

Technical Report TR-CS_01_07

 A Game Theoretic Approach toward Multi-Party

Privacy-Preserving Distributed Data Mining

Hillol Kargupta, Kamalika Das, Kun Liu

Department of Computer Science and Electrical Engineering
University of Maryland-Baltimore County

1000 Hilltop Circle
Baltimore MD 21250

April 24, 2007

A Game Theoretic Approach toward
Multi-Party Privacy-Preserving Distributed

Data Mining

Hillol Kargupta, Kamalika Das, Kun Liu
CSEE Dept, UMBC

{hillol,kdas1,kunliu1}@cs.umbc.edu

Abstract

Analysis of privacy-sensitive data in a multi-party environment often as-
sumes that the parties are well-behaved and they abide by theprotocols.
Parties compute whatever is needed, communicate correctlyfollowing the
rules, and do not collude with other parties for exposing third party sensitive
data. This paper argues that most of these assumptions fall apart in real-life
applications of privacy-preserving distributed data mining (PPDM). The pa-
per offers a more realistic formulation of the PPDM problem as a multi-party
game where each party tries to maximize its own objectives. It develops a
game-theoretic framework for developing and analyzing PPDM algorithms.
It also presents equilibrium-analysis of such PPDM-games and outlines a
game-theoretic solution based on the concept of “cheap-talk” borrowed from
the economics and the game theory literature.

1 Introduction

Advanced analysis of multi-party privacy-sensitive data plays an important role in
many cross-domain applications that require large-scale information integration.
The data mining community has responded to this challenge bydeveloping a new
breed of distributed data mining algorithms that are privacy preserving. These
algorithms attempt to analyze multi-party data for detecting underlying patterns
without necessarily divulging the raw privacy-sensitive data to any of the parties.

1

However, many of these privacy-preserving distributed data mining (PPDM) algo-
rithms make strong assumptions about the behavior of the participating entities.
For example, they assume that the parties are semi-honest; they perform all the
necessary computation, communicate the way they are supposed to, do not col-
lude and do not try to sabotage the process.

This paper suggests an alternate perspective for relaxing some of these as-
sumptions. It argues that large-scale multi-party PPDM canbe viewed as a game
where each participant tries to maximize its benefit or utility score by optimally
choosing the strategies during the entire PPDM process. Thepaper develops a
game-theoretic framework for analyzing the behavior of such multi-party PPDM
algorithms and offers a detailed analysis of the well known secure multi-party
sum computation algorithm as an example [8]. The paper also offers an equilibria
analysis of this game and notes that the traditional versionof secure sum compu-
tation does not offer a stable equilibrium since the protocol does not correspond
to an optimal strategy for the players in a realistic scenario. The paper proposes
a new version of secure sum algorithm that works based on “cheap talk" [10], a
well known concept from game theory and economics. It presents results from
simulation of this multi-party algorithm and shows that thealgorithm converges
to a stable equilibrium state that corresponds to no collusion. The contributions of
this paper can be summarized as follows:

1. Development of a game-theoretic foundation of multi-party privacy-preserving
distributed data mining that attempts to relax many of the strong assump-
tions made by existing PPDM algorithms.

2. Equilibrium analysis and illustration of shifting equilibrium conditions in
such algorithms.

3. A game theoretic analysis of the multi-party secure sum computation algo-
rithm in terms of data privacy and resource usage.

4. A “cheap-talk”-based distributed variant of secure sum computation which
offers a protocol that satisfy Nash [17] and other equilibrium conditions [1].

The remainder of this paper is organized as follows. Section2 offers the mo-
tivation of the work. Section 3 discusses the related work. Section 4 describes
multi-party PPDM from a game theoretic perspective. Section 6 illustrates the
framework using multi-party secure sum computation as an example. Section 7
gives the optimal solution using a distributed penalty function mechanism. Sec-
tion 8 presents the experimental results. Finally, Section9 concludes this paper.

2

2 Motivation

Information integration in multi-party distributed environment is often an inter-
active process guided by the dynamics of cooperation and competition among
the parties. The behavior of these parties usually depend ontheir own objec-
tives. For example, consider the US Department of Homeland Security funded
PURSUIT project1 for privacy preserving distributed data integration and analy-
sis of network traffic data from different organizations. The goal here is to detect
“macroscopic” patterns from network traffic of different organizations for reveal-
ing common threats against those organizations. For example, this may allow us
to identify a group of attacking nodes that are methodicallytargeting the nuclear
energy companies of the country. Such a system would allow usto detect threats
against the overall cyber-infrastructure of the country.

However, network traffic is usually very privacy-sensitiveand no organiza-
tion would be willing to share their network traffic with a third party. Privacy-
preserving distributed data mining (PPDM) offers one possible solution which
would allow comparing and matching multi-party network traffic for detecting
common attacks, stealth attacks and computing various statistics for a group of
organizations without necessarily sharing the raw data.

As such multi-party systems start gaining popularity and get deployed in large
scale, we would start facing a new set of problems. Participating organization in a
consortium like PURSUIT may not all be ideal. Some may decideto behave like
a “leach”—exploit the benefit of the system without contributing much. Some
may intentionally try to sabotage the multi-party computation. Some may try to
collude with other parties for exposing the private data of aparty.

