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Abstract—This paper explores the possibility of using multiplicative random projection matrices for privacy preserving distributed data

mining. It specifically considers the problem of computing statistical aggregates like the inner product matrix, correlation coefficient

matrix, and Euclidean distance matrix from distributed privacy sensitive data possibly owned by multiple parties. This class of problems

is directly related to many other data-mining problems such as clustering, principal component analysis, and classification. This paper

makes primary contributions on two different grounds. First, it explores Independent Component Analysis as a possible tool for

breaching privacy in deterministic multiplicative perturbation-based models such as random orthogonal transformation and random

rotation. Then, it proposes an approximate random projection-based technique to improve the level of privacy protection while still

preserving certain statistical characteristics of the data. The paper presents extensive theoretical analysis and experimental results.

Experiments demonstrate that the proposed technique is effective and can be successfully used for different types of privacy-

preserving data mining applications.

Index Terms—Random projection, multiplicative data perturbation, privacy preserving data mining.
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1 INTRODUCTION

PRIVACY is becoming an increasingly important issue in
many data-mining applications that deal with health

care, security, financial, behavioral, and other types of
sensitive data. It is particularly becoming important in
counterterrorism and homeland defense-related applica-
tions. These applications may require creating profiles,
constructing social network models, and detecting terrorist
communications among others from privacy sensitive data.
For example, mining healthcare data for detection of bio-
terrorism may require analyzing clinical records and
pharmacy transactions data of certain off-the-shelf drugs.
However, combining such diverse data sets belonging to
different parties may violate the privacy laws. Although
health organizations are allowed to release data as long as
the identifiers (e.g., name, SSN, address, etc.,) are removed,
it is not considered safe enough since reidentification
attacks may be constructed for linking different public data
sets to identify the original subjects [1]. This calls for well-
designed techniques that pay careful attention to hiding
privacy-sensitive information, while preserving the inher-
ent statistical dependencies which are important for data-
mining applications.

The problem we are interested in and discuss in this
paper can be defined as follows: Suppose there are
N organizations O1; O2; . . . ; ON ; each organization Oi has
a private transaction database DBi. A third party data
miner wants to learn certain statistical properties of the

union of these databases
SN
i¼1 DBi. These organizations are

comfortable with this, but they are reluctant to disclose their
raw data. How could the data miner perform data analysis
without compromising the privacy of the data? This is
generally referred to as the census problem [2]. In this
scenario, the data is usually distorted and its new
representation is released; anybody has arbitrary access to
the published data. Fig. 1 illustrates a distributed two-
party-input case as well as a single-party-input case.

This paper considers a randomized multiplicative data
perturbation technique for this problem. It is motivated by
the work presented elsewhere [3] that pointed out some of
the problems of additive random perturbation. Specifically,
this paper explores the possibility of using multiplicative
random projection matrices for constructing a new repre-
sentation of the data. The transformed data is released to
the data miner. It can be proved that the inner product and
Euclidean distance are preserved in the new data. The
approach is fundamentally based on the Johnson-Linden-
strauss lemma [4] which notes that any set of s points in
m-dimensional Euclidean space can be embedded into
k-dimensional subspace, where k is logarithmic in s, such
that the pair-wise distance of any two points is maintained
within an arbitrarily small factor. Therefore, by projecting
the data onto a random subspace, we can dramatically
change its original form while preserving much of its
underlying distance-related statistical characteristics.

In this paper, we assume that the private data is from the
same continuous real domain and all the parties are
semihonest (which means there is no collusion between
parties and all the parties follow the protocol properly).
Without loss of generality, we demonstrate our technique in
a two-party-input scenario where Alice and Bob, each
owning a private database, want a third party to analyze
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their data without seeing the raw information. Our
technique can be easily modified and applied to other
input cases.

The remainder of this paper is organized as follows:
Section 2 offers an overview of the related work in privacy
preserving data mining. Section 3 discusses the random
orthogonal transformation-based perturbation technique in
the context of distributed inner product computation. This
is computationally equivalent to many problems such as
computing Euclidean distance, correlation, angles, or even
covariance between a set of vectors. These statistical
aggregates play a critical role in many data-mining
techniques such as clustering, principal component analy-
sis, and classification. Section 4 explores the potential
vulnerability of this method from the perspective of
Independent Component Analysis (ICA). Section 5 presents
a random projection-based multiplicative data perturbation
technique as an extension to enhance the privacy level.
Section 6 gives a further detailed analysis about the privacy
issues. Section 7 compares our technique with other existing
secure matrix product protocols. Several real data mining
applications, e.g., distributed inner product/Euclidean
distance estimation, distributed clustering, linear classifica-
tion, etc., and experiments are provided in Section 8 to
justify the effectiveness of this technique. Finally, Section 9
concludes this paper and outlines the future research.

2 RELATED WORK

This section presents a brief overview of the literature on
privacy preserving data mining.

2.1 Data Perturbation

Data perturbation approaches can be grouped into two main
categories: the probability distribution approach and the
value distortion approach. The probability distribution
approach replaces the data with another sample from the
same (or estimated) distribution [5] or by the distribution
itself [6], and the value distortion approach perturbs data
elements or attributes directly by either additive noise,
multiplicative noise, or some other randomization proce-
dures [7]. In this paper, we mainly focus on the value
distortion approach.

The work in [8] proposed an additive data perturbation
technique for building decision tree classifiers. Each data
element is randomized by adding some random noise
chosen independently from a known distribution such as
Gaussian distribution. The data miner reconstructs the

distribution of the original data from its perturbed version
(using, e.g., an Expectation Maximization-based algorithm)
and builds the classification models. More recently,
Kargupta et al. [3] questioned the use of random additive
noise and pointed out that additive noise can be easily
filtered out in many cases that may lead to compromising
the privacy.

The possible drawback of additive noise makes one
wonder about the possibility of using multiplicative noise
for protecting the privacy of the data. Two basic forms of
multiplicative noise have been well studied in the statistics
community [9]. One is to multiply each data element by a
random number that has a truncated Gaussian distribution
with mean one and small variance. The other one is to take a
logarithmic transformation of the data first, add predefined
multivariate Gaussian noise, and take the antilog of the
noise-added data. In practice, the first method is good if the
data disseminator only wants to make minor changes to the
original data; the second method assures higher security
than the first one but maintains the data utility in the log-
scale. A potential problem of traditional additive and
multiplicative perturbation is that each data element is
perturbed independently, therefore the pair-wise similarity
of records is not guaranteed to be maintained. In this paper,
we propose an alternate approach that proves to preserve
much of the underlying statistical aggregates of the data.

Additive and multiplicative perturbation usually deal
with numeric data only. Perturbation for categorical data
was initially considered in [10], where a randomized
response method was developed for the purpose of data
collection through interviews. The work in [11] considered
categorical data perturbation in the context of association
rule mining. This work was extended in [12], where a
framework for quantifying privacy breaches was intro-
duced. The framework uses the concept of �-amplification
and applies it without any assumption about the under-
lying distribution from which the original data is drawn.
The work in [13] considered this framework again and
showed how to optimally set the perturbation parameters
for reconstruction while maintaining �-amplification.

2.2 Data Swapping

The basic idea of data swapping, which was first proposed
by Dalenius and Reiss [14], is to transform the database by
switching a subset of attributes between selected pairs of
records so that the lower order frequency counts or
marginals are preserved and data confidentiality is not
compromised. This technique could equally as well be
classified under the data perturbation category. A variety of
refinements and applications of data swapping have been
addressed since its initial appearance. We refer readers to
[15] for a thorough treatment.

