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Abstract

Analysis of privacy-sensitive data in a multi-party envinoent often as-
sumes that the parties are well-behaved and they abide bgrttecols.
Parties compute whatever is needed, communicate corretittyving the
rules, and do not collude with other parties for exposingitharty sensitive
data. This paper argues that most of these assumptionpéatl ia real-life
applications of privacy-preserving distributed data min{fPPDM). The pa-
per offers a more realistic formulation of the PPDM problesvaanulti-party
game where each party tries to maximize its own objectivedevelops a
game-theoretic framework for developing and analyzing FRIyorithms.
It also presents equilibrium-analysis of such PPDM-gamnmes autlines a
game-theoretic solution based on the concept of “che&pitalrowed from
the economics and the game theory literature.

1 Introduction

Advanced analysis of multi-party privacy-sensitive ddtgyp an important role in
many cross-domain applications that require large-scddgration integration.
The data mining community has responded to this challengkebgloping a new
breed of distributed data mining algorithms that are pgvaeserving. These
algorithms attempt to analyze multi-party data for detegtinderlying patterns
without necessarily divulging the raw privacy-sensitiatalto any of the parties.



However, many of these privacy-preserving distributed daining (PPDM) algo-
rithms make strong assumptions about the behavior of thecipating entities.
For example, they assume that the parties are semi-hohegtperform all the
necessary computation, communicate the way they are segposdo not col-
lude and do not try to sabotage the process.

This paper suggests an alternate perspective for relaxinge ©f these as-
sumptions. It argues that large-scale multi-party PPDMbmariewed as a game
where each participant tries to maximize its benefit ortytsicore by optimally
choosing the strategies during the entire PPDM process. paper develops a
game-theoretic framework for analyzing the behavior ohsmuilti-party PPDM
algorithms and offers a detailed analysis of the well knowause multi-party
sum computation algorithm as an example [8]. The paper dles@n equilibria
analysis of this game and notes that the traditional versi@ecure sum compu-
tation does not offer a stable equilibrium since the protdoes not correspond
to an optimal strategy for the players in a realistic scenafihe paper proposes
a new version of secure sum algorithm that works based orafctedk” [10], a
well known concept from game theory and economics. It ptssessults from
simulation of this multi-party algorithm and shows that #igorithm converges
to a stable equilibrium state that corresponds to no caliusthe contributions of
this paper can be summarized as follows:

1. Development of a game-theoretic foundation of multigpprivacy-preserving
distributed data mining that attempts to relax many of thengf assump-
tions made by existing PPDM algorithms.

2. Equilibrium analysis and illustration of shifting egbiium conditions in
such algorithms.

3. A game theoretic analysis of the multi-party secure sumpdation algo-
rithm in terms of data privacy and resource usage.

4. A *“cheap-talk’-based distributed variant of secure swmutation which
offers a protocol that satisfy Nash [17] and other equilibriconditions [1].

The remainder of this paper is organized as follows. Se@&iofiers the mo-
tivation of the work. Section 3 discusses the related workcti®n 4 describes
multi-party PPDM from a game theoretic perspective. Sec@dllustrates the
framework using multi-party secure sum computation as amgte. Section 7
gives the optimal solution using a distributed penalty fiorcmechanism. Sec-
tion 8 presents the experimental results. Finally, Sed@ioancludes this paper.
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2 Motivation

Information integration in multi-party distributed envirment is often an inter-
active process guided by the dynamics of cooperation andoettion among
the parties. The behavior of these parties usually depentth&n own objec-
tives. For example, consider the US Department of Homelawli®y funded
PURSUIT project for privacy preserving distributed data integration andlgn
sis of network traffic data from different organizations.eTgoal here is to detect
“macroscopic” patterns from network traffic of differenganizations for reveal-
ing common threats against those organizations. For exartipt may allow us
to identify a group of attacking nodes that are methodidaligeting the nuclear
energy companies of the country. Such a system would allow dstect threats
against the overall cyber-infrastructure of the country.

However, network traffic is usually very privacy-sensitaed no organiza-
tion would be willing to share their network traffic with a tdiparty. Privacy-
preserving distributed data mining (PPDM) offers one gaessolution which
would allow comparing and matching multi-party networkfficafor detecting
common attacks, stealth attacks and computing variousstatatfor a group of
organizations without necessarily sharing the raw data.

As such multi-party systems start gaining popularity antcdigeloyed in large
scale, we would start facing a new set of problems. Particigarganization in a
consortium like PURSUIT may not all be ideal. Some may detodaeehave like
a “leach"—exploit the benefit of the system without conttibg much. Some
may intentionally try to sabotage the multi-party compiotat Some may try to
collude with other parties for exposing the private data pagy.

This paper argues that large-scale multi-party PPDM egdlgniboks like a
game where each participant tries to maximize their benefittibty score by
optimally choosing the strategies during the entire PPDM@ss. The paper also
points out the need for analyzing such games on a solid acellyoundation
and offers one possible route through game theory. In tipempae develop the
foundation of this approach, develop a game-theoretic didation of one such
multi-party PPDM algorithm, and perform large-scale expents to illustrate
the validity of our framework.

Ihttp://www.agnik.com/DHSSBIR.html



3 Related Work

Recent interest in the collection and monitoring of datagslata mining tech-
nology for the purpose of security and business-relatedicgipns has raised
serious concerns about privacy issues. There exists a mgdvady of literature
on privacy preserving data mining. Next we present a briefaew of the various
techniques that have been developed in this area.