This paper argues that large-scale multi-party PPDM essentially looks like a
game where each participant tries to maximize their benefit or utility score by
optimally choosing the strategies during the entire PPDM process. The paper also
points out the need for analyzing such games on a solid analytical foundation
and offers one possible route through game theory. In this paper we develop the
foundation of this approach, develop a game-theoretic formulation of one such
multi-party PPDM algorithm, and perform large-scale experiments to illustrate
the validity of our framework.

1http://www.agnik.com/DHSSBIR.html

3

3 Related Work

Recent interest in the collection and monitoring of data using data mining tech-
nology for the purpose of security and business-related applications has raised
serious concerns about privacy issues. There exists a growing body of literature
on privacy preserving data mining. Next we present a brief overview of the various
techniques that have been developed in this area.

Existing techniques for privacy preserving data mining include data hiding us-
ing microaggregation [2], perturbation [3], [7], [16], [9]or anonymization [21],
[5], rule hiding [4], secure multi-party computation [19] and distributed data min-
ing. The main objective of data hiding is to transform the data or to design new
computation protocols so that the private data still remains private during and/or
after data mining operations; while the underlying data patterns or models can
still be discovered. The main objective of rule hiding, on the other hand, is to
transform the database such that the sensitive rules are masked, and all the other
underlying patterns can still be discovered. The Secure Multi-party Computa-
tion (SMC) [23] technique considers the problem of evaluating a function of two
or more parties’ secret inputs, such that no party learns anything but the desig-
nated output of the function. A large body of cryptographic protocols including
circuit evaluation protocol, oblivious transfer, homomorphic encryption, commu-
tative encryption serve as the building blocks of SMC. A collection of SMC tools
useful for privacy preserving data mining (e.g., secure sum, set union, inner prod-
uct) are discussed in [8]. The distributed data mining (DDM)approach supports
computation of data mining models and extraction of "patterns" at a given node
by exchanging only the minimal necessary information amongthe participating
nodes.

Game theory has been used extensively in economics and finance and secu-
rity or defense related applications to come up with policies and governing rules.
However, applications of game theory in privacy analysis ofdata mining algo-
rithms in distributed scenarios is an area that is still in its nascent stage. In this
section we review some of the existing literature in game theoretic analysis of
PPDM followed by a discussion on some algorithms in game theory that might be
adapted to formalize a PPDM model.

Halpern and Teague [11] considered the problem of secret sharing and mul-
tiparty computation among rational agents. Abraham et al. [1] introduced the
k-resilient Nash equilibria and offered a synchronousk-resilient algorithm for
solving Shamir’s secret sharing [20] problem. A proposal ofusing game-theoretic
way for measuring the privacy of PPDM was proposed elsewhere[24].

4

The randomized secret share protocol presented by Halpern and Teague [11]
is one way by which agents will refrain from the Nash equilibrium of not sending
any messages. More recently, Kunreuther and Heal [15] and Kearns and Ortiz [14]
proposed a practical security problem called theInterdependent Security (IDS).
The authors illustrated the problem is the following example of airline companies.
Consider an airline agency (A) debating whether to invest money for screening of
passenger baggages. It is well known that for transfer passengers there is not
enough time forA to recheck the bags. So, for any flights operated byA, there are
two hazards – one posed by the baggages screened byA itself and the other posed
by the baggages of the transfer passengers. Naturally,A does not have any control
over the screening methods adopted by any other airline. If the probability that the
other airline is lenient is very high, it may become futile for A to invest. If every
airline company thinks this way, the Nash equlibrium of sucha game may be the
point where none invests. This is contrary to the expected equilibrium, where we
want everyone to invest in security screening of baggages. This problem is a real
life illustration of the “free rider’s problem” [12] of gametheory. Kunreuther and
Heal [15] propose several policy-based issues to deal with this problem. On the
other hand, Kearns and Ortiz [14] deals with the computability of Nash equilibria
of IDS games and presents several algorithms for the same.

The above model of IDS is closely related to privacy preserving data mining.
Let us consider a simple distributed scenario where each agent/entity has a single
number and we are interested in finding the sum of such elements securely. Each
entity, knows that if it can get the sum of all the other entities from the network,
it can calculate the total by simply adding it own. Therefore, it may refrain from
sending is own data and clearly the Nash equilibria is when noone sends anything.
We want to develop a game playing strategy such that the Nash equilibria is where
everyone sends.

4 Multi-Party Privacy-Preserving Data Mining As
Games

Let D = {d1, d2, · · · dn} be a collection ofn different nodes where each node
represents a party with some privacy-sensitive data. The goal is to compute cer-
tain functions of this multi-party data using some PPDM algorithm. Most existing
PPDM algorithms assume that every party cooperates and behaves according to
the protocol. For example, consider a well-understood algorithm for computing

5

sum based on the secure multi-party computation framework (details to be de-
scribed in Section 6). Upon receipt of a message, a node performs some local
computation, changes its states, and sends out some messages to other nodes.
Most privacy-preserving data mining algorithms for multi-party distributed envi-
ronments work in a similar fashion.