2.3 k-Anonymity

The k-Anonymity model [1] considers the problem that a
data owner wants to share a collection of person-specific
data without revealing the identity of an individual. To
achieve this goal, data generalization and suppression
techniques are used to protect the sensitive information.
All attributes (termed as quasi-identifier) in the private
database that could be used for linking with external
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Fig. 1. (a) Distributed two-party-input computation model. (b) Single-

party-input computation model.



information would be determined, and the data is released
only if the information for each person contained in the
release cannot be distinguished from at least k� 1 other
people.

2.4 Secure Multiparty Computation

The Secure Multiparty Computation (SMC) [16] technique
considers the problem of evaluating a function of the secret
inputs from two or more parties, such that no party learns
anything but the designated output of the function. A large
body of cryptographic protocols, including circuit evaluation
protocol, oblivious transfer, homomorphic encryption, and
commutative encryption, serve as the building blocks of
SMC. The work in [17] offered a broad view of SMC
framework and its applications to data mining. The work
in [18] detailed a rigorous introduction to SMC. It was shown
that any function that can be expressed by an arithmetic
circuit is privately computable using a generic circuit
evaluation protocol. However, the communication and
computational complexity of doing so makes this general
approach infeasible for large data sets. A collection of SMC
tools useful for large-scale privacy preserving data mining
(e.g., secure sum, set union, and inner product) are discussed
in [19]. An overview of the state-of-the-art privacy preser-
ving data mining techniques is presented in [20].

2.5 Distributed Data Mining

The distributed data mining (DDM) [21], [22] approach
supports computation of data mining models and extraction
of “patterns” at a given node by exchanging only the minimal
necessary information among the participating nodes. The
work in [23] proposed a paradigm for clustering distributed
privacy sensitive data in an unsupervised or a semisuper-
vised scenario. In this algorithm, each local data site builds a
model and transmits only the parameters of the model to the
central site where a global clustering model is constructed. A
distributed privacy-preserving algorithm for Bayesian net-
work parameter learning is reported elsewhere [24].

2.6 Rule Hiding

The main objective of rule hiding is to transform the
database such that the sensitive rules are masked, and all
the other underlying patterns can still be discovered. The
work in [25] gave a formal proof that the optimal
sanitization is an NP-hard problem for the hiding of
sensitive large item sets in the context of association rule
mining. For this reason, some heuristic approaches have
been applied to address the complexity issues. For example,
the perturbation-based association rule hiding technique
[26] is implemented by changing a selected set of 1-values
to 0-values or vice versa so that the frequent item sets that
generate the rule are hidden or the support of sensitive
rules is lowered to a user-specified threshold. The blocking-
based association rule hiding approach [27] replaces certain
attributes of the data with a question mark. In this regard,
the minimum support and confidence will be altered into a
minimum interval. As long as the support and/or the
confidence of a sensitive rule lies below the middle in these
two ranges, the confidentiality of data is expected to be
protected.

3 RANDOM ORTHOGONAL TRANSFORMATION

This section presents a deterministic multiplicative pertur-
bation method using random orthogonal matrices in the
context of computing inner product matrix. Later, we shall
analyze the deficiency of this method and then propose a
more general case that makes use of random projection
matrices for better protection of the data privacy.

An orthogonal transformation [28] is a linear transforma-
tion R : IRn ! IRn, which preserves the length of vectors as
well as the angles between them. Usually, orthogonal
transformations correspond to and may be represented
using orthogonal matrices. Let X and Y be two data sets
owned by Alice and Bob, respectively.X is anm1 � nmatrix,
and Y is an m2 � n matrix. Both of them observe the same
attributes. Let R be an n� n random orthogonal matrix.
Now, consider the following linear transformation of the two
data sets:

U ¼ XR; and V ¼ YR; then we have

UUT ¼ XXT ; V V T ¼ Y Y T ; UV T ¼ XRRTY T ¼ XY T :

So, if both Alice and Bob transform their data using a secret
orthogonal matrix, and only release the perturbed version to a
third party, all the pair-wise angles/distances between the
row vectors from data X

Y

� �
can still be perfectly computed

there, where X
Y

� �
is a horizontal concatenation of X and Y .

Therefore, it is easy to implement a distance-based privacy
preserving data-mining application in a third party for
homogeneously distributed (horizontally partitioned) data.
Similarly, if we transform the data in a way such that
U ¼ RX; V ¼ RY , we will have UTV ¼ XTY , and all the
pair-wise distances and similarities between the columns
vectors from the data ðX : Y Þ are fully preserved in the
perturbed data, where ðX : Y Þ denotes a vertical concatena-
tion of X and Y . Therefore, a third party can analyze the
correlation of the attributes from heterogeneously distributed
(vertically partitioned) data without accessing the raw data.

Since only the transformed data is released, there are
actually an infinite number of inputs and transformation
procedures that can simulate the output, while the observer
has no idea what is the real form of the original data.
Therefore, random orthogonal transformation seems to be a
good way to protect data’s privacy while preserving its
utility. However, from the geometric point of view, an
orthogonal transformation is either a pure rotation when
the determinant of the orthogonal matrix is 1 or a
rotoinversion (a rotation followed by a flip) when the
determinant is -1, and, therefore, it is possible to reidentify
the original data through a proper rotation. Figs. 2a and 2b
illustrate how the random orthogonal transformation works
in a 3D space. It can be seen that the data is not very well
masked after transformation. In this regard, the security of a
similar approach using random rotation [29] to protect the
data privacy is also questionable. Moreover, if all the
original data vectors are statistically independent and they
do not follow Gaussian distribution, it is possible to
estimate their original forms quite accurately using Inde-
pendent Component Analysis (ICA). In the following
sections, we shall briefly discuss the properties of ICA
and then propose a random projection-based multiplicative
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perturbation technique to improve the privacy level while
preserving the data utilities.

4 INDEPENDENT COMPONENT ANALYSIS

Independent Component Analysis (ICA) [30] is a technique
for discovering independent hidden factors that are under-
lying a set of linear or nonlinear mixtures of some unknown
variables, where the mixing system is also unknown. These
unknown variables are assumed non-Gaussian and statis-
tically independent, and they are called the independent
components (ICs) of the observed data. These independent
components can be found by ICA. A classical example of
ICA is the cocktail party problem (as illustrated in Fig. 3a).
Imagine you are in a cocktail party. Although different
kinds of background sounds are mixed together, e.g., music,
other people’s chat, television news report, or even a siren
from a passing-by ambulance, you still have no problem
identifying the discussion of your neighbors. It is not clear
how human brains can separate the different sound sources.
However, ICA is able to do it if there are at least as many
“ears” or receivers in the room as there are different
simultaneous sound sources.

4.1 ICA Model

The basic ICA model can be defined as follows:

uðtÞ ¼ RxðtÞ; ð1Þ

where xðtÞ ¼ ðx1ðtÞ; x2ðtÞ; . . . ; xmðtÞÞT denotes a m-dimen-
sional vector collecting the m independent source signals
xiðtÞ; i ¼ 1; 2; . . . ;m. Here, t indicates the time dependence.
Each signal xiðtÞ can be viewed as an outcome of a
continuous-value random process. R is a constant k�m
unknown mixing matrix, which can be viewed as a mixing
system with k receivers. uðtÞ ¼ ðu1ðtÞ; u2ðtÞ; . . . ; ukðtÞÞT is
the observed mixture. The aim of ICA is to design a filter
that can recover the original signals from only the observed
mixture. Since uðtÞ ¼ RxðtÞ ¼ ðR�P ÞðP�1��1xðtÞÞ for any
diagonal matrix � and permutation matrix P , the recovered
signals xðtÞ can never have completely unique representa-
tion. So, the uniqueness of the recovered signals found by
ICA can only be guaranteed up to permutation and scaling
ambiguities.