Existing techniques for privacy preserving data minindude data hiding us-
ing microaggregation [2], perturbation [3], [7], [16], [8F anonymization [21],
[5], rule hiding [4], secure multi-party computation [19jcdistributed data min-
ing. The main objective of data hiding is to transform theadat to design new
computation protocols so that the private data still remairivate during and/or
after data mining operations; while the underlying datageas or models can
still be discovered. The main objective of rule hiding, oe tither hand, is to
transform the database such that the sensitive rules afdedhaand all the other
underlying patterns can still be discovered. The Securetiyatty Computa-
tion (SMC) [23] technique considers the problem of evahga function of two
or more parties’ secret inputs, such that no party learnghary but the desig-
nated output of the function. A large body of cryptographiatpcols including
circuit evaluation protocol, oblivious transfer, homomioic encryption, commu-
tative encryption serve as the building blocks of SMC. Aediion of SMC tools
useful for privacy preserving data mining (e.g., secure,getunion, inner prod-
uct) are discussed in [8]. The distributed data mining (DCadproach supports
computation of data mining models and extraction of "patiéat a given node
by exchanging only the minimal necessary information amibregparticipating
nodes.

Game theory has been used extensively in economics and dirzantcsecu-
rity or defense related applications to come up with pati@ad governing rules.
However, applications of game theory in privacy analysislata mining algo-
rithms in distributed scenarios is an area that is still snnascent stage. In this
section we review some of the existing literature in gameitbigc analysis of
PPDM followed by a discussion on some algorithms in gamerthibat might be
adapted to formalize a PPDM model.

Halpern and Teague [11] considered the problem of secreinghand mul-
tiparty computation among rational agents. Abraham et &].introduced the
k-resilient Nash equilibria and offered a synchronaudsesilient algorithm for
solving Shamir’s secret sharing [20] problem. A proposalsihg game-theoretic
way for measuring the privacy of PPDM was proposed elsew2die
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The randomized secret share protocol presented by Halperiieague [11]
is one way by which agents will refrain from the Nash equilibr of not sending
any messages. More recently, Kunreuther and Heal [15] aadiseind Ortiz [14]
proposed a practical security problem called thierdependent Security (IDS)
The authors illustrated the problem is the following exaergdlairline companies.
Consider an airline agency) debating whether to invest money for screening of
passenger baggages. It is well known that for transfer pgsese there is not
enough time foA to recheck the bags. So, for any flights operatedthere are
two hazards — one posed by the baggages screen&dtssif and the other posed
by the baggages of the transfer passengers. Natudallges not have any control
over the screening methods adopted by any other airlinke [ptobability that the
other airline is lenient is very high, it may become futile foto invest. If every
airline company thinks this way, the Nash equlibrium of saggame may be the
point where none invests. This is contrary to the expectedibqum, where we
want everyone to invest in security screening of baggages. groblem is a real
life illustration of the “free rider’s problem” [12] of ganmtkeory. Kunreuther and
Heal [15] propose several policy-based issues to deal withgroblem. On the
other hand, Kearns and Ortiz [14] deals with the computistnli Nash equilibria
of IDS games and presents several algorithms for the same.

The above model of IDS is closely related to privacy presgydata mining.
Let us consider a simple distributed scenario where eadht/@géity has a single
number and we are interested in finding the sum of such elensectirely. Each
entity, knows that if it can get the sum of all the other easitrom the network,
it can calculate the total by simply adding it own. Therefatenay refrain from
sending is own data and clearly the Nash equilibria is whemn@osends anything.
We want to develop a game playing strategy such that the Npshieia is where
everyone sends.

4 Multi-Party Privacy-Preserving Data Mining As
Games

Let D = {dy,ds,---d,} be a collection ofn different nodes where each node
represents a party with some privacy-sensitive data. Théigdo compute cer-
tain functions of this multi-party data using some PPDM alfyon. Most existing
PPDM algorithms assume that every party cooperates and/éelaacording to
the protocol. For example, consider a well-understoodralgo for computing



sum based on the secure multi-party computation framewdetails to be de-
scribed in Section 6). Upon receipt of a message, a noderpesfeome local
computation, changes its states, and sends out some medsager nodes.
Most privacy-preserving data mining algorithms for mydérty distributed envi-
ronments work in a similar fashion.

During the execution of such a PPDM algorithm, each node nag lthe
following objectives, intentions, responsibilities: @&rform or do not perform
the local computation, (2) communicate or do not commueigath the necessary
parties, (3) send misleading information instead of diindgcorrect local data (4)
protect the local private data, (5) attack the messages/egctom other parties
for divulging privacy-sensitive information regardindnet parties, and (6) collude
with others to change the protocols for achieving any of theva tasks.

Our goal is to view multi-party privacy-preserving data mgin a realistic
scenario where the participating nodes are not necessamslymed to be well-
behaved; rather we consider them as real-life entities thiéir own goals and
objectives which control their own strategies for dealinghveach of the above
listed dimensions. The following part of this section coless each of these di-
mensions seperately.

4.1 Gaming Strategiesfor Computation

Consider a PPDM algorithm that requires thth node to perform a sequence
of m; computing tasks:\M; 1, M; 5, - -+ M, .,,. Thet-th computing operation at
nodei is represented by/; ;. At any given steg, nodei can either perform the
corresponding computatioly; ; or not do that. Let/;}" be the corresponding
indicator variable which takes a value of 1Mf; ; is performed or O otherwise. Let
Ii(M) be the overall sequence of indicator variabngfé), Ii(f), - ~I%3. The deci-
sion to computél/; , or not to compute can be made either using a deterministic
or a probabilistic strategy. Let,(/; ;) be the utility of performing the operation
M; ;.

4.2 Gaming Strategiesfor Communication

Now consider the communication-related tasks in a PPDMrdlgn. The PPDM
algorithm requires a node to both send and receive messlagiess assume that
thei-th node sends oyt messagesy; 1, S 2, - - S;s,) to other nodes and receives
a total ofr; messages; 1, R; 2, - - R;,,) from other nodes.



A less than ideal node may take either of the following stepsmit comes to
receiving a message: (1) receive the message using a defgimstrategy or a
probabilistic strategy; (2) not receive the message elitheed on a deterministic
or probabilistic strategy. Ldl;.(f) be the corresponding indicator variable. I[Zé’i)

be the overall sequence of indicator variablg8, 1.5, - - 1177,

Similarly, when it comes to sending out a message, the nodeduoaany
of the following things: (1) Send out the correct messagg,séhd out incor-
rect/misleading message, and (3) do not send out any mesléé)gbe the corre-
sponding decision variable which takes a value of 0, 1, ares@ectively for the
above three choices. Lélfs) be the overall sequence of indicator variab]é%,
1S L ®

2,2 1 4,8 "

Letc,(R; ;) andc,(S; ;) be the utility of performing the receive and send oper-
ationsR; ; andS; , respectively. When the strategy is not deterministic, phol>
ties can be attached for sending out the correct messagaeomeact/misleading
message.

