically; (2) Weaving from one side of

Zhttp://1fs.racesimcentral.com

3http://www.xs4all.nl/ "rsdi/fl perfview.html



the road to the other; (3) Taking extremely wide turns;
(4) Driving at very slow speeds - at least 10 mph below
the limit and without headlights on; (5) Stopping inap-
propriately in places such as green lights and crosswalks
with no pedestrians, etc.

The first three signs can be detected from vehicle
speed and steering wheel angle data. In the following
section we use vehicle speed and steering wheel angle as
the primary means for modeling driver behavior for our
preliminary analysis. A sample data plot of the steering
behavior for a sober and a simulated drunk driver is
shown in Figure 10.

4.2 Monitoring Techniques In this section, we
discuss some of the non-parametric techniques adopted
in VEDAS for unusual driving pattern detection in
simulated drunk driving data and offer experimental
results.

Speed and acceleration are two important charac-
teristics of driving behavior. Frequent sharp acceler-
ations and decelerations are usually viewed as unsafe
driving practices. VEDAS extracts typical local acceler-
ation patterns from the continuous driving data and es-
timates the underlying distribution. Distribution statis-
tics (e.g. mean, variance, range, median, KL distance)
are used to classify the quality of driving. A threshold
can be set and if the new sample statistics is significantly
higher than the corresponding threshold, an alarm flag
is raised.

In order to efficiently extract the typical local ac-
celeration from continuous speed stream, we explored
the bottom up Piecewise Linear Segmentation method
[10]. Intuitively, Piecewise Linear Segmentation refers
to the approximation of a time series T' of length n,
with k straight lines, as shown in Figure 8. Because
k << n, this method makes the transmission and com-
putation of the data more efficient. Moreover, Piecewise
Linear Segmentation “smoothens” the data streams and
usually retains the typical features. The computational
complexity of bottom up linear segmentation algorithm
[10] is O(Ln) where n is the number of data points in
the stream and L = n/k is the average segment length.
The acceleration can thus be computed easily from the
slope of the segment in constant time.

Furthermore, we can use statistical tests to make
quantitative decisions about the difference between the
means or variances of two sample distributions. For ex-
ample, the F-hypothesis test can be used to compare the
equality of the variances from two samples. This test
assumes that the samples follow the Gaussian distribu-
tion. Note that for the same driver on the same road the
acceleration pattern is usually stable. According to our
experiments this appears to approximately follow the
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Figure 8: Piecewise linear segmentation. (Top) Original
time series of vehicle speed with 108 points. (Bottom)
Corresponding linear segmentation with only 18 segments
(36 points, 33% of original series).
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Figure 9: Distribution of acceleration.

Gaussian distribution. Figure 9 illustrates this based on
the actual driving data. Let 1, x2,... ,2,, be a sample
from an unknown driving distribution N(u;,0%) with
sample variance s?, and let y1,%2,... ,Yn, be a sample
from a safe driving distribution N (u2,03) with sample
variance s3. i1, 2,074,035 are unknown.

The F-test is defined as:

Hy:0? = o0}
2
Ha L 0q > To

The hypothesis
rejected if

that the two variances are equal is

si

2

> Fy(ny —1,ny — 1)
LD

i.e., the variance of new acceleration behavior is
significantly higher than that of the normal behavior.
In the real world the acceleration may not always



approximate to Gaussian distribution due to different
reasons. We can use several other non-parametric test
methods such as permutation tests [6] as an alternative.
Next, we use Mann-Whitney U-Test to compare the
central tendency of the two behaviors. This is a
distribution-free test which uses the rank sums of two
samples. The null hypothesis is that the populations
have the same mean and the alternative hypothesis is
that the means are not the same. The test first ranks
all ny + no observations in ascending order and then
it calculates the sum of the ranks from each sample,
denoted by T, and Ty. The U statistic is calculated as
follows:

U, =n1n2 +0.5n1(ny + 1) = T,
Uy =ning + 0.5n2(n2 + 1) = T

U is selected for the smaller sample size (smallest n). If
the sample size is the same, U is the larger of U, and
Uy, ie., U = mazx(U,,Up). If the U value is greater
than the corresponding critical value then there is a
significant difference and the null hypothesis is rejected.
VEDAS makes use of several distributed algorithms for
comparing observed data sequences with typical normal
driving sequences stored at the control station. Some of
these algorithms are proprietary in nature and they are
not discussed here.