As an illustration, consider four statistically independent
audio signals, denoted as a 4� 8; 000 matrix X (shown in
Fig. 3b). Note that, for the sake of simplicity, some of the
signals we are showing here are deterministic; however,
ICA generally works with continuous-value random pro-
cess. A linear mixture of these signals (shown in Fig. 4a) is
generated by premultiplying a 4� 4 nonsingular random
matrix toX. The goal of ICA is to recover the original signals
using only the mixture. Fig. 4b gives the estimated signals
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Fig. 2. (a) A sample data set. (b) The perturbed data after a random orthogonal transformation. The transformation corresponds to a rotation of the

original data about the x-axis by a random angle.

Fig. 3. (a) An illustration of the cocktail problem. In this case, what the ears hear are two linear combinations of four audio signals, i.e., four signals

are compressed into two. (b) A sample of four independent source signals.



through ICA. It can be observed that the basic structure of
the original signals are recovered very well; however, the
order and the amplitude of the recovered signals are not
necessarily the same as those of the original ones.

4.2 Decomposability

In practice, a linear filter is designed to get the recovered
signals yðtÞ ¼ ðy1ðtÞ; y2ðtÞ; . . . ; ylðtÞÞT from a k-dimensional
input uðtÞ ¼ ðu1ðtÞ; u2ðtÞ; . . . ; ukðtÞÞT . In other words,

yðtÞ ¼ BuðtÞ; ð2Þ

where B is an l� k-dimensional separating matrix. Combin-
ing (1) and (2) together, we get

yðtÞ ¼ BRxðtÞ ¼ ZxðtÞ; ð3Þ

where Z ¼ BR is an l�m matrix. Each element of yðtÞ is
thus a linear combination of xiðtÞ with weights given by zi;j.

Ideally, when k � m (i.e., the number of receivers is
greater than or equal to the number of source signals), if the
mixing matrix R has full column rank, there always exists
an l� k separating matrix B such that Z ¼ BR ¼ I, where I
is an identity matrix. Thus, we can recover all the signals up
to scaling and permutation ambiguities. Actually, to solve
the problem, there are two steps to be done. The first step is
to determine the existence of B such that Z can decompose
the mixture. The second step is to find such a kind of B if it
is proved to exist. We will focus on the first step.

In general, by imposing the following fundamental
restrictions [31], all the source signals can be separated
out up to scaling and permutation ambiguities:

. The source signals are statistically independent,
i.e., their joint probability density function (PDF)
fxðtÞðx1ðtÞ; x2ðtÞ; . . . ; xmðtÞÞ is factorizable in the
following way:

fxðtÞðx1ðtÞ; x2ðtÞ; . . . ; xmðtÞÞ ¼
Ym
i¼1

fxiðtÞðxiðtÞÞ;

where fxiðtÞðxiðtÞÞ denotes the marginal probability
density of xiðtÞ.

. All the signals must be non-Gaussian with the
possible exception of one signal.

. The number of observed signals k must be at least as
large as the independent source signals, i.e., k � m.

. Matrix R must be of full-column rank.

These restrictions actually have exposed the potential

dangers of random orthogonal transformation or random

rotation techniques where the mixing matrix is square and

of full-column rank. If the original signals are also

statistically independent and there are no Gaussians, it is

most likely that ICA can find a good approximation of the

original signals from their perturbed version. Figs. 4a and

4b illustrated this situation.
Note that, if some of the source signals are correlated,

they may be lumped in the same group and can never be

separated out. If there is more than one Gaussian signal, the

problem becomes more complicated. The output of the filter

may be either individual non-Gaussian signals, individual

Gaussian signals, or a mixture of Gaussian signals. A

detailed analysis can be found elsewhere [32].
When l � k < m (i.e., the number of sources is greater

than the number of receivers),1 it is generally not possible to

design linear filters to simultaneously recover all these

signals. This kind of separation problem is termed as

overcomplete ICA or underdetermined source separation.

Cao et al. [32] analyzed the conditions for the existence of

the separating matrix B.
We first introduce two definitions (Definitions 4.1 and

4.2) and one theorem (Theorem 4.3) from the original

materials without any proof. They serve as important

building blocks in our solutions.

Definition 4.1 (Partition Matrix) [32]. A set of m integers

S ¼ f1; 2; . . . ;mg can be partitioned into l (l � m) disjoint

subsets Si, i ¼ 1; 2; . . . ; l. An l�m matrix Z is called a

partition matrix if its i; jth entry zi;j ¼ 1 when j 2 Si, and

zi;j ¼ 0 otherwise. Z is called a generalized partition matrix if

it is a product of an l�m partition matrix and an m�m
nonsingular diagonal matrix.
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1. This implies that the number of recovered signals will be less than or
equal to the number of the original signals. This is reasonable since we
cannot get more signals than the original ones.

Fig. 4. (a) Linear mixture of the original source signals using a square random matrix. (b) Recovered signals using ICA.



When none of the subsets Si are empty, Z is simply a

matrix in which each column has only one nonzero entry,

and each row has at least one nonzero entry.

Definition 4.2 (l-row Decomposable) [32]. A k�m matrix

R is called l-row decomposable if there exists an l� k matrix B

such that Z ¼ B�R is an l�m generalized partition matrix.

Therefore, if R is l-row decomposable, there exists a

matrix B that enables Z to separate the source signals into

l disjoint subgroups; each output yiðtÞ; i ¼ 1; 2; . . . ; l is a

linear combination of the source signals in one subgroup, i.e.,

yi ¼
X
j2Si

zi;jxj; i ¼ 1; 2; . . . ; 1:

If for some i, Si ¼ fpg, then yi ¼ zi;pxp, i.e., by using Z, we

can separate out one signal xp up to scaling ambiguities. If

the number of the disjoint subgroups is m (l ¼ m), then
every subset Si, i ¼ 1; . . . ; l, contains only one element, we

will have a complete separation. Also, note that, if R is

l-row decomposable, it must be ðl� 1Þ-row decomposable

since we can add two outputs yiðtÞ and yjðtÞ together to

get l� 1 subgroups.

Theorem 4.3 [32]. Matrix R is l-row decomposable if and only if

its columns can be grouped into l disjoint groups such that the

column vectors in each group are linearly independent of the

vectors in all the other groups.

Proof. Please see the proof of Theorem 1 in [32]. tu

Cao et al. proved that, with k < m, the source signals can
at most be separated into k disjoint groups from the

observed mixture, and at most k� 1 signals (independent

components) can be separated out.
Our claim is that, if we can control the structure of the

mixing matrix R such that R is not two-row decomposable,

then there is no linear method that can find a matrix B for

separating the source signals into two or more disjoint

groups. In that case, it is not possible to separate out any of

the source signals. The following theorem characterized this

property:

Theorem 4.4. Any k�m (m � 2k� 1;m � 2) random matrix
with entries independent and identically chosen from some
continuous distribution in the real domain is not two-row
decomposable with probability 1.