4.3 Privacy Attacks

Node: may or may not launch attack on each of thmessaged{; 1, R1 2, - - R1,,)
it receives from other nodes. Possible strategies that e cad take are the fol-
lowing: successfully divulge third party data in a deteristiic or probabilistic
manner; unsuccessful attempt in doing the former or notigeszany data (honest
node). Let us assume that th¢h node perform a sequence @fattacks (¢, 1,
Ao, -+ Aio,) On the messages received from other nodeslj;‘étbe the corre-

sponding indicator variable. LéﬁA) be the overall sequence of indicator variables
7@ @ @

i1 0 Fe,2 t,a; "

4.4 Colluding with Other Parties

Collusion is nothing but a privacy attack launched on a thady’s private data,
only involving other nodes in the process. At any given stageai may come to an
agreement with any subset (denoted®yof n nodes (denoted b®) and decide
to collude with them for exposing the privacy-sensitiveedat another node. Let
Ii(?) be the corresponding indicator variable which takes a vafuk if party i

decides to collude with party or 0 otherwise. We shall use the symldéf) to

denote the entire matrix where tfiej)-th entry iin(,?). Letg; ; be the benefit that



node: may get by colluding with nodg. For the sake of simplicity let us assume
that collusions are permanent. Once a pair decides to @lthey stay faithful
to each other. If every member of the getagrees to collude with every other
member inGG then the total benefit that a node= G receives isy ;. q;; i)
Similarly in the probabilistic scenario we can define an expe total benefit of
each node in a collusion.

45 Oveall Game

A multi-party PPDM process can be viewed as a game among ttieipating
parties. Each game involves a set of actions by these pafiesactions change
the local state of the party. The entire play of the game byeslacan therefore
be viewed as a process of traversing through a game tree wheletree-node
represents the local state described by plaigeinitial state and messages com-
municated with other nodes. Each rurepresents a path through the tree ending
at a leaf node. The leaf node for path (runy associated with a utility function
valueu;(r). A strategyo; for playeri prescribes the action for this player at every
node along a path in the game tree. In the current scenagisthitegy prescribes
the actions for computing, communication, privacy pratagtprivacy-breaching
attack, and collusion with other parties. A strategyor playeri essentially gen-
erates the tupler ™ 1% 19 1 (@),

Lets = (01,09, - -0,) be the joint strategy for players. In the probabilis-
tic scenario, this defines a joint distribution over the gaththe game tree. Let
u;(@) be the utility (also known as pay-off) when the joint stratégis played.

A joint strategy is a Nash equilibrium if no player can gaily adlvantage by us-
ing a different strategy, given that all other players doci@nge their strategies.
However, Abraham et al. [1] remove the fragility of Nash dipuium by allow-
ing coalitions whose behavior deviate from the protocoleyrdefine k-resilient
equilibrium as a joint strategy such that for all coalitions C in the set of play-
ers D with|C| <= k, o¢ is the group best response for Caoc, whereoc is
the set of strategies adopted by the members of the collusignis the set of
strategies adopted by the players who do not belong to thesoamh ando- € @
ando_- € 7. Best response for a collusien; to a strategy_ implies that the
utility of the o is at least as high as the utility of .

In order to formulate a PPDM process in a game theoretic fnarie we
need to define the search space of the strategies for therplaye construct the
utility functions for defining the pay-off that the playeeceive by playing a given



strategy. Next section considers an example and constiRiéVi-games based
on that.

5 Utility Function Representing the Game

Utility functions assign a score to a strategy or a set oftafrias. Note that
the search process in the strategy-space can either bendestic or stochas-
tic. Therefore, the utility function can also be either detimistic or stochastic.
The following sections discuss these two possibilities.

Deter ministic Games

This is the case when the moves in the game are determinRBl&yers design
their respective strategies and take deterministic agfioorder to maximize their
utility scores. For games in PPDM the utility function wikla linear or nonlin-
ear function ) of utilities obtained by the choice of strategies in thepegive

dimensions of computation, communication, collusion angagy attack. Math-
ematically we can write

A utility function which is a weighted linear combination all of the above
dimensions can therefore be expressed in terms of the thailutilities as fol-
lows:

’LLZ'E = wmzzcm +w7'ZZCT(Rit)
+wszzcs it +wazzca it +wgzzgz,j

jeG

wherew,, ;, w,;, w,;, ws,; andw,; represent the weights for the correspond-
ing utility factors. The overall utility function may alsarn out to be constrained.
For example, a participant may require bounds on the cortipatand commu-
nication cost over a segment of the entire process. A constilee this may be
captured in the following form:



T T
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Ui Y em(Mig) + i Y er(Rig) + i > cs(Sie) < B;
=0

t=0 t=0

This basically points out that in general a participant meefa constrained
optimization problem for designing the best strategy td déth a privacy-preserving
distributed data mining process.

Non-Deter ministic(Probabilistic) Games

In this case the strategies in the game are stochastic arth@sen at every step
of the game based on the current state of the player, infameagtained about
previous moves and a random function. Therefore the utitilyie is a proba-
bility distribution defined by the random variables cormsging to the different
dimensions. Using)g,’f”) as the probability of node i correctly performing local
computations at stage t of the game (and similarly for comoation and collu-
sion), we can denote the expectation of the utility functisriollows:

Elu;(7)] = meZPE?)C(Mi,t)+wr7i2p§;)C(Ri,t)
t t

g Y Pz(-i)c(sivt) +wgi Y Pgﬂ)gi,j
t jeG

Now that we have formulated a generalized privacy presgmistributed data
mining problem as a multi-player game, we would proceedltstitate our for-
malizations using one of the most popular PPDM algorithhessecure sum com-
putation. We first derive closed form expressions for eacthefdimensions of
ppdm with respect to secure sum and then do a Nash equililanatysis of the
algorithm. We then propose a modified secure sum algoritlatngéts rid of the
semi honest requirement of the nodes and illustrate thegehisnequilibrium for
the new algorithm.