During the execution of such a PPDM algorithm, each node may have the
following objectives, intentions, responsibilities: (1)Perform or do not perform
the local computation, (2) communicate or do not communicate with the necessary
parties, (3) send misleading information instead of divulging correct local data (4)
protect the local private data, (5) attack the messages received from other parties
for divulging privacy-sensitive information regarding other parties, and (6) collude
with others to change the protocols for achieving any of the above tasks.

Our goal is to view multi-party privacy-preserving data mining in a realistic
scenario where the participating nodes are not necessarilyassumed to be well-
behaved; rather we consider them as real-life entities withtheir own goals and
objectives which control their own strategies for dealing with each of the above
listed dimensions. The following part of this section considers each of these di-
mensions seperately.

4.1 Gaming Strategies for Computation

Consider a PPDM algorithm that requires thei-th node to perform a sequence
of mi computing tasks:Mi,1, Mi,2, · · ·Mi,mi

. The t-th computing operation at
nodei is represented byMi,t. At any given stept, nodei can either perform the
corresponding computationMi,t or not do that. LetI(M)

i,t be the corresponding
indicator variable which takes a value of 1 ifMi,t is performed or 0 otherwise. Let
I

(M)
i be the overall sequence of indicator variablesI

(M)
i,1 , I

(M)
i,2 , · · · I

(M)
i,mi

. The deci-
sion to computeMi,t or not to compute can be made either using a deterministic
or a probabilistic strategy. Letcm(Mi,t) be the utility of performing the operation
Mi,t.

4.2 Gaming Strategies for Communication

Now consider the communication-related tasks in a PPDM algorithm. The PPDM
algorithm requires a node to both send and receive messages.Let us assume that
thei-th node sends outsi messages (Si,1, Si,2,· · · Si,si

) to other nodes and receives
a total ofri messages (Ri,1, Ri,2,· · · Ri,ri

) from other nodes.

6

A less than ideal node may take either of the following steps when it comes to
receiving a message: (1) receive the message using a deterministic strategy or a
probabilistic strategy; (2) not receive the message eitherbased on a deterministic
or probabilistic strategy. LetI(R)

i,t be the corresponding indicator variable. LetI
(R)
i

be the overall sequence of indicator variablesI
(R)
i,1 , I

(R)
i,2 , · · · I

(R)
i,ri

.
Similarly, when it comes to sending out a message, the node may do any

of the following things: (1) Send out the correct message, (2) send out incor-
rect/misleading message, and (3) do not send out any message. I

(S)
i,t be the corre-

sponding decision variable which takes a value of 0, 1, and 2 respectively for the
above three choices. LetI

(S)
i be the overall sequence of indicator variablesI

(S)
i,1 ,

I
(S)
i,2 , · · · I

(S)
i,si

.
Let cr(Ri,t) andcs(Si,t) be the utility of performing the receive and send oper-

ationsRi,t andSi,t respectively. When the strategy is not deterministic, probabili-
ties can be attached for sending out the correct message and incorrect/misleading
message.

4.3 Privacy Attacks

Nodei may or may not launch attack on each of theri messages (R1,1, R1,2, · · ·R1,ri
)

it receives from other nodes. Possible strategies that a node can take are the fol-
lowing: successfully divulge third party data in a deterministic or probabilistic
manner; unsuccessful attempt in doing the former or not divulge any data (honest
node). Let us assume that thei-th node perform a sequence ofai attacks (Ai,1,
Ai,2,· · · Ai,ai

) on the messages received from other nodes. LetI
(A)
i,t be the corre-

sponding indicator variable. LetI
(A)
i be the overall sequence of indicator variables

I
(A)
i,1 , I

(A)
i,2 · · · I

(A)
i,ai

.

4.4 Colluding with Other Parties

Collusion is nothing but a privacy attack launched on a thirdparty’s private data,
only involving other nodes in the process. At any given step nodei may come to an
agreement with any subset (denoted byG) of n nodes (denoted byD) and decide
to collude with them for exposing the privacy-sensitive data of another node. Let
I

(G)
i,j be the corresponding indicator variable which takes a valueof 1 if party i

decides to collude with partyj or 0 otherwise. We shall use the symbolI(G) to
denote the entire matrix where the(i, j)-th entry isI(G)

i,j . Letgi,j be the benefit that

7

nodei may get by colluding with nodej. For the sake of simplicity let us assume
that collusions are permanent. Once a pair decides to collude, they stay faithful
to each other. If every member of the setG agrees to collude with every other
member inG then the total benefit that a nodei ∈ G receives is

∑

j∈G|j 6=i gi,j.
Similarly in the probabilistic scenario we can define an expected total benefit of
each node in a collusion.

4.5 Overall Game

A multi-party PPDM process can be viewed as a game among the participating
parties. Each game involves a set of actions by these parties. The actions change
the local state of the party. The entire play of the game by player i can therefore
be viewed as a process of traversing through a game tree whereeach tree-node
represents the local state described by playeri’s initial state and messages com-
municated with other nodes. Each runr represents a path through the tree ending
at a leaf node. The leaf node for path (run)r is associated with a utility function
valueui(r). A strategyσi for playeri prescribes the action for this player at every
node along a path in the game tree. In the current scenario, the strategy prescribes
the actions for computing, communication, privacy protection, privacy-breaching
attack, and collusion with other parties. A strategyσi for playeri essentially gen-
erates the tuple(I(M)

i , I
(R)
i , I

(S)
i , I

(A)
i , I

(G)
i).