Proof. For a k�m random matrix with m � 2k� 1 and any
partition of its columns into two nonempty sets, at least
one set will have at least k members. Thus, this set of
columns contains a k� k submatrix, denoted as M. If M
is nonsingular, then the k column vectors of the
submatrix span IRk Euclidean space. Thus, there is
always at least one vector in one group belonging to
the space spanned by the other group, which does not
satisfy Theorem 4.3.

Now, let us show M is indeed nonsingular with
probability 1. It has been proved in [33, Theorem 3.3]
that the probability that MMT is positive definite is
1.2 Since a matrix is positive definite if and only if all
the eigenvalues of this matrix are positive, and a
matrix is nonsingular if and only if all its eigenvalues
are nonzero [34, Theorem 1.2.2], we have that MMT

is nonsingular with probability 1. Further note that
rankðMÞ ¼ rankðMMT Þ ¼ rankðMTMÞ [35], therefore
M is nonsingular with probability 1. This completes
the proof. tu
The above nonsingularity property of a random matrix

has also been proved in [34, Theorem 3.2.1] when the
random matrix is Gaussian. Thus, by letting m >> k, there
is no linear filter that can separate the observed mixtures
into two or more disjoint groups, so it is not possible to
recover any of the source signals. Figs. 5a and 5b depict this
property. It can be seen that, after 50 percent row-wise
random projection, the original four signals are compressed
into two, and ICA cannot recover any of them. Moreover,
projecting the original data using a nonsquare random
matrix has two more advantages. One is to compress the
data, which is very suited for distributed computation
applications; the other one is to realize a many (elements)-
to-one (element) map, which is totally different from the
traditional one-to-one data perturbation technique, and,
therefore, it is even harder for the adversary to reidentify
the sensitive data.
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2. We can get this result by replacing the matrix A in [33, Theorem 3.3]
with an identity matrix.

Fig. 5. (a) Linear mixture of the original four source signals (as shown in Fig. 3b) with 50 percent random projection rate. (m ¼ 4; k ¼ 2).

(b) Recovered signals. It can be observed that none of the original signals are reconstructed, and at most k ¼ 2 independent components can be

found by ICA.



The discussion in this section summarizes as:

. If the components of the original data themselves are
not statistically independent, that is, the original
data X ¼MC, where M is another mixing matrix
and C is the real independent components, after
perturbed by a random matrix R, we will get a new
mixing model U ¼ RX ¼ ðRMÞC. Even if ICA works
perfectly for this model, what we finally get is the
underlying independent components C (up to
scaling and permutation ambiguities), but not X. If
there are more than one Gaussian signals, the output
of the filter may be either individual non-Gaussian
signals, individual Gaussian signals, or a mixture of
Gaussian signals, which are totally indeterministic.

. When k � m (i.e., the number of receivers is greater
than or equal to the number of source signals), and
all the source signals are statistically independent,
they can be separated out from the mixture up to
scaling and permutation ambiguities if and only if
the mixing matrix R is of full-column rank and at
most one source signal is Gaussian.

. When l � k < m (i.e., the number of receivers is less
than the number of sources), the source signals can
at most be separated into k disjoint groups from the
mixtures, and at most k� 1 signals can be separated
out. Especially, when the mixing matrix R is not
two-row decomposable (m � 2k� 1;m � 2, and with
i.i.d. entries chosen from continuous distribution),
there is no linear method that can find a matrix B to
separate out any of the source signals.

4.3 Recent Work on Overcomplete ICA

Recently, overcomplete ICA (k < m) has drawn much
attention. It has been found that, even when k < m, if all
the sources are non-Gaussian and statistically independent,
it is still possible to identify the mixing matrix such that it is
unique up to a right multiplication by a diagonal and a
permutation matrix [36, Theorem 3.1]. If it is also possible to
determine the distribution of xðtÞ, we could reconstruct the
source signals in a probabilistic sense. However, despite its
high interest, the overcomplete ICA problem has only been
treated in particular cases, e.g., the source signals are

assumed to have sparse distribution [37]. In the following
section, we propose a random projection-based multiplica-
tive perturbation technique. By letting the random matrix
super nonsquare, we get an overcomplete ICA model. It
shows that randomly generated projection matrices are likely
to be more appropriate for protecting the privacy, compres-
sing the data, and still maintaining its utility.

5 RANDOM PROJECTION-BASED MULTIPLICATIVE

PERTURBATION

This section studies random projection-based multiplicative
perturbation in the context of computing inner product and
Euclidean distance without allowing direct access to the
original data.

5.1 Basic Mechanism

Random projection refers to the technique of projecting a set
of data points from a high-dimensional space to a randomly
chosen lower-dimensional subspace. The key idea of
random projection arises from the Johnson-Lindenstrauss
Lemma [4] as follows:

Lemma 5.1 (JOHNSON-LINDENSTRAUSS LEMMA). For any
0 < � < 1 and any integer s, let k be a positive integer such
that k � 4 ln s

�2=2��3=3 . Then, for any set S of s ¼ jSj data points in
IRm, there is a map f : IRm ! IRk such that, for all x; y 2 S,

ð1� �Þjjx� yjj2 � jjfðxÞ � fðyÞjj2 � ð1þ �Þjjx� yjj2;

where jj:jj denotes the vector 2-norm.

This lemma shows that any set of s points in
m-dimensional Euclidean space can be embedded into an
Oðlog s

�2 Þ-dimensional space such that the pair-wise distance of
any two points are maintained within an arbitrarily small
factor. This beautiful property implies that it is possible to
change the data’s original form by reducing its dimension-
ality but still maintains its statistical characteristics. In this
section, we shall demonstrate how random matrices can be
used for this kind of map. To give the reader a general idea
of how the random projection technique perturbs the data,
we did both row-wise and column-wise projection of the
sample data given in Fig. 2a. The results are shown in
Figs. 6a and 6b. It can be seen that the original structure of
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Fig. 6. (a) The perturbed data after a row-wise random projection which reduces 50 percent of the data points. (b) The perturbed data after a column-

wise random projection which maps the data from 3D space onto 2D space. The random matrix is chosen from Nð0; 1Þ and the original data is given

in Fig. 2a.



the data has been dramatically obscured. A further analysis
about the privacy is given in Section 6. In the following part
of this section, we discuss some interesting properties of the
random matrix and random projection, which are good for
maintaining the data utility.

Lemma 5.2. Let R be a p� q random matrix such that each entry
ri;j of R is independent and identically chosen from some
unknown distribution with mean zero and variance �2

r , then

E½RTR� ¼ p�2
rI and E½RRT � ¼ q�2

rI:

Proof. Let ri;j and �i;j be the i, ith entries of matrix R and
RTR, respectively,

�i;j ¼
Xp
t¼1

rt;irt;j

E½�i;j� ¼ E
Xp
t¼1

rt;irt;j

" #
¼
Xp
t¼1

E½rt;irt;j�:

Since the entries of random matrix are independent and
identically distributed (i.i.d.),

E½�i;j� ¼
Pp

t¼1 E½rt;i�E½rt;j� if i 6¼ j;Pp
t¼1 E½r2

t;i� if i ¼ j:

�

Now, note that E½ri;j� ¼ 0 and E½r2
i;j� ¼ �2

r , therefore,

E½�i;j� ¼
0 if i 6¼ j;
p�2

r if i ¼ j:

�
¼)E½RTR� ¼ p�2

rI:

Similarly, we have E½RRT � ¼ q�2
rI. tu

Intuitively, this result echoes the observation made
elsewhere [38], that in a high-dimensional space, vectors
with random directions are almost orthogonal. A similar
result was proved elsewhere [39]. Lemma 5.2 can be used to
prove the following results.