6 Illustration: Multi-Party Secure Sum Computa-
tion

Suppose there are individual sites, each with a valug,j = 1,2,...,n. Itis
known that the sum = E;‘Zl v; (to be computed) takes an integer value in the
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range0,1,..., N — 1. The basic idea of secure sum is as follows. Assuming
sites do not collude, site 1 generates a random nurRhatiformly distributed in

the rang€g0, V — 1], which is independent of its local valug. Then site 1 adds

R to its local valuev; and transmit§ R + v;) mod N to site 2. In general, for

1 = 2,...,n, sitei performs the following operation: receive a valye; from
previous site — 1, add it to its own local value; and compute its modulus. In
other words,

2 = (zim1+v) modN = (R+ ) v;) modN,

J=1

wherez; is the perturbed version of local valugto be sent to the next sitet 1.
Siten performs the same step and sends the resuti site 1. Then site 1, which
knows R, can subtrac? from z, to obtain the actual sum. This sum is further
broadcasted to all other sites.

6.1 Utility of Computation and Communication Strategies

The secure sum computation algorithm expects each partgrformm some lo-
cal computation. This involves generating a random numfmertfie initiator
only), one addition, and one modulo operation. The site nrapay not choose
to perform this computation. This choice will define the &gy of a node for
computation.

The secure sum computation algorithm also expects a paréc&ve a value
from its neighbor and send out the modified value after thalloomputation.
This party may or may not choose to do so. This will define thatatyy for
communication.

The utility of computation and communication strategies/rdapend upon
the following factors:

1. Computational cost of performing the local operationshendata.
2. Communication cost for receiving and sending data.

3. Impact of sending wrong or misleading information on tierall outcome
of the PPDM computation. For example, if a party injects alcamnly gen-
erated number to its neighbor as if it is the true outcome efidlcal com-
putation then what is the effect on the overall accuracy efscure sum?

One may construct different utility functions based on spafameters.
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6.2 Utility of Launching a Privacy-Attack

This section explores the possibility of launching a prixaceaching attack on se-
cure sum by a party trying to extract the private informatiéother parties. This
section shares some analytical results and points outtisatiay be a futile exer-
cise. We present the analysis here just to illustrate theoagh and the method-
ology since similar techniques will be used for analyzing phivacy-breaching
properties of other existing PPDM (including secure mpéity computation)
techniques.

For simplicity, let us consider the situation at site 2. A #amanalysis can
be done at each of the other sites. Lebe the value at site 17 be the random
number uniformly distributed ovef), N — 1], independent of/, where N — 1
is the maximum possible value of the sum. We considéand R) as a random
variable taking values ig0,1,..., N — 1}. Let fy, fg be the probability mass
functions ofVV and R, respectively. Note thaf,, and fr are zero outside range
[0, N —1]andfg(r) =1/Nforr=0,1,..., N — 1. Define random variabld$’
andZ as follows:

W =V + R, Z =W modN,

wherelV is an additively perturbed version of datg Z (the modulus ofi)
is the result to be sent to site 2. Now we will investigate thlation betweer?
andV to find whether it is possible to recoverfrom Z. Notice thatl}” can take
values in{0,1,...,2N — 2}, andZ can take values i0,1,..., N — 1}. Since
V and R are independent, the probability mass functfgnof 11" can be written
as the convolution ofy and fx:

N-1
fw(m) = fv(m)* fr(m) = Z fv(s)fr(m —s)
s=0
_ {%Zgﬂ:of\/(s) m=20,1,...,N —1;
%Zé\[:_n}ﬁl_z\ffv(s) m=N,...,2N — 2.

Note that modulus operation moves valuegNp2/N —2] back into the interval
[0, N — 1]. Therefore the probability mass functigp of Z can be obtained from
that of W as follows:
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fz(m) = fW(m)+fW(m+N)
N—-1

1 & 1
N Zf\/(s) TN Z fv(s)
s=0 s=m-+1
1= 1
v ;fv(s) =5 m=01..N-1
It is clear that no matter what distributiofy the datal” has, 7 is always
uniformly distributed in the rang€0, 1, ..., N — 1}. In order to find the relation
betweenit andV and the relation betweerd andV/, let us compute their joint

probability mass functions. First we compute the joint @doibty mass function
of W andV:

fwv(w,v) = P{W=wV=v}=P{R=w-—v,V =uv}
= P{R=w—v}P{V =v}

Lfr@)o<v<w<N -1

- {%f\/(’u)N<w<2N—2,w+1—N<v<N—1.

Note in particular thafy v (w, v) # fw(w)fv(v) and hence random variables
W andV are not independent, which means that there is a statiséileaionship
between them. This can be used to estimateom W (perhaps using the con-
ditional expectatior®[V | W] of V givenW). Our proposed spectral filtering
technique [13] can indeed be an approach in that directi@weder, can we say
the same thing about andV'? Probably not. We show in the following that
V and Z are statistically independent, which makes it a differex@nario alto-
gether. Note that botld andV can take valuesif0,1,2,..., N — 1}. The joint
probability mass function of, V' is:

fzv(z,v) = P{Z =2V =0}

= P{(W=zorW =N+2),V=uv}

= P{R=z-0,V =0}
+P{R=N+2z—-v,V =v}
{%fV(U)‘FO 0<v<z<N-1;
a O-I-%fv(’u) 0<z<N-2z+1<v<N-1.

1
= va(v),ng,vgN—l.
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Therefore,f7y(z,v) = fz(z)fv(v). This shows that and V" are statically
independent, and hencg, does not contain any information abdut In other
words, a privacy-breaching attack on secure sum by a sirgtg may not be very
successful. The following section considers the effectotiision and presents a
sample analysis for secure sum computation.