Let σ = (σ1, σ2, · · ·σn) be the joint strategy forn players. In the probabilis-
tic scenario, this defines a joint distribution over the paths in the game tree. Let
ui(σ) be the utility (also known as pay-off) when the joint strategy σ is played.
A joint strategy is a Nash equilibrium if no player can gain any advantage by us-
ing a different strategy, given that all other players do notchange their strategies.
However, Abraham et al. [1] remove the fragility of Nash equilibrium by allow-
ing coalitions whose behavior deviate from the protocol. They define k-resilient
equilibrium as a joint strategyσ such that for all coalitions C in the set of play-
ers D with|C| <= k, σC is the group best response for C toσ−C , whereσC is
the set of strategies adopted by the members of the collusion, σ−C is the set of
strategies adopted by the players who do not belong to the collusion andσC ∈ σ
andσ−C ∈ σ. Best response for a collusionσC to a strategyσ−C implies that the
utility of the σC is at least as high as the utility ofσ−C .

In order to formulate a PPDM process in a game theoretic framework, we
need to define the search space of the strategies for the players and construct the
utility functions for defining the pay-off that the players receive by playing a given

8

strategy. Next section considers an example and constructsPPDM-games based
on that.

5 Utility Function Representing the Game

Utility functions assign a score to a strategy or a set of strategies. Note that
the search process in the strategy-space can either be deterministic or stochas-
tic. Therefore, the utility function can also be either deterministic or stochastic.
The following sections discuss these two possibilities.

Deterministic Games

This is the case when the moves in the game are deterministic.Players design
their respective strategies and take deterministic actions in order to maximize their
utility scores. For games in PPDM the utility function will be a linear or nonlin-
ear function (f) of utilities obtained by the choice of strategies in the respective
dimensions of computation, communication, collusion and privacy attack. Math-
ematically we can write

ui(σ) = f(I
(M)
i , I

(R)
i , I

(S)
i , I

(A)
i , I

(G)
i)

A utility function which is a weighted linear combination ofall of the above
dimensions can therefore be expressed in terms of the individual utilities as fol-
lows:

ui(σ) = wm,i

∑

t

cm(Mi,t) + wr,i

∑

t

cr(Ri,t)

+ws,i

∑

t

cs(Si,t) + wa,i

∑

t

ca(Ai,t) + wg,i

∑

j∈G

gi,j

wherewm,i, wr,i, wr,i, ws,i andwg,i represent the weights for the correspond-
ing utility factors. The overall utility function may also turn out to be constrained.
For example, a participant may require bounds on the computation and commu-
nication cost over a segment of the entire process. A constraint like this may be
captured in the following form:

9

αm,i

T∑

t=0

cm(Mi,t) + αr,i

T∑

t=0

cr(Ri,t) + αs,i

T∑

t=0

cs(Si,t) ≤ βi

This basically points out that in general a participant may face a constrained
optimization problem for designing the best strategy to deal with a privacy-preserving
distributed data mining process.

Non-Deterministic(Probabilistic) Games

In this case the strategies in the game are stochastic and arechosen at every step
of the game based on the current state of the player, information retained about
previous moves and a random function. Therefore the utilityvalue is a proba-
bility distribution defined by the random variables corresponding to the different
dimensions. Usingp(m)

i,t as the probability of node i correctly performing local
computations at stage t of the game (and similarly for communication and collu-
sion), we can denote the expectation of the utility functionas follows:

E[ui(σ)] = wm,i

∑

t

p
(m)
i,t c(Mi,t) + wr,i

∑

t

p
(r)
i,t c(Ri,t)

+ws,i

∑

t

p
(s)
i,t c(Si,t) + wg,i

∑

j∈G

p
(g)
i,j gi,j

Now that we have formulated a generalized privacy preserving distributed data
mining problem as a multi-player game, we would proceed to illustrate our for-
malizations using one of the most popular PPDM algorithms, the secure sum com-
putation. We first derive closed form expressions for each ofthe dimensions of
ppdm with respect to secure sum and then do a Nash equilibriumanalysis of the
algorithm. We then propose a modified secure sum algorithm that gets rid of the
semi honest requirement of the nodes and illustrate the change in equilibrium for
the new algorithm.

6 Illustration: Multi-Party Secure Sum Computa-
tion

Suppose there aren individual sites, each with a valuevj , j = 1, 2, . . . , n. It is
known that the sumv =

∑n

j=1 vj (to be computed) takes an integer value in the

10

range0, 1, . . . , N − 1. The basic idea of secure sum is as follows. Assuming
sites do not collude, site 1 generates a random numberR uniformly distributed in
the range[0, N − 1], which is independent of its local valuev1. Then site 1 adds
R to its local valuev1 and transmits(R + v1) modN to site 2. In general, for
i = 2, . . . , n, site i performs the following operation: receive a valuezi−1 from
previous sitei− 1, add it to its own local valuevi and compute its modulusN . In
other words,

zi = (zi−1 + vi) modN = (R +
i∑

j=1

vj) modN,

wherezi is the perturbed version of local valuevi to be sent to the next sitei + 1.
Siten performs the same step and sends the resultzn to site 1. Then site 1, which
knowsR, can subtractR from zn to obtain the actual sum. This sum is further
broadcasted to all other sites.