Another important sign of a drunk driver is weaving
from one side of the road to the other and vice versa.
Therefore, we expect that the periodic structure in the
frequency domain of a drunk driver would be more
significant than that of a sober driver. Figure 10 shows
the difference between the driving performances of a
sober driver and a drunk driver. This module monitors
Fourier transformation of the steering wheel angle data.
This helps us classifying the data stream based on
the periodic components and dominant frequencies.
Figure 11 illustrates the power spectrum at different
frequencies for both sober and simulated drunk driving.
Note that this module of VEDAS is primarily designed
for unusual driving behavior detection, not just for
detecting the drunk driving behavior.

In order to detect the unusual steering pattern, we
first build a sample space for a normal driver’s steering
wheel behavior. When a new window from the driving
data stream arrives, we perform Fourier transformation
on the data. Then we compare the frequency range of
the two power spectrums and compute the distance of
first several dominant Fourier coeflicients between the
normal and the unknown behavior. The alarm flag is
raised when the difference is high. Currently, we are
also exploring the problem using system identification
idea like ARMAX (Auto Regression Moving Average
with Exogenous inputs) and Box-Jenkins structures [3]
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Figure 10:

drivers.

Steering wheel angles for sober and drunk

which can define driver’s behavior through a parametric
model. The following section discusses the privacy
management module of the VEDAS system.

5 Protecting the Privacy of the Driver

Privacy management played an important role in the
design of VEDAS. Like most useful technologies mobile
and distributed data mining can be used for achieving
good things. On the other hand, it can also be po-
tentially used to intrude the privacy of the driver for
undesirable practices. Therefore, it is important that
we take measures to protect the privacy of the good
drivers. This section considers some of the distributed
statistics computation problems in VEDAS that may
require comparing on-board data with typical behav-
ior data stored at the control station (because of lim-
ited on-board data storage space) and explains some of
the solutions that VEDAS adopted to protect driver’s
privacy. Although the techniques are experimental in
nature and the field of privacy preserving data mining
[1, 12, 18] still lacks general purpose techniques to guar-
antee privacy protection against every attack types, we
believe that the techniques offer better protection com-
pared to no protection at all. These specific techniques
can also be replaced as the technology matures.
Consider the problem of computing the distance be-
tween two sequences—one is comprised of the currently
observed on-board data and the other defines the usual
driving behavior. The distance can be the inner prod-
uct or the Euclidean distance. Since Euclidean distance
computation problem can be easily reduced to the inner
product computation problem, in the rest of this section
we consider just the inner product computing problem.
So our objective is to compute the inner product ma-
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Figure 11: Fast Fourier transform of steering wheel angle
data. (Top) Power spectrum of sober driver’s steering wheel
angle. (Bottom) Power spectrum of a drunk driver’s steering
wheel angle.

trix (in the general case involving more than two data
vectors) from multiple data locations without necessar-
ily divulging the the on-board data to the management
operating the control station.

The approach we adopt works using a sequence of
randomized linear transformations [12] of the data. Rest
of this section offers a brief overview of this approach.

LEMMA 5.1. Let R be a p x q dimensional random
matriz such that each entry r;; of R is independently
chosen according to some unknown distribution with
mean 0 and variance 1. Then,

E[RRY] = qI

Intuitively, this result echoes the observation made
elsewhere [15] that in a high-dimensional space vectors
with random directions are almost orthogonal. A
similar result was proved elsewhere [2].

Lemma 5.1 can be used to prove the following result.

LEMMA 5.2. Let u, v be row vectors with m real en-
tries, i.e. u,v € ™. Let R be an m X ki dimensional
random matriz such that each entry r;; of R is identi-
cally, independently chosen according to some unknown
distribution with mean 0 and variance 1. Let u; = uR
and vi = vR, then

Eluivf] = T

kiuv

Note that uv” is nothing but their inner product.
The above result shows that if the owners of the u and
v project their data to a random space to get u; and
v1 respectively and then hand these over to a third

Privacy
Facilitator

Control
Station

Encrypted

9 Random M atrix
Encrypted
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Figure 12: Privacy preserving distributed inner product
computation schematic.

party, inner product can still be computed by the third
party. However, given u; or v; one may not be able
to accurately determine the original data u or v, which
is based on the premise that the possible solutions are
infinite when the number of equations is less than the
number of unknowns. A more detailed analysis of the
privacy protection can be found elsewhere [12].

In our system, a trusted privacy facilitator agent
sends out encrypted privacy schema, i.e., the random
matrix to local vehicles. On receipt of this random
matrix, the local vehicle projects its data onto the
random matrix and sends the projected data to the
control station, where the inner product matrix can be
computed without knowing the true value of the original
data. Figure 12 illustrates the schematic.