6.3 Utility of Collusion

Let us assume that there drgk > 2) sites acting together secretly to achieve
a fraudulent purpose. Let be an honest site who is worried about his/her pri-
vacy. We also use; to denote the value in that site. Let ; be the immediate
predecessor af; andv;,; be the immediate successorf

We have the following possible privacy breaches:

o If K =n — 1, then the exact value af will be disclosed.

e If £ > 2 and the colluding sites include both ; andwv;,, then the exact
value ofwv; will be disclosed.

e If n—1 > k > 2 and the colluding sites contain neither, norwv; ., or
only one of them, them,; is disguised by: — k£ — 1 other sites’ values. As
before, we shall use the symhlidto represent the set of colluding sites.

The first two cases need no explanations. Now let us investiba third case.
Without loss of generality, we can arrange the sites in tHeviing order:

Ulvg...Un_k_Elq 3ﬁ+1...1q+§

honest sites coIIudfﬁg sites

We have

i+k

n—k—1
Z v; + v; = v Z Vj
J=' denotedbyY T
denoted by X denoted by C

wherev is the total sum of the values.
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Now, the colluding sites can compute the posterior profighilass function
(PMF) of v; as follows:

fposterior (Vi) = fy(y) = Pr{Y = y}, (1)

whereY = C' — X. X is a random variable and it is defined ds= '~} .

C'is a constant and it is defined as= v — Z;*’jﬂ C'is known to all the

colluding sites. Becaus¥ is a discrete random varlable, it is easy to prove that

fr(y) = fx(x), (@)

wherex = C — y.
To computefx (z), we can make the following assumption about the adver-
sarial parties’ prior knowledge.

Assumption 6.1 Eachv; (7 = 1,...,n — k) is a discrete random variable in-
dependent and uniformly taking non-negative integer \&aloeer the interval
{0,1,...,m}. ThereforeX is the sum ofn — k — 1) independent and uniformly
distributed discrete random variables.

Note that using uniform distribution as the prior belief ieasonable assumption
because it models the basic knowledge of the adversarias.asumption was

also adopted by [22] where a Bayes intruder model was praptmsassess the

security of additive noise and multiplicative bias. Nowustcomputefx ().

Theorem 6.2 Let A be a discrete random variable uniformly taking non-negativ
integer values over the intervdl, 1, ..., m}. Let© be the sum of independent
A. The probability mass function (PMF) 6fis given by the following equations:

T

PT{@ _ 9} _ 1 Z( )JCJC(T 7)(m+1)+t

(m+1)s = $ s+ (r—j)(m+1)+t—1°

whered € {0,1,...,ms},r = |-%|,andt = 0 — | % | (m + 1).

m—+1 m—+1

Proof: The probability generating function dof is

GA(Z):E[ZA]:mil(z I )
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Therefore, the probability generating functiontis

(242" 4+ 2")°
(m+1)*
(1 _ Zm+1)s

(1—=2)*(m+1)

Go(2) = (Ga(2))” =

The probability mass function (PMF) @& is computed by taking derivatives of
G@(Z):

GI(2)

Pr{© =0} = i

2=0,

WhereGg’)(z) is thed-th derivative ofGg(z).

In practice, it is probably not easy to compﬂlg) (2). Instead, we can expand
Go(z) into a polynomial function of degre@s. The coefficient of each ternf,
t =0,...,msinthe expanded polynomial gives the probability tBat ¢.

To expandie(2), let us first leave out the fact%. Newton’s generalized

binomial theorem tells us thriqu)s = o Cl, 12" Hence,

(1 m+1

s (o) (5

The above equation can be written as follows:

(IT Z s CIZ g 2O

+sz b 17 2(m+1)+

Therefore, the coefficients of the above polynomial havddahewing properties:
fort =0,1,...,m, we have

e the coefficient ok isC!_,_,

+1)+t (m-+1)+t 1t
o the coefficient of:(™ iSO i1 — CsClyiy,
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2(m+1)+t 2(mA+1)+t
e the coefficient of2(" IS Cs+2 (1)1

Al ometltt 21t
C C(s+(m—|—1 +t—1 + CS C(s—l—t—l’

e efc.

In general, fot =0,1,...,mandr =0, 1,..., the coefficient ot"(m+1)+ is

Z( )JCJCT ] m+1)+t

s+(r—j)(m+1)+t—1-
Jj=0

Given the above results, the probability mass function (P& is:

T

PT{@ = 9} = % Z( )JCJc(T J)(m+1)+t

(m +1)s —~ s+(r—j)(m+1)+t—17

whered € {0,1,...,ms},r = |5 ],andt =0 — | L5 |(m+1). |

According to Theorem 6.2, the probability mass function @Mf X is

fx(@x) = Pr{X=uz}
1

(r—g)(m+1)+t
2(—1)J k=) Cln— k1) (r—g) (m41) 17 )
J=C

wherez € {0,1,...,m(n —k—1)},r = | 25|, andt =z — | 25| (m + 1).

Combing Eq. 1, 2 and 3, we get the posterior probability;of

1
(m + 1)(7L7k71)

(r=3)(m+1)+t
Zo( 1)’ (n k— 1)0(3 k—1)4(r—j)(m+1)+t—1’
J

wherer = C —v; andz € {0,1,...,m(n —k — 1)}. r = |25, andt =
r—|=%5](m+1). Note that here we assumge< C, otherwisef,osterior (Vi) = 0.

fposte'rio'r (U'L)

m+1
This posterior can be used to quantify the privacy breach:
1
i = Posterior — Prior = osterior\Vi) = 4
g(vi) osterior 70T = fposterior (Vi) o 4)

We see here that the utility of collusion depends on the randariabler and
the size of the colluding group. Rest of this paper will use this quantitative
measure of privacy-breach for defining the objective florcti
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6.4 Overall Objective Function

Now we can put together the overall objective function fa glame of multi-party
secure sum computation.