6.1 Utility of Computation and Communication Strategies

The secure sum computation algorithm expects each party to perform some lo-
cal computation. This involves generating a random number (for the initiator
only), one addition, and one modulo operation. The site may or may not choose
to perform this computation. This choice will define the strategy of a node for
computation.

The secure sum computation algorithm also expects a party toreceive a value
from its neighbor and send out the modified value after the local computation.
This party may or may not choose to do so. This will define the strategy for
communication.

The utility of computation and communication strategies may depend upon
the following factors:

1. Computational cost of performing the local operations onthe data.

2. Communication cost for receiving and sending data.

3. Impact of sending wrong or misleading information on the overall outcome
of the PPDM computation. For example, if a party injects a randomly gen-
erated number to its neighbor as if it is the true outcome of the local com-
putation then what is the effect on the overall accuracy of the secure sum?

One may construct different utility functions based on suchparameters.

11

6.2 Utility of Launching a Privacy-Attack

This section explores the possibility of launching a privacy-breaching attack on se-
cure sum by a party trying to extract the private informationof other parties. This
section shares some analytical results and points out that this may be a futile exer-
cise. We present the analysis here just to illustrate the approach and the method-
ology since similar techniques will be used for analyzing the privacy-breaching
properties of other existing PPDM (including secure multi-party computation)
techniques.

For simplicity, let us consider the situation at site 2. A similar analysis can
be done at each of the other sites. LetV be the value at site 1,R be the random
number uniformly distributed over[0, N − 1], independent ofV , whereN − 1
is the maximum possible value of the sum. We considerV (andR) as a random
variable taking values in{0, 1, . . . , N − 1}. Let fV , fR be the probability mass
functions ofV andR, respectively. Note thatfV andfR are zero outside range
[0, N − 1] andfR(r) = 1/N for r = 0, 1, . . . , N − 1. Define random variablesW
andZ as follows:

W = V + R, Z = W modN,

whereW is an additively perturbed version of dataV , Z (the modulus ofW)
is the result to be sent to site 2. Now we will investigate the relation betweenZ
andV to find whether it is possible to recoverV from Z. Notice thatW can take
values in{0, 1, . . . , 2N − 2}, andZ can take values in{0, 1, . . . , N − 1}. Since
V andR are independent, the probability mass functionfW of W can be written
as the convolution offV andfR:

fW (m) = fV (m) ∗ fR(m) =

N−1∑

s=0

fV (s)fR(m − s)

=

{ 1
N

∑m
s=0 fV (s) m = 0, 1, . . . , N − 1;

1
N

∑N−1
s=m+1−N fV (s) m = N, . . . , 2N − 2.

Note that modulus operation moves values in[N, 2N−2] back into the interval
[0, N − 1]. Therefore the probability mass functionfZ of Z can be obtained from
that ofW as follows:

12

fZ(m) = fW (m) + fW (m + N)

=
1

N

m∑

s=0

fV (s) +
1

N

N−1∑

s=m+1

fV (s)

=
1

N

N−1∑

s=0

fV (s) =
1

N
, m = 0, 1, . . . , N − 1.

It is clear that no matter what distributionfV the dataV has,Z is always
uniformly distributed in the range{0, 1, . . . , N − 1}. In order to find the relation
betweenW andV and the relation betweenZ andV , let us compute their joint
probability mass functions. First we compute the joint probability mass function
of W andV :

fWV (w, v) = P{W = w, V = v} = P{R = w − v, V = v}

= P{R = w − v}P{V = v}

=

{
1
N

fV (v) 0 ≤ v ≤ w ≤ N − 1;
1
N

fV (v) N ≤ w ≤ 2N − 2, w + 1 − N ≤ v ≤ N − 1.

Note in particular thatfWV (w, v) 6= fW (w)fV (v) and hence random variables
W andV are not independent, which means that there is a statisticalrelationship
between them. This can be used to estimateV from W (perhaps using the con-
ditional expectationE[V | W] of V given W). Our proposed spectral filtering
technique [13] can indeed be an approach in that direction. However, can we say
the same thing aboutZ andV ? Probably not. We show in the following that
V andZ are statistically independent, which makes it a different scenario alto-
gether. Note that bothZ andV can take values in{0, 1, 2, . . . , N − 1}. The joint
probability mass function ofZ, V is:

fZV (z, v) = P{Z = z, V = v}

= P{(W = z or W = N + z), V = v}

= P{R = z − v, V = v}

+P{R = N + z − v, V = v}

=

{
1
N

fV (v) + 0 0 ≤ v ≤ z ≤ N − 1;
0 + 1

N
fV (v) 0 ≤ z ≤ N − 2, z + 1 ≤ v ≤ N − 1.

=
1

N
fV (v), 0 ≤ z, v ≤ N − 1.