Lemma 5.3 (ROW-WISE PROJECTION). Let X and Y be
two data sets owned by Alice and Bob, respectively. X is an
m� n1 matrix, and Y is an m� n2 matrix. Let R be a k�
mðk < mÞ random matrix such that each entry ri;j of R is
independent and identically chosen from some unknown
distribution with mean zero and variance �2

r . Further, let

U ¼ 1ffiffiffi
k
p

�r
RX; and V ¼ 1ffiffiffi

k
p

�r
RY ; then

E½UTV � ¼ XTY :

ð4Þ

Lemma 5.4 (COLUMN-WISE PROJECTION). Let X and Y be
two data sets owned by Alice and Bob, respectively. X is an
m1 � n matrix and Y is an m2 � n matrix. Let R be an n�
kðk < nÞ random matrix such that each entry ri;j of R is
independent and identically chosen from some unknown
distribution with mean zero and variance �2

r . Further, let

U ¼ 1ffiffiffi
k
p

�r
XR; and V ¼ 1ffiffiffi

k
p

�r
Y R; then

E½UV T � ¼ XY T :

ð5Þ

The above results show that the row-wise projection
preserves the column-wise inner product and the column-
wise projection preserves the row-wise inner product. The

beauty of this property is that inner product is directly
related to many other distance-related metrics. To be more
specific:

. The Euclidean distance of x and y is

jjx� yjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� yÞT ðx� yÞ

q
:

. If the data vectors have been normalized to unity,
then the cosine angle of x and y is

cos � ¼ xTy

jjxjj � jjyjj ¼ x
Ty:

. If the data vectors have been normalized to unity
with zero mean, the sample correlation coefficient of
x and y is

�x;y ¼
P
xiyi �

P
xi
P

yi

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x2
i �

P
xið Þ2
m

� � P
y2
i �

P
yið Þ2

m

� �s ¼ xTy:

Thus, if the data owner reduces the number of attributes
of the data by projection, the statistical dependencies among
the observations will be maintained; if the data owner
compresses the observations, the relationship between the
attributes will be preserved. On the one hand, given only
the perturbed data U or V , one cannot determine the values
of the original data X or Y , which is based on the premise
that the possible solutions are infinite when the number of
equations is less than the number of unknowns. On the
other hand, we can directly apply common data-mining
algorithms on the perturbed data without accessing the
original sensitive information.

In the next section, we will discuss some nice bounds
about the inner product and Euclidean distance preserved
by the random projection, and, in Section 6, we shall give a
further analysis about the privacy.

5.2 Error Analysis

In practice, due to the cost of communication and security
concerns, we always use one specific realization of the
random matrix R. Therefore, we need to know more about
the distribution of RTR (similarly, for RRT ) in order to
quantify the utility of the random projection-based pertur-
bation technique.

Assume entries of the k�m random matrix R are i.i.d.
and chosen from Gaussian distribution with mean zero and
variance �2

r , we can study the statistical properties of the
estimation of the inner product.

Let �i;j be the i, jth entry of matrix RTR. It can be
proved that �i;j is approximately Gaussian, E½�i;i� ¼ k�2

r ,
V ar½�i;i� ¼ 2k�4

r , 8i and E½�i;j� ¼ 0, V ar½�i;j� ¼ k�4
r , 8i; j; i 6¼ j

(please see Appendix I for the proof which can be found
on the Computer Society Digital Library at http://
www.computer.org/tkde/archives.htm). The following
lemma gives the mean and variance of the projection error.

Lemma 5.5. Let x, y be two data vectors in IRm. Let R be a
k�m random matrix. Each entry of R is independent and
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identically chosen from Gaussian distribution with mean zero

and variance �2
r . Further, let

u ¼ 1ffiffiffi
k
p

�r
Rx; and v ¼ 1ffiffiffi

k
p

�r
Ry; then

E½uTv� xTy� ¼ 0;

V ar½uTv� xTy� ¼ 1

k

X
i

x2
i

X
i

y2
i þ ð

X
i

xiyiÞ2
 !

:

In particular, if both x and y are normalized to unity,P
i x

2
i

P
i y

2
i ¼ 1 and ð

P
i xiyiÞ

2 � 1. We have the upper

bound of the variance as follows:

V ar½uTv� xTy� � 2

k
:

Proof. Please see Appendix II which can be found
on the Computer Society Digital Library at http://
www.computer.org/tkde/archives.htm. tu

Lemma 5.5 shows that the error (uTv� xTy) of the inner
product matrix produced by random projection-based
perturbation technique is zero, on average, and the variance
is at most the inverse of the dimensionality of the reduced
space multiplied by 2 if the original data vectors are
normalized to unity. Actually, since �i;j is approximately
Gaussian, the error also has an approximate Gaussian
distribution, namely, Nð0;

ffiffiffiffiffiffiffiffi
2=k

p
Þ. To validate the above

claim, we choose two randomly generated data sets from a
uniform distribution in ½0; 1�, each with 10,000 observations
and 100 attributes. We normalize all the attributes to unity
and compare the column-wise inner product of these
two data sets before and after row-wise random projection.
Fig. 7a gives the results and it depicts that, even under
50 percent data projection rate (when k ¼ 5; 000), the inner
product still preserves very well after perturbation, and the
error indeed approximates Gaussian distribution with
mean zero and variance less than 2=k. Fig. 7b shows the
Root Mean Squared Error (RMSE) of the estimated inner
product matrix with respect to the dimensionality of the

reduced subspace. It can be seen that, as k increases, the
error goes down exponentially, which means that the
higher the dimensionality of the data, the better this
technique works. This lemma also echoes the results found
in [40], where entries of R are independent and identically
chosen from some unknown distribution with mean zero
and each column vector of R is normalized to have a unit
length.

By applying Lemma 5.5 to the vector x� y, we have

E½jju� vjj2 � jjx� yjj2� ¼ 0:

If x and y are normalized to unity,

V ar½jju� vjj2 � jjx� yjj2� � 32

k
;

where jjx� yjj2 ¼ ðx� yÞT ðx� yÞ is the square of the
Euclidean distance of x and y. Note that this bound defines
the maximum variance of the distortion. As a generalization
of [39, Theorem 2], we also have the probability bound of
the Euclidean distance as follows:

Lemma 5.6. Let x, y be two data vectors in IRm. Let R be a
k�m-dimensional random matrix. Each entry of the
random matrix is independent and identically chosen from
Gaussian distribution with mean zero and variance �2

r .
Further, let

u ¼ 1ffiffiffi
k
p

�r
Rx; and v ¼ 1ffiffiffi

k
p

�r
Ry; then

Prfð1� �Þjjx� yjj2 � jju� vjj2 � ð1þ �Þjjx� yjj2g
� 1� 2e�ð�

2��3Þk4

for any 0 < � < 1.

Proof. Directly follows the proof of [39, Theorem 2] with the
exception that random matrix is chosen independently
according to Nð0; �rÞ. tu

This result also shows that as the reduced dimensionality k
increases, the distortion drops exponentially, which echoes
the above observations that the higher the dimensionality of

100 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 1, JANUARY 2006

Fig. 7. (a) Distribution of the error of the estimated inner product matrix over two distributed data sets. Each data set contains 10,000 records and

100 attributes. k ¼ 50%� 10; 000 ¼ 5; 000 (50 percent row-wise projection). The random matrix is chosen from Nð0; 2Þ. Note that the variance of the

error is even smaller than the variance of distribution Nð0;
ffiffiffiffiffiffiffiffi
2=k

p
Þ. (b) Root Mean Squared Error (RMSE) of the estimated inner product matrix with

respect to the dimensionality of the reduced subspace.



the data, the better the random projection works. Many
applications of random projection can be found in the
literature, e.g., image and text clustering [40] and distrib-
uted decision tree construction [41]. In the next section, we
shall give a detailed analysis about the privacy.