%

+wm@UUFU+wm E:gwﬂ

jeD—C

ul<5> = meCmU(I(J\/[)) + wr,iCTU(Iz'(7f))

Wherech(IZ.(M)) = > ,cm(M;,) denotes the overall utility of performing
a set of computations/; ;, indicated byZM (similar definitions apply for com-
munications like receive and send) amg ; denotes the weight associated with
computation.

For illustrating the equilibrium state of this utility fution, let us consider
the simple unconstrained version of it. In order to bettedaratand the nature
of the landscape let us consider a special instance of tleetlg function where
the node performs all the communication and computaticsted| activities as
required by the protocol. This results in an objective fiorcivhere the utilities
due to communication and computation are constant and leamcbe neglected
for determining the nature of the function.

w(@) = wei Y g(v))

jeD—G

Figure 1 shows a plot of the overall utility of multi-partycsge sum as a
function of the distribution of the random variabteand the size of the colluding
groupk. It shows that the utility is maximum for a value bthat is greater than 1.
Since the strategies opted by the nodes are dominant¢dtestin the next section
with an example), the optimal solution corresponds to thetNsguilibrium. This
implies that in a realistic scenario for multi-party secsuen computation, parties
will have a tendency to collude. Therefore the non-collngio= 1) assumption
of the classical SMC-algorithm for secure sum is sub-ogtima

7 What isthe Solution?

In the previous section we pointed out that traditional npbusion assumption is
unlikely to hold true in a realistic multi-party distributenvironment for comput-
ing a sequence of secure sum operations. Our goal is to dadigghnique for
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Figure 1: Plot of the overall objective function for SMC. Thptimal strategy
takes a value ot > 1.

multi-party secure sum computation that does not rely oealrgtic assumptions
about the nodes in the network. So we want an algorithm thpaiMacy preserving
sum computation, which means that we want a set of stratdraesffer optimal
utility at £ = 1. In other words, we want an algorithm that creates a gameavher
not colluding is an optimal strategy for everyone.

One possible approach is to penalize the parties suffigiembugh so that
the pay-off from collusion is counter-balanced by the pgn#lthey are caught.
This approach may not work if the parties perceive that tresibdity of getting
caught is minimal. However, collusion requires consentfraultiple parties. If
party A wants to collude with another party B, then the formeeds to contact the
latter party and get its consent. If party A contacts partppdg,the latter does not
agree to collude then party A may become vulnerable to a pyertaither party
B directly decide to penalize party A for its inappropriaghhvior and/or inform
others (other participating parties or a central authptyout the intention of
party A. Therefore, any party must be concerned about a fydvefiore contacting
anyone else for a partner in collusion.

7.1 Penalty for Collusion

The possible options that we have for penalizing cheatelfufing nodes) in a
multi-party secure sum game can be enumerated as follows:

1. Policy I: Remove the party from the multi-party privacseperving data
mining application environment because of protocol violat Although it

19



Figure 2: Plot of the modified objective function with pegalthe globally opti-
mal strategies are all fér = 1.

may work in some cases, the penalty may be too harsh sincdyuthe
goal of a PPDM application is to have everyone participati@process
and faithfully contribute to the data mining process.

2. Policy 1I: An alternate possibility is to penalize by ieasing the cost of
computation and communication. For example, if a party scispa collud-
ing group of sizé/(an estimate of) then it may split the every number used
in a secure sum amorngdifferent parts and demaridrounds of secure sum
computation one for each of thegeparts. This increases the computation
and communication cost byfold. This linear increase in cost with respect
to k, the suspected size of colluding group, may be used to caattany
possible benefit that one may receive by joining a team ofidells. The
modified objective function is given below. The last term le quation
shows the penalty due to excess computation and commuonicia result
of collusion.

Ui(T) = WnicnU(IM) +wgs > glv)) —w, + K
jeD-G

Figure 2 shows a plot of the modified objective function forige sum with
policy II. It shows that the globally optimal strategies aléfor £ = 1. The
strategies that adopt collusion always offer a sub-optsoaltions which would
lead to moving the Nash equilibrium to the case wheee 1.
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A|lB|C Pay-Off Pay-Off | Pay-Off

(No Penalty)| (Policy 1) | (Policy II)
G|IG|G (3,3,3) 3,3,3) | (3,3,3
G|G|B (3,3,3) (2,2,0) | (2,2,2)
G|B|G (3,3,3) (2,0,2) | (2,2,2)
G|B|B (3,4,4) (0,0,0) | (2,2,2)
B|G|G (3,3,3) 0,2,2) | (2,2,2)
B|G|B 4, 3,4) (0,0,0) | (2,2,2)
B|B|G 4,4,3) 0,0,0) | (2,2,2)
B|B|B (0,0,0) (0,0,0) | (0,0,0)

Table 1: Pay-Off table for three-party secure sum comparati

7.2 Nash Equilibrium Illustration for 3-node Networ k

The idea described in the last section can be further exgdausing a simple
example, illustrated in Table 1. Consider a game with a ntediahere each
party first contacts the mediator and declares their irgerito be a good node
(follow protocol) or bad party (willing to collude). Whendte is no penalty for
misbehavior, everyone will benefit by colluding with othefEhis will result in
all bad nodes colluding with each other in order to violaephivacy of the good
nodes. Now, let us consider the scenarios where the meavdtq@enalize using
either Policy | or Policy Il. The mediator can enforce Policgince everyone
reports their intentions to the mediator. It can also easiilforce Policy Il by
simply countingk, the total number of bad parties.

Table 1 shows the pay-offs for different penalty policiesh&i there is no
penalty, all the scenarios with two bad parties and one geaty pffer the high-
est pay-off for the colluding bad parties. Therefore, adithg with other nodes
always becomes the highest paying strategy for any nodesinetwork (this is
called the dominant strategy [11]). Also we observe thatpgagoff for a bad
nodes always decreases if it becomes good, assuming the etatll other nodes
remain unchanged.So the Nash equilibrium in the classeralre sum computa-
tion is the scenario where the participating nodes areyliteetollude. Note that,
the three-party collusion is not very relevant in secure smmputation since
there are all together three parties and there is always a ftbd initiator) who
wants to protect the privacy of its data.