13

Therefore,fZV (z, v) = fZ(z)fV (v). This shows thatZ andV are statically
independent, and hence,Z does not contain any information aboutV . In other
words, a privacy-breaching attack on secure sum by a single party may not be very
successful. The following section considers the effect of collusion and presents a
sample analysis for secure sum computation.

6.3 Utility of Collusion

Let us assume that there arek (k ≥ 2) sites acting together secretly to achieve
a fraudulent purpose. Letvi be an honest site who is worried about his/her pri-
vacy. We also usevi to denote the value in that site. Letvi−1 be the immediate
predecessor ofvi andvi+1 be the immediate successor ofvi.

We have the following possible privacy breaches:

• If k = n − 1, then the exact value ofvi will be disclosed.

• If k ≥ 2 and the colluding sites include bothvi−1 andvi+1, then the exact
value ofvi will be disclosed.

• If n − 1 > k ≥ 2 and the colluding sites contain neithervi−1 nor vi+1, or
only one of them, thenvi is disguised byn − k − 1 other sites’ values. As
before, we shall use the symbolC to represent the set of colluding sites.

The first two cases need no explanations. Now let us investigate the third case.
Without loss of generality, we can arrange the sites in the following order:

v1v2 . . . vn−k−1
︸ ︷︷ ︸

honest sites

vi vi+1 . . . vi+k
︸ ︷︷ ︸

colluding sites

We have

n−k−1∑

j=1

vj

︸ ︷︷ ︸

denoted by X

+ vi
︸︷︷︸

denoted by Y

= v −
i+k∑

j=i+1

vj

︸ ︷︷ ︸

denoted by C

,

wherev is the total sum of then values.

14

Now, the colluding sites can compute the posterior probability mass function
(PMF) ofvi as follows:

fposterior(vi) = fY (y) = Pr{Y = y}, (1)

whereY = C − X. X is a random variable and it is defined asX =
∑n−k−1

j=1 vj .

C is a constant and it is defined asC = v −
∑i+k

j=i+1 vj. C is known to all the
colluding sites. BecauseX is a discrete random variable, it is easy to prove that

fY (y) = fX(x), (2)

wherex = C − y.
To computefX(x), we can make the following assumption about the adver-

sarial parties’ prior knowledge.

Assumption 6.1 Eachvj (j = 1, . . . , n − k) is a discrete random variable in-
dependent and uniformly taking non-negative integer values over the interval
{0, 1, . . . , m}. Therefore,X is the sum of(n− k − 1) independent and uniformly
distributed discrete random variables.

Note that using uniform distribution as the prior belief is areasonable assumption
because it models the basic knowledge of the adversaries. This assumption was
also adopted by [22] where a Bayes intruder model was proposed to assess the
security of additive noise and multiplicative bias. Now letus computefX(x).

Theorem 6.2 LetΛ be a discrete random variable uniformly taking non-negative
integer values over the interval{0, 1, . . . , m}. LetΘ be the sum ofs independent
Λ. The probability mass function (PMF) ofΘ is given by the following equations:

Pr{Θ = θ} =
1

(m + 1)s

r∑

j=0

(−1)jCj
sC

(r−j)(m+1)+t

s+(r−j)(m+1)+t−1,

whereθ ∈ {0, 1, . . . , ms}, r = ⌊ θ
m+1

⌋, andt = θ − ⌊ θ
m+1

⌋(m + 1).

Proof: The probability generating function ofΛ is

GΛ(z) = E[zΛ] =
1

m + 1
(z0 + z1 + · · ·+ zm).

15

Therefore, the probability generating function ofΘ is

GΘ(z) = (GΛ(z))s =
(z0 + z1 + · · ·+ zm)s

(m + 1)s

=
(1 − zm+1)s

(1 − z)s(m + 1)s
.

The probability mass function (PMF) ofΘ is computed by taking derivatives of
GΘ(z):

Pr{Θ = θ} =
G

(θ)
Θ (z)

θ!

∣
∣
∣
∣
∣
z=0,

whereG
(θ)
Θ (z) is theθ-th derivative ofGΘ(z).

In practice, it is probably not easy to computeG
(θ)
Θ (z). Instead, we can expand

GΘ(z) into a polynomial function of degreems. The coefficient of each termzt,
t = 0, . . . , ms in the expanded polynomial gives the probability thatΘ = t.

To expandGΘ(z), let us first leave out the factor 1
(m+1)s . Newton’s generalized

binomial theorem tells us that 1
(1−z)s =

∑∞
t=0 Ct

s+t−1z
t. Hence,

(1 − zm+1)s

(1 − z)s
=

(
s∑

j=0

Cj
sz

(m+1)j(−1)j

)(
∞∑

t=0

Ct
s+t−1z

t

)

.

The above equation can be written as follows:

(1 − zm+1)s

(1 − z)s
=

∞∑

t=0

Ct
s+t−1z

t − C1
s

∞∑

t=0

Ct
s+t−1z

(m+1)+t

+C2
s

∞∑

t=0

Ct
s+t−1z

2(m+1)+t − ...

Therefore, the coefficients of the above polynomial have thefollowing properties:
for t = 0, 1, . . . , m, we have

• the coefficient ofzt is Ct
s+t−1,

• the coefficient ofz(m+1)+t is C
(m+1)+t

s+(m+1)+t−1 − C1
s Ct

s+t−1,

16

• the coefficient ofz2(m+1)+t is C
2(m+1)+t

s+2(m+1)+t−1

−C1
s Cm+1+t

s+(m+1)+t−1 + C2
s Ct

s+t−1,

• etc.