6 Experimental Results

The last decade has seen a substantial improvement
of wireless communication and computing technology.
However, battery power and bandwidth are still two of
the most scarce resources in most wireless applications
and they are likely to remain so in the near future.
This section presents some experimental results that
document the performance of some of the VEDAS
modules on those two grounds.

6.1 Communication Mining  distributed data
sources connected through wireless networks using
a traditional centralized data mining system would
require downloading all the data to a central location
before any analysis. The main problem with this
approach is the lack of sufficient bandwidth and high
power consumption rate needed for data transmission.
Thus reducing data transmission was an important
consideration in the design of our system. Since most
of the computation is performed on-board, VEDAS
incur very little data transmission overhead, unless
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Figure 13: Communication bandwidth usage comparison
for transmission of data with no on-board computation and
for transmission of data reduced to two dimensions using
on-board PCA computation.

the control station explicitly seek downloading the
data for specific investigative reasons. FEven then
VEDAS applies various techniques to reduce the data
transmission. For example, performing PCA reduces
the dimensionality and thus the size of the data set. In
all of our experiments only a handful of eigenvectors
were sufficient to capture most of the variance in the
data. Figure 13 shows the savings in communication
because of the PCA-based compression. VEDAS
also deploys various other distributed approximation
low-communication-algorithms that are not discussed
here.

6.2 Power Consumption Most of the wireless de-
vices we have considered in this paper are battery oper-
ated and lack a constant source of power. In commercial
fleets one may be able to provide alternate power sup-
ply. However, in the version of VEDAS designed for per-
sonal stand-alone on-board use, we consider the scenario
where the driver is not willing to set up additional power
supply hardware on-board. In this case, the power con-
sumption characteristics of the data stream mining al-
gorithms become an important issue. Moreover, most
other distributed data stream mining applications (e.g.
sensor networks for defense applications) heavily rely
on battery powered sensors. Therefore, we are better
off designing algorithms and systems that minimize the
energy consumption [17]. This section presents the ex-
perimental results for the energy consumption profile of
some of the data mining techniques used by VEDAS.
The energy E needed to execute a sequence of
operations is given by the equation P(t) = V(¢) x I,
where V() is the supply voltage, I, is the current and
P is the power and energy can be calculated as E =
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— CDPD data transfer
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Figure 14: Comparison of average energy usage for on-
board k-means clustering (std. deviation = 0.0265) and
CDPD transmission of data with no on-board computation.

:12 P(t)dt. The total energy consumption of a system
depends on both the hardware and software components
and the communication sub-system. For the current
application, let us define the total energy consumption
to be, E = E. + E;, where E. and E; are the energy
consumptions for computation and communication of
the data respectively.

We built an experimental setup for characterizing
the energy consumption profile of the VEDAS modules.
It runs on an HP Jornada 690 with CDPD network con-
nection. Energy consumption was determined by mea-
suring the input voltage and the current across a 12
resistor using Agilent 54622A oscilloscope and 12V DC
power. Figures 14 and 15 present the energy consump-
tion characteristics of the some of the modules. The re-
ported data were computed after the energy needed for
the GUI and WinCE background tasks was subtracted
from the observed energy measurements for the VEDAS
modules. They show that in general, from the energy
consumption perspective on-board computation works
a lot better than computing at remote desktop environ-
ment after transmitting the data through the wireless
network. These results strengthen the case for building
on-board data mining applications for mobile devices.

7 Conclusions and Future Work

Although mobile and wireless computing devices are be-
coming very popular, most of the current applications
are still in an early stage from the data analytics per-
spective. Limited computing resources, restricted band-
width, and other constraints on the human-computer
interactions offer several challenges toward building ad-
vanced data analytics-based applications for ubiquitous
distributed environments. However, we believe that we
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Figure 15: Comparison of energy usage for on-board
computation of mean, variance and PCA and for CDPD
transmission with no on-board computation. The standard
deviations for mean, variance, PCA and CDPD are 0.0877,
0.1281, 0.4128 and 71.67 respectively.

can develop a new generation of distributed data min-
ing algorithms and architectures that meet the chal-
lenges posed by such environments. This paper pre-
sented VEDAS, a real-time on-board data stream min-
ing system used for vehicle-health-monitoring and driver
status-characterization. The overall objective of the
VEDAS system is to help the drivers by characteriz-
ing their status and help the fleet managers by quickly
detecting security threats and problems vehicle-health.
The paper considered several specific challenges in de-
signing algorithm and the system—minimizing band-
width, power consumption, privacy management, and
making on-board computation very efficient. We are
currently in the process of incorporating many addi-
tional on-board data stream mining techniques and fleet
level distributed data mining capabilities.
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