Table 1 also shows the pay-offs for both policies | and II. tnhocases, the
Nash equilibrium corresponds to the strategy where norteegbarties collude. In
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fact the Nash equilibrium in secure sum with policy Il for pémation is strongly
resilient, that is, it corresponds t@aesilient equilibrium for a 3-party game. In
this case, if any node deviates from being good, the commatiaitand compu-
tation cost increasg’ (O(k)) fold due to the data being broken into shares. The
penalty incurred due to this extra resource usage is not ensgted bu the benefit
gained out of the collusion. Therefore the payoff is the bgghwhen they don'’t
collude. This is, in fact a strongly dominated strategy fos game. Since each
player has a strictly dominated strategy, there is a unicaghMquilibrium which
is the case in which none of the nodes collude. Accordinggal#finition of Nash
equilibrium, in this case no player can gain anything moredwiating from good
to bad when all others remain good. It also follows from trszdssion that Policy
Il is strongly resilientsince it can tolerate collusions of size upitd. (the payoff
is highest when none colludes, even when compared to thevtesen — 1 (n=3)
collude).

The following section presents some practical ways to imlet Policy Il for
asynchronous environments.

7.3 How toImplement?

We observed in the last section that an appropriate amouypralty for violation
of the policy may reshape the objective function in such a thay the optimal
strategies correspond to the prescribed policy. In thi@eeve explore some
practical ways of implementing these policies in a realdifgributed setting.

7.3.1 Centralized Control

In this scheme there is a central authority who is always argd of implement-
ing the penalty policy. In practice, it can be a variant of thechanism used in
the example described in the previous section. Unlike thede example in the
last section, in this mechanism not everyone registers ithigntions with a cen-
tral node. Instead, nodes approach other nodes with prisptusaollude. If a

good node receives a proposal from a bad node then it repotit® tcentral au-
thority which in turn penalizes the perpetrator. This schesrelatively easy to
implement. However, it requires global synchronizatiomcs the penalty affects
the total number of iterations needed for completing thesesum computation,
the process cannot start until the central authority makkscasion about the bad
nodes. This requires that all the nodes synchronize withdéciding node. Such
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global synchronization may create a bottleneck and lingtgbalability of a dis-
tributed system.

7.3.2 Asynchronous Distributed Control

Fortunately, in games like this whenever there is a solutith a mediator, there
is also a solution without one. Ben-Porath [6] showed that ossible to sim-
ulate Nash equilibrium without a mediator as long as ther [goper strategy
to penalize lack of compliance. For a total asynchronousiliged control we
borrow the concept afheaptalk from game theory and economics [10] in order
to develop a distributed mechanism for penalizing poliofations. Cheap talk is
simply a pre-play communication which carries no cost. Bethe game starts,
each player engages in a discourse with each other in ordefiuence the out-
come of the game and form an opinion about the other playdfseigame. For
example, in the well known Prisoner’s Dilemma game [18] onghradd a round
of pre-play communication where each player announcestimnahey intend to
take. Although cheap talk may not effect the outcome of lregs Dilemma, in
many other games the outcome may be significantly influengesibh pre-play
communication. We would like to use cheap talk to commueit¢hé threat of
penalty. Cheap talk works when the parties depend on eadh, dkieir prefer-
ences are not opposite to each other, and the threat is id&r Bolicy | or Il can
be used for the penalty threat. Algorithm 1 (Secure Sum wahaRy (SSP)) de-
scribes a variant of the secure sum computation technigi®tfers a distributed
mechanism for penalizing policy violations using a chediplike mechanism.
Consider a network oft nodes where a node can eitherdmodor bad Bad
nodes collude to reveal other nodes’ information; wigimd nodes follow the
correct secure sum protocol. Before the secure sum prostaxs, the colluding
(bad) nodes send invitations for collusions randomly to nodethénetwork. If
such a message is received bgandnode, then it knows that there are colluding
nodes in the network. To penalize nodes that collude, dbizd node splits its
local data intok’ random shares whe#é is an estimate of the size of the largest
colluding groups. One possible way to estimate this coullddsed on the number
of collusion invitations a good node receives. On the otlier, shebad nodes, on
receiving such invitation messages, form a fully connecattsiorks of colluding
groups. This initial phase of communication is cheap talkun algorithm. Af-
ter this the secure sum protocol starts. As in the traditiseeure sum protocol,
nodes forward their own data after doing the modulus opmrathd random num-
ber addition. However, good nodes do not send all the dataeago; rather they
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send one random share at each round of the secure sum. Hetagesi several
rounds for the secure sum to complete. The total number oid®needed for one
complete secure sum computation is equalftez (k') wherek’ is the estimate of
k (the size of the colluding group) that every node has.

The following Lemma (Lemma 7.1) shows that the SSP algoritbnverges
to the correct result.

Lemma 7.1 Correctness and Convergence: SSP protocol converges to the cor-
rect result inO(nk) time. Heren is the total number of nodes in the network, and
k is the maximum size of the colluding groups .

Proof: (SKeETCH) The basic idea behind this proof is that sum computation is
decomposable, and the order of addition of individual shdes not change the
total. In the SSP protocol, each patty splits its number intd:;(k; > 0) shares
and demands; rounds of secure sum computation. In each round, whenever a
party receives a message, it adds one ofkjtshares. If all its shares have been
added in, this party simply inputs an zero. let= max;{k;}, after k rounds

of computation, all the parties have added their numbersthedotal sum is
obtained. In the traditional secure sum computation, thesage is passed to each
node on the network sequentially. The convergence timeusded byO(n). In

the SSP protocol, the total rounds of computatioh,itherefore the overall time
required is bounded b (nk). |}

8 Experimental Results

We have implemented the cheap talk-based secure sum wisitypenotocol and
study the nature of the Nash equilibrium. This experimestiages that the nodes
are rational in the sense that they choose actions that nmextimeir utility func-
tion, which in other words would mean that they minimize tloeist.