In general, fort = 0, 1, . . . , m andr = 0, 1, . . . , the coefficient ofzr(m+1)+t is

r∑

j=0

(−1)jCj
sC

(r−j)(m+1)+t

s+(r−j)(m+1)+t−1.

Given the above results, the probability mass function (PMF) of Θ is:

Pr{Θ = θ} =
1

(m + 1)s

r∑

j=0

(−1)jCj
sC

(r−j)(m+1)+t

s+(r−j)(m+1)+t−1,

whereθ ∈ {0, 1, . . . , ms}, r = ⌊ θ
m+1

⌋, andt = θ − ⌊ θ
m+1

⌋(m + 1).

According to Theorem 6.2, the probability mass function (PMF) of X is

fX(x) = Pr{X = x}

=
1

(m + 1)(n−k−1)

rX
j=0

(−1)jC
j

(n−k−1)
C

(r−j)(m+1)+t

(n−k−1)+(r−j)(m+1)+t−1
, (3)

wherex ∈ {0, 1, . . . , m(n − k − 1)}, r = ⌊ x
m+1

⌋, andt = x − ⌊ x
m+1

⌋(m + 1).
Combing Eq. 1, 2 and 3, we get the posterior probability ofvi:

fposterior(vi) =
1

(m + 1)(n−k−1)

rX
j=0

(−1)jC
j

(n−k−1)
C

(r−j)(m+1)+t

(s−k−1)+(r−j)(m+1)+t−1
,

wherex = C − vi andx ∈ {0, 1, . . . , m(n − k − 1)}. r = ⌊ x
m+1

⌋, andt =
x−⌊ x

m+1
⌋(m+1). Note that here we assumevi ≤ C, otherwisefposterior(vi) = 0.

This posterior can be used to quantify the privacy breach:

g(vi) = Posterior − Prior = fposterior(vi) −
1

m + 1
(4)

We see here that the utility of collusion depends on the random variablex and
the size of the colluding groupk. Rest of this paper will use this quantitative
measure of privacy-breach for defining the objective function.

17

6.4 Overall Objective Function

Now we can put together the overall objective function for the game of multi-party
secure sum computation.

ui(σ) = wm,icmU(I
(M)
i) + wr,icrU(I

(R)
i,t)

+ws,icsU(I
(S)
i) + wg,i

∑

j∈D−C

g(vj)

wherecmU(I
(M)
i) =

∑

t cm(Mi,t) denotes the overall utility of performing
a set of computationsMi,t, indicated byIM

i (similar definitions apply for com-
munications like receive and send) andwm,i denotes the weight associated with
computation.

For illustrating the equilibrium state of this utility function, let us consider
the simple unconstrained version of it. In order to better understand the nature
of the landscape let us consider a special instance of the objective function where
the node performs all the communication and computation related activities as
required by the protocol. This results in an objective function where the utilities
due to communication and computation are constant and hencecan be neglected
for determining the nature of the function.

ui(σ) = wg,i

∑

j∈D−G

g(vj)

Figure 1 shows a plot of the overall utility of multi-party secure sum as a
function of the distribution of the random variablex and the size of the colluding
groupk. It shows that the utility is maximum for a value ofk that is greater than 1.
Since the strategies opted by the nodes are dominant(illustrated in the next section
with an example), the optimal solution corresponds to the Nash equilibrium. This
implies that in a realistic scenario for multi-party securesum computation, parties
will have a tendency to collude. Therefore the non-collusion (k = 1) assumption
of the classical SMC-algorithm for secure sum is sub-optimal.

7 What is the Solution?

In the previous section we pointed out that traditional no-collusion assumption is
unlikely to hold true in a realistic multi-party distributed environment for comput-
ing a sequence of secure sum operations. Our goal is to designa technique for

18

-1000

-500

0

500

1000

X
10

20

30

k

0

0.01

0.02

0.03

Utility

-1000

-500

0

500X

Figure 1: Plot of the overall objective function for SMC. Theoptimal strategy
takes a value ofk > 1.

multi-party secure sum computation that does not rely on unrealistic assumptions
about the nodes in the network. So we want an algorithm that isprivacy preserving
sum computation, which means that we want a set of strategiesthat offer optimal
utility at k = 1. In other words, we want an algorithm that creates a game where
not colluding is an optimal strategy for everyone.

One possible approach is to penalize the parties sufficiently enough so that
the pay-off from collusion is counter-balanced by the penalty, if they are caught.
This approach may not work if the parties perceive that the possibility of getting
caught is minimal. However, collusion requires consent from multiple parties. If
party A wants to collude with another party B, then the formerneeds to contact the
latter party and get its consent. If party A contacts party B,but the latter does not
agree to collude then party A may become vulnerable to a penalty. Either party
B directly decide to penalize party A for its inappropriate behavior and/or inform
others (other participating parties or a central authority) about the intention of
party A. Therefore, any party must be concerned about a penalty before contacting
anyone else for a partner in collusion.