6 PRIVACY ANALYSIS

Generally speaking, the random projection-based multi-
plicative perturbation technique guarantees that both the
dimensionality and the exact value of each element of the
original data are kept confidential. These properties are
based on the assumptions that both data and random noise
are from the continuous real domain and all the participat-
ing parties are semihonest.

In this section, we shall give a more rigorous analysis on
how much privacy our perturbation technique can preserve
when the adversary has different kinds of prior knowledge
of the data and when the basic assumptions of this
technique are not satisfied.

6.1 The Specific Realization of the Random Matrix
is Disclosed

Consider the model U ¼ RX, where R 2 IRk�m with k < m,
and X 2 IRm�n. This model can be viewed as a set of
underdetermined systems of linear equations (more un-
knowns than equations), each with the form u ¼ Rx, where
x is an m� 1 column vector from X and u is the
corresponding column vector from U . For each linear
system, assume both R and u are known, so the solution
is never unique. In practice, the system can be analyzed by
the QR factorization [42] of RT such that

RT ¼ Q R
0

� �
;

where Q is an m�m orthogonal matrix and R is a
k� k upper triangular matrix. If R has full row rank, i.e.,
rankðRÞ ¼ k, there is a unique solution xmin norm that
minimizes jjxjj2:3

xmin norm ¼ Q RT�1

u

0

 !
¼ Q R

0

 !
ðRTRÞ�1u

¼ RT ðRRT Þ�1u ¼ Ryu;

where Ry is nothing but the pseudoinverse of R. This
solution xmin norm serves as a starting point to the under-
determined system u ¼ Rx. The complete solution set can
be characterized by adding an arbitrary vector from the null
space of R, which can be constructed by the rational basis
for the null space of R, denoted by N . It can be confirmed
that RN ¼ 0 and that any vector x, where

x ¼ xmin norm þNv

for an arbitrary vector v satisfies u ¼ Rx.
These results prove that, even if the random matrix R is known

to the adversary, it is impossible to find the exact values of all the

elements in vector x of each underdetermined system of linear
equations. The best we can do is to find the minimum norm

solution. However, one may ask whether it is possible to
completely identify some elements in the vector x. Ob-
viously, if we can find as many linearly independent
equations as some unknown elements, we can partially
solve the system. In the following, we will discuss this
possibility by using the “l-secure” definition introduced in
[43, Definition 4.1].

A coefficient matrix R is said to be l-secure if, by
removing any l columns from R, the remaining submatrix
still has full row rank, which guarantees that any nonzero
linear combination of the row vectors of R contains at least
lþ 1 nonzero elements. Otherwise, assume there are at most
l nonzero elements. Then, if we remove these l correspond-
ing columns from R and apply the same linear combination
on all the row vectors of this remaining submatrix, we will
get a zero vector, which means the row vectors of this
submatrix are linearly dependent and the rank of this
submatrix is not of full row rank, which contradicts the
l-secure definition. So, if a coefficient matrix is l-secure, each
unknown variable in a linear equation is disguised by at
least l other unknown variables no matter what kind of
nonzero linear combination produces this equation. Now,
the question is whether we can find lþ 1 linearly
independent equations that just involve these lþ 1 un-
knowns? The answer is No. It can be proved that any
lþ 1 nonzero linear combinations of the equations contains
at least 2lþ 1 unknown variables if these lþ 1 vectors are
linearly independent. The following theorem formalizes
this property (which can be viewed as a generalization of
[43, Theorem 4.3]).

Theorem 6.1. Let � be an ðlþ 1Þ �m matrix, where each row of
� is a nonzero linear combination of row vectors in R. If R is
l-secure, the linear equations system u ¼ �x involves at least
2lþ 1 unknown variables if these lþ 1 vectors are linearly
independent.4

Proof. Since row vectors of � are all linearly independent,
u ¼ �x can be transformed into u ¼ ðI : �0Þx through a
proper Gaussian elimination, where I is the ðlþ 1Þ �
ðlþ 1Þ identity matrix, �0 is a ðlþ 1Þ � ðm� ðlþ 1ÞÞ
matrix, and ðI : �0Þ is a vertical concatenation of I and
�0. Since R is l-secure, each row of ðI : �0Þ contains at
least lþ 1 nonzero entries, which corresponds to
lþ 1 unknowns. Because in each row of ðI : �0Þ, there
is a single 1 from I, there are at least l nonzero entries
in �0. Thus, the whole system contains at least
2lþ 1 unknowns, with lþ 1 unknowns being contrib-
uted by I, and at least l unknowns from �0. tu

In summary, if a coefficient matrix is l-secure, any linear
combinations of the equations contains at least lþ 1 variables
and it is not possible to find lþ 1 linearly independent
equations that just involve the same lþ 1 variables, thus the
solutions to any partial unknown variables are infinite.

Now, consider the k�m random projection matrix and
the restrictions of ICA we discussed in the previous sections.
When m ¼ 2k� 1, after removing any k� 1 columns from
mixing matrix R, according to the proof of Theorem 4.4,
the remaining square matrix has full row rank with
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3. This problem is referred to as finding a minimum norm solution to an
underdetermined system of linear equations.

4. If these lþ 1 vectors are not linearly independent, the lþ 1 equations
contain �þ l unknown variables. Here, � denotes the rank of the matrix
formed by these lþ 1 vectors.



probability 1. That means the system is ðk� 1Þ-secure with
probability 1 when the mixing matrix R is known to the
adversary, i.e., theoretically, each unknown variable is
disguised by at least k� 1 variables, and we cannot find
k� 1 linearly independent equations that just involve these
variables, so the solutions are infinite. When m > 2k� 1, the
security level is even higher because we can remove more
columns while keeping the submatrix full row rank
(however, the accuracy of the random projection will
probably be compromised if k is too small).

This result shows that, even if the random matrix R is known
to the adversary, if R is ðk� 1Þ-secure, each unknown variable is
masked by at least k� 1 other unknown variables no matter how
the equations are linear combined. So, it is impossible to find the
exact value of any element in the original data.

Since the exact values of the original data cannot be
identified, let us change gears and see how well can we
estimate them if both the perturbed data and the specific
random matrix are known (however, we assume the
adversary does not know the true variance of the random
entries, and, in practice, an estimated one may be used
instead.).