8.1 Overview of the Simulation Set-Up

We set up a simulation environment comprised of a network nbdes where a
node can either bgoodor bad We have experimented with a ring topology of
500 nodesr{=500) using the use the Distributed Data Mining Toolkit (DDM

2 developed by the DIADIC research lab at UMBC. Our game ctedisf both

2DDMT - http://www.umbc.edu/ddm/wiki/software/DDMT/
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good and bad nodes wheregood nodes split the data into shares to thwart the
possibility of a privacy breach by thednodes. We have assumed that each node
has an integer vector of siZeand it wants to compute the vector sum using the
secure sum protocol for each of these integers. Theretoges are going to be
rounds of secure sum computation. For calculating the vettm we have used
individual rounds of the secure sum protocol. As mentioretier, in order to
penalize thdbad nodesgoodnodes split each of these data into random non-zero
shares. Therefore one round of the secure sum (sum congyufatione of the

[ vector elements) consists several iterations where iryatemation only one of
the k' shares of every node is added to the secure sum. After eveny rof the
secure sum protocol ( that is after one of theum computations), we measure
three quantities:

e Messages sent : Fgoodnodes, number of messages is equal to the num-
ber of iterations needed for one round of secure sum comepntdtorbad
nodes the number of messages sent is higher because of ttiereadanes-
sages exchanged for colluding.

e Computational power used : In this case alsoghednodes only require
computation necessary for the standard secure sum protdowlever, the
badnodes need additional computation for extracting otheesa@lues by
colluding with partners. We consider every mathematicarapon (in this
case addition and modulus operation) as a unit of computatio

e Utility of collusion: This is the posterior probability tha node will guess
the correct distribution of the value a node has given thal ®aim of the
collusion. This quantity measures zero for geodnodes and varies among
the differentbadnodes depending on the size of the collusion that particular
node is part of and the distribution of the values at the tbffié nodes.

8.2 Reaults

Initially we start with a fixed percentage (30%) of the nodedébad After
every round each node measures the cost (or penalty) itrgddue to collusion.

If the penalty sustained is too high (a dynamic thresholdeily set by the user),
some of the bad nodes decide not to collude again. Once Hasbeodes turn
into goodones, they send deallocate messages to their colludinggend also
set their estimates of collusion sizésame as the size of the collusion to which
they belonged.
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Figure 3: Variation of cost with changes in number of colhglhodes.

We observe in Figure 3 that for subsequent rounds of the sestum compu-
tation the cost or overall penalty assigned decreases amithber ofbad nodes
decreases. When the ratio lzdid to good nodes is significantly low, we can ob-
serve that the cost almost reaches an equilibrium. Thisdguse the contribution
of the penalty function becomes negligible and the totat bgoverned mainly
by the computation and communication costs that remain stimanstant over
successive rounds of secure sum with hardly any collusion.

In Figure 4 we have shown how the numbetaid nodes decrease with suc-
cessive rounds of secure sum computation. Gdenodes in the network start any
round of secure sum with the intention to collude. Howevemes of them do not
end up in any collusion since their invitations for collusiare not reciprocated
by thegoodnodes. So at any roundifdenotes the number dfad nodes (nodes
with intentions to collude), the actual number of colludimgpesk is less than or
equal tob. The plot with circular markers demonstrate the decreasihges ofb
in consecutive rounds of secure sum whereas the one withesghaped markers
presents the decreasing valueg ofn either case, we see thatlasr k decreases,
the rate of their convergence to zero gradually falls dudéostignificantly low
ratio of goodto bad nodes in the network. The third plot in Figure 4 represents
the decrease in the number lohd nodes in a network with an initial count of
60% bad nodes. We observe that even if the numbbadiodes in the network
be double, the algorithm still converges to the same statrevthe number of
colluding nodes in the network tend to zero.
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Figure 4: Change in the number of bad nodes in the networktover It shows
that both the number of nodes interested in violating theepaind the number of
nodes that form collusions decrease to zero due to the ges@eme.

9 Conclusions

This paper pointed out that many of the existing privacyspreing data mining
algorithms often assume that the parties are well-behavddirey abide by the
protocols as expected. Parties compute whatever is needetdnunicate cor-
rectly following the rules, and do not collude with othertpes for exposing third
party sensitive data. This paper argued that most of theseassumptions fall
apart in real-life applications of privacy-preservingtdisuted data mining. The
paper offered a more realistic formulation of the PPDM peablas a multi-party
game where each party tries to maximize its own objectivdibiyu

The paper considered the multi-party secure sum compuatptablem for il-
lustrating the game theoretic formulation. It pointed datttthe expected strategy
of every party in a traditional secure sum algorithm doesnatespond to a Nash
equilibrium state. The paper analyzed a variant of this rilgm which assign
penalty to the policy-violators in a distributed mannerpEsimental results point
out that the equilibrium behavior of the algorithm corresg®to the desired no-
collusion strategy.

The paper opens up many new possibilities. It offers a newoagh to study
the behavior of existing PPDM algorithms and invent new oNeés plan to con-
sider other popular PPDM algorithms for computing innedoiat, clustering, and
association rule learning in order to study those using Hmeytheoretic frame-
work developed here.
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Algorithm 1 Secure Sum with Penalty (SSP)
Input of node P;: NeighborP;, v;, k" estimated from prior cheap talk
Output of node P;: Correct secure sum
Data structurefor P;: NODETYPE (0 stands fagood 1 stands fobad, and 2
stands for initiator), colluding group (colludeList), dom shares of;
(randSharesList)
I nitialization:
IF NODETYPE==0
Initialize colludeList
Exchange sum of elements in colludeList
ELSE IF NODETYPE==1
Split the local data; into at least £’) random shares
Initialize randSharesList
ELSE IF NODETYPE==2
Send its data; after adding a random number and performing a modulo
operation
ENDIF
ENDIF
ENDIF
On receiving a message:
IF NODETYPE==2
| F randSharesList==NULL (for every node)
End Simulation
Send sum to all nodes
ELSE
Start another round of secure sum
ENDIF
EL SE IF randSharesList'=NULL
Select next data share from randSharesList
Forward received data and new share to next neighbor
ENDIF
ENDIF
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