Recall the projection model described in Section 5. If

entries of the k�m random matrix R are independent and

identically chosen from Gaussian distribution with mean

zero and variance �2
r , given u ¼ 1ffiffi

k
p

�r
Rx, we can estimate x

by multiplying on the left by 1ffiffi
k
p

�̂�r
RT , where �̂�r is the

estimated variance of the random entries. Note that, in

practice, since the specific realization of R is disclosed, an

adversary can compute �̂�r by computing the sample

variance of ri;j. Therefore, in the following equations, we

view �̂�r as a constant. We have

1ffiffiffi
k
p

�̂�r
RTu ¼ 1

k�̂�r�r
RTRx:

The estimation for the ith data element of vector x, denoted
by x̂xi, can be expressed as

x̂xi ¼
1

k�̂�r�r

X
t

�i;txt;

where �i;j is the i; jth entry of RTR. With simple
mathematical derivation, we have the expectation and
variance of the estimation as follows:

E½x̂xi� ¼
�r
�̂�r
xi;

V ar½x̂xi� ¼
1

k2�̂�2
r�

2
r

ð2kþ k2Þ�4
rx

2
i þ k�4

r

X
t;t6¼i

x2
t

 !
� �r

�̂�r
xi

� �2

:

When the estimated variance �̂�2
r � �2

r , we have

E½xi � x̂xi� � 0;

V ar½xi � x̂xi� �
2

k
x2
i þ

1

k

X
t;t 6¼i

x2
t :

In summary, when the random matrix is completely
disclosed, one cannot find the exact value of any element of
the original data. However, by exploring the properties of the
random matrix R, we can find an approximation of the original
data. The distortion is zero on average, and its variance is

approximately 2
k x

2
i þ 1

k

P
t;t6¼i x

2
t . We view this variance as a

privacy measure in the worst case. By controlling the
magnitude of the vector x (which can be done by simply
multiplying a scalar to each element of the vector), we
can adjust the variance of the distortion of the estimation,
which, in turn, changes the privacy level.

6.2 The Dimensionality and the Distribution of the
Random Matrix Are Disclosed

This section studies whether an adversary can get a good
estimation of the original data through a random guess of
the random matrix if he or she knows the probability
density function (PDF) of R and its dimensionality m.

Assume the adversary generated a random matrix R̂R
according to the PDF. Given u ¼ Rx, the adversary can
estimate x by multiplying on the left of u by 1ffiffi

k
p

�r
R̂RT

1ffiffiffi
k
p

�̂�r
R̂RTu ¼ 1ffiffiffi

k
p

�r
R̂RT 1ffiffiffi

k
p

�r
Rx:

Let �̂�i;j denote the i; jth entry of R̂RTR such that �̂�i;j ¼P
t r̂rt;irt;j 8i; j. Let x̂xi denote the estimation of xi, we have

x̂xi ¼
1

k�2
r

X
t

�̂�i;txt:

The expectation and variance of x̂xi are

E½x̂xi� ¼ E
1

k�2
r

X
t

�̂�i;txt

" #
¼ 0;

V ar½x̂xi� ¼ E
1

k2�4
r

X
t

�̂�i;txt

 !2
2
4

3
5 ¼ 1

k

X
t

x2
t :

Here, we use the fact that E½�̂�i;j� ¼ 0; Ep 6¼q½�̂�i;p�̂�i;q� ¼ 0 and
E½�̂�2i;t� ¼ k�4

r .
This fact indicates that the adversary cannot identify the

original data by a random guess of the random matrix, all she or
he can get is approximately a null matrix with all entries being
around 0.

6.3 The Data Inputs are Restricted to Boolean

In the discussion of Section 6.1, we do not assume any
prior knowledge of the original data with the exception
that it is from the continuous real domain. However, when
the data inputs are restricted to Boolean, our protocol will
be at a high disclosure risk. For example, suppose the
adversary knows the random matrix is ð0:1; 0:3; 0:5Þ and
the perturbation equation is 0:1d1 þ 0:3d2 þ 0:5d3 ¼ 0:9,
where ðd1; d2; d3Þ is the original data. Then, even though
there is just one equation, the adversary will know that
d1 ¼ d2 ¼ d3 ¼ 1. Actually, if the system of linear equations
has a unique solution (either for all the unknowns or for
partial unknowns), the adversary could try all possible
combinations of 1 and 0 for all the data elements to obtain
the correct solution. Similar results will occur if the data is
discrete and the adversary knows exactly all the possible
candidates. However, we need to note that, in practice,
both the dimensionality of the data and the random matrix
are kept secret, so the adversary does not know the
equation “0:1d1 þ 0:3d2 þ 0:5d3 ¼ 0:9,” but only a single
number 0:9. Therefore, the random projection-based per-
turbation offers a reasonable protection for boolean and
other discrete data.
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6.4 The Distribution of the Data is Revealed

Recall in Section 4.3, we stated that, if all the sources are
non-Gaussian and statistically independent, it is possible
for overcomplete ICA to identify the mixing matrix up to
scaling and permutation ambiguities. If the adversary also
happens to know the distribution of the original data
sources under this situation, overcomplete ICA could
possibly reconstruct the sources in a probabilistic sense.
However, in the literature, overcomplete ICA has only been
treated in particular cases, and an exact recovery is still
impossible. Actually, in practice, the data sets usually have
more than one Gaussians and correlated components, ICA
can only find the “real” hidden independent factors behind
the original data, but not the data itself.

6.5 The Trouble with Malicious Parties

The perturbation technique we proposed assumes a semi-
honest model, which means all the parties follow the
protocol properly and there is no collusion. However, it is
possible that the data miner and one of the data owners are
malicious and they want to cooperatively extract the
sensitive information from the other party. For example,
to probe Bob’s private data, Alice may reveal the secret
random matrix to the data miner or the data miner may
send Bob’s perturbed data back to Alice. These behaviors
are actually the same as disclosing the specific realization of
the random matrix, which is well studied in Section 6.1.

The next section compares our perturbation technique
with other existing secure inner product protocols.

7 COMPARISON WITH OTHER SECURE MATRIX

PRODUCT PROTOCOLS

This paper studies the random projection-based multi-
plicative perturbation technique in the context of computing
inner product matrix from distributed privacy sensitive data.
Recently, there has been a growing body of research on
secure inner product computation [43], [44], [45], [46], which
looks similar with ours. However, our work distinguishes
with other existing protocols in the following aspects.

First of all, the problem we are dealing with is different.
Most of the existing techniques are handling a Secure Two-
Party Computation model, where two parties, Alice and
Bob, each having a private database, want to cooperatively
conduct data-mining operations on the union of their data.
However, the problem we are interested in is how a data
owner can release a version of its private data with
guarantees that the original sensitive information cannot
be reidentified while the analytic properties of the data are
preserved?

Second, the methodology for privacy protection we are
investigating is different. In the SMC-based model, the
inner product of two parties, Alice and Bob, is usually
divided into two secret pieces, with one piece going to Alice
and the other going to Bob. The computation of each inner
product requires the cooperation of the two parties.
However, our work explores the data perturbation techni-
que. The private data is masked by multiplicative noise only
once and, then, released to the data miner. The data owner
will not participate in future data-mining activities at all.

Third, our technique requires lower communication
cost when computing the inner product. By mapping the
data to a lower-dimensional random space, we compress
the data quite a lot, which is well suited for distributed
computation problem. However, most of the existing
SMC-based inner product protocol are synchronous and

requires several rounds of communications between
two parties for each inner product computation; therefore,
they do not scale very well to large data set. Table 1
compares the communication cost of several existing
secure inner product protocols with ours.

Finally, it should be noted that most of the existing SMC-
based inner product computations do not deal with the
situation where one party is malicious and lies about its
input. For example, if Alice replaces her input vector with
ð1; 0; . . . ; 0Þ, the result of the inner product tells Alice the
exact value of the first element of the other party’s data.
However, in our model, the inner product is known to the
data miner. Giving spurious input to the protocol could not
let one party derive the other party’s private information if
the data miner does not collude with the adversary. In the
worst case, Alice may reveal the secret random matrix to the
data miner or the data miner may send Bob’s perturbed
data back to Alice. These behaviors are actually the same as
disclosing the specific realization of the random matrix. In
that case, the adversary still cannot compute the exact
values of the original data, but only an approximation.

8 APPLICATIONS

In this section, we illustrate several applications of the

random projection-based perturbation technique together

with the experimental results. All the data sets are chosen

from the UCI Machine Learning Repository and KDD

Archive without any normalization. The random matrices

are generated from Gaussian distribution with mean 0 and

variance 4.

8.1 Inner Product/Euclidean Distance Estimation
from Heterogeneously Distributed Data

Problem. Let X be an m� n1 data matrix owned by Alice and Y

be an m� n2 matrix owned by Bob. Compute the column-wise

inner product and Euclidean distance matrices of the data ðX :

Y Þ without directly accessing it.

Algorithm:

1. Alice and Bob cooperatively generate a secret
random seed and use this seed to generate a
k�m random matrix R.

2. Alice and Bob project their data onto IRk using R and
release the perturbed version U ¼ 1ffiffi

k
p

�r
RX and V ¼

1ffiffi
k
p

�r
RY to a third party.

3. The third party computes the inner product matrix
using the perturbed data U and V and gets
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TABLE 1
Comparison of Several Secure Inner Product Protocols



UTU UTV
V TU V TV

� �
� XTX XTY

Y TX Y TY

� �
:

Discussions: Similarly, the third party can compute the
Euclidean distance on the perturbed data. When the data is
properly normalized, the inner product matrix is nothing
but the cosine angle matrix or the correlation coefficient
matrix of ðX : Y Þ.

Experiments: We consider the Adult database from the
UCI Machine Learning Repository for the experiment. This
data set was originally extracted from the 1994 census
bureau database. Without loss of generality, we select the
first 10,000 rows of the data with only two attributes
(fnlwgt, education-num) and show how random projection
preserves the inner product and (the square of) the
Euclidean distance of them. Tables 2 and 3 present the
results over 20 runs. Here, k is the dimensionality of the
perturbed vector, and k is also represented as the
percentage of the dimensionality of the original vector. It
can be seen that, when the vector is reduced to 30 percent of
its original size, the relative error of the estimated inner
product and (the square of) Euclidean distance is only
around 1.80 percent, which is pretty good. Fig. 8 illustrates
how the original data is perturbed.

8.2 K-Means Clustering from Homogeneously
Distributed Data

Problem. Let X be an m1 � n data matrix owned by Alice and Y
be an m2 � n matrix owned by Bob. Cluster the union of these
two data sets X

Y

� �
without directly accessing the raw data.

Algorithm:

1. Alice and Bob cooperatively generate a secret
random seed and use this seed to generate an n�
k random matrix R.

2. Alice and Bob project their data onto IRk using R and
release the perturbed version U ¼ 1ffiffi

k
p

�r
XR and

V ¼ 1ffiffi
k
p

�r
Y R.

3. The third party does K-Means clustering over the
data set U

V

� �
.

Discussions: The above algorithm is based on the fact that
column-wise projection preserves the distance of row
vectors. Actually, random projection maps the data to a
lower-dimensional random space while maintaining much
of its variance just like PCA. However, random projection
only requires OðmnkÞðk << nÞ computations to project an
m� n data matrix into k� n dimensions, while the compu-
tation complexity of estimating the PCA is Oðn2mÞ þOðn3Þ.

This algorithm can be generalized for other distance-based
data-mining applications such as nested-loop outlier detec-
tion, k-nearest-neighbor search, etc. Moreover, by doing a
column-wise projection and then concatenating the per-
turbed data vertically, we can also apply clustering algo-
rithm on heterogeneously distributed data.

Experiments: For this task, we choose the Synthetic
Control Chart Time Series data set from the UCI KDD
Archive. This data set contains 600 examples of control
charts, each with 60 attributes. There are six different classes
of control charts: normal, cyclic, increasing trend, decreas-
ing trend, upward shift, and downward shift. We horizon-
tally partition the data into two subsets, perform random
projections, and then conduct K-Means clustering on the
union of the projected data. Table 4 shows the results. It can
be seen that the clustering results are pretty good; even with
a 17 percent projection rate (the number of attributes is
reduced from 60 to 10), the clustering error rate is still as
low as 4.33 percent.

8.3 Linear Classification

Problem. Given a collection of sensitive data points xiði ¼
1; 2; . . .Þ in IRn, each labeled as positive or negative, find a
weight vector w such that wxTi > 0 for all positive points xi
and wxTi < 0 for all negative points x. Here, we assume xiði ¼
1; 2; . . .Þ is a row vector.

Algorithm:

1. The data owner generates an n� k random matrix R
and projects the data to IRk using R such that
x0i ¼ 1ffiffi

k
p

�r
xiR, 8i, and releases the perturbed data.
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TABLE 2
Relative Errors in Computing the Inner Product

of Two Attributes

TABLE 3
Relative Errors in Computing the Square of the Euclidean

Distance of Two Attributes

Fig. 8. Original data attributes and their perturbed counterparts. The

random projection rate is 30 percent.



2. Run the perceptron algorithm in IRk:

a. Let w0 ¼ 0. Do until all the examples are
correctly classified

. Pick an arbitrary misclassified example x0i
and let

w0  w0 þ � � classlabelðx0iÞ � x0i:

Here, � is the learning rate.

Discussions: Note that, in this algorithm, the class labels

are not perturbed. Future example x is labeled positive if

w0 1ffiffi
k
p

�r
xR

� 	T
> 0 and negative otherwise. This is actually the

same as checking whether w0 1ffiffi
k
p

�r
RT

� 	
xT > 0, namely, a

linear separator in the original n-dimensional space. This

also implies that w0 is nothing but the projection of w such

that w0 ¼ 1ffiffi
k
p

�r
wR and, therefore,

w0x
0

i

T ¼ 1ffiffiffi
k
p

�r
wR

1ffiffiffi
k
p

�r
RTxTi � wxTi :

This algorithm can be easily generalized for Support Vector
Machine (SVM) because, in the Lagrangian dual problem of
the SVM task, the relationship of the original data points is
completely quantified by inner product.

Experiments: We select the Iris Plant Database for the
experiment. This is a very simple data set with 150 instances
and only four numeric attributes. We will show that, even
for such a small data set, our algorithm still works well. The
data set contains three classes of 50 instances each, where
each class refers to a type of iris plant (Iris-setosa, Iris-
versicolor, and Iris-virginica). We manually merge Iris-
setosa and Iris-versicolor together so that we can do a
binary classification on this data. The projection rate is
50 percent; hence, the data has only two attributes left after
perturbation. We perform a voted perceptron learning on
both the original data and the perturbed data. The accuracy
on the original data over 10-fold cross validation is
94.67 percent. The classification results on the perturbed
data over 10-fold cross validation are demonstrated in Table
5. It shows that the average accuracy on the perturbed data
is 86.67 percent, which is 91.55 percent as good as the
results over the original data.

The following section concludes this paper.

9 CONCLUSIONS AND FUTURE WORK

This paper explores the use of random projection matrices
as a tool for privacy preserving data mining. It proves that,
after perturbation, the distance-related statistical properties

of the original data are still well maintained without
divulging the dimensionality and the exact data values.
The experimental results demonstrate that this technique
can be successfully applied to different kinds of data
mining tasks, including inner product/Euclidean distance
estimation, correlation matrix computation, clustering, out-
lier detection, linear classification, etc. The random projec-
tion-based technique may be even more powerful when
used with some other geometric transformation techniques
like scaling, translation, and rotation. Combining this with
SMC-based techniques offers another interesting direction.
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