7.1 Penalty for Collusion

The possible options that we have for penalizing cheaters (colluding nodes) in a
multi-party secure sum game can be enumerated as follows:

1. Policy I: Remove the party from the multi-party privacy-preserving data
mining application environment because of protocol violation. Although it

19

-1000
-500

0
500

1000

X
10

20

30

k

0.75

0.8

0.85

Utility Value

-1000
-500

0
500X

Figure 2: Plot of the modified objective function with penalty. The globally opti-
mal strategies are all fork = 1.

may work in some cases, the penalty may be too harsh since usually the
goal of a PPDM application is to have everyone participate inthe process
and faithfully contribute to the data mining process.

2. Policy II: An alternate possibility is to penalize by increasing the cost of
computation and communication. For example, if a party suspects a collud-
ing group of sizek′(an estimate ofk) then it may split the every number used
in a secure sum amongk′ different parts and demandk rounds of secure sum
computation one for each of thesek′ parts. This increases the computation
and communication cost byk-fold. This linear increase in cost with respect
to k, the suspected size of colluding group, may be used to counteract any
possible benefit that one may receive by joining a team of colluders. The
modified objective function is given below. The last term in the equation
shows the penalty due to excess computation and communication as a result
of collusion.

ui(σ) = wm,icmU(I
(M)
i) + wg,i

∑

j∈D−G

g(vj) − wp ∗ k′

Figure 2 shows a plot of the modified objective function for secure sum with
policy II. It shows that the globally optimal strategies areall for k = 1. The
strategies that adopt collusion always offer a sub-optimalsolutions which would
lead to moving the Nash equilibrium to the case wherek = 1.

20

A B C Pay-Off Pay-Off Pay-Off
(No Penalty) (Policy I) (Policy II)

G G G (3, 3, 3) (3, 3, 3) (3, 3, 3)
G G B (3, 3, 3) (2, 2, 0) (2, 2, 2)
G B G (3, 3, 3) (2, 0, 2) (2, 2, 2)
G B B (3, 4, 4) (0, 0, 0) (2, 2, 2)
B G G (3, 3, 3) (0, 2, 2) (2, 2, 2)
B G B (4, 3, 4) (0, 0, 0) (2, 2, 2)
B B G (4, 4, 3) (0, 0, 0) (2, 2, 2)
B B B (0, 0, 0) (0, 0, 0) (0, 0, 0)

Table 1: Pay-Off table for three-party secure sum computation

7.2 Nash Equilibrium Illustration for 3-node Network

The idea described in the last section can be further explained using a simple
example, illustrated in Table 1. Consider a game with a mediator where each
party first contacts the mediator and declares their intention to be a good node
(follow protocol) or bad party (willing to collude). When there is no penalty for
misbehavior, everyone will benefit by colluding with others. This will result in
all bad nodes colluding with each other in order to violate the privacy of the good
nodes. Now, let us consider the scenarios where the mediatorwill penalize using
either Policy I or Policy II. The mediator can enforce PolicyI since everyone
reports their intentions to the mediator. It can also easilyenforce Policy II by
simply countingk, the total number of bad parties.

Table 1 shows the pay-offs for different penalty policies. When there is no
penalty, all the scenarios with two bad parties and one good party offer the high-
est pay-off for the colluding bad parties. Therefore, colluding with other nodes
always becomes the highest paying strategy for any node in the network (this is
called the dominant strategy [11]). Also we observe that thepayoff for a bad
nodes always decreases if it becomes good, assuming the status of all other nodes
remain unchanged.So the Nash equilibrium in the classical secure sum computa-
tion is the scenario where the participating nodes are likely to collude. Note that,
the three-party collusion is not very relevant in secure sumcomputation since
there are all together three parties and there is always a node (the initiator) who
wants to protect the privacy of its data.

Table 1 also shows the pay-offs for both policies I and II. In both cases, the
Nash equilibrium corresponds to the strategy where none of the parties collude. In

21

fact the Nash equilibrium in secure sum with policy II for penalization is strongly
resilient, that is, it corresponds to a2-resilient equilibrium for a 3-party game. In
this case, if any node deviates from being good, the communication and compu-
tation cost increasek′ (O(k)) fold due to the data being broken into shares. The
penalty incurred due to this extra resource usage is not compensated bu the benefit
gained out of the collusion. Therefore the payoff is the highest when they don’t
collude. This is, in fact a strongly dominated strategy for this game. Since each
player has a strictly dominated strategy, there is a unique Nash equilibrium which
is the case in which none of the nodes collude. According to the definition of Nash
equilibrium, in this case no player can gain anything more bydeviating from good
to bad when all others remain good. It also follows from the discussion that Policy
II is strongly resilientsince it can tolerate collusions of size up ton-1 (the payoff
is highest when none colludes, even when compared to the casewheren−1 (n=3)
collude).

The following section presents some practical ways to implement Policy II for
asynchronous environments.

7.3 How to Implement?

We observed in the last section that an appropriate amount ofpenalty for violation
of the policy may reshape the objective function in such a waythat the optimal
strategies correspond to the prescribed policy. In this section we explore some
practical ways of implementing these policies in a real lifedistributed setting.

7.3.1 Centralized Control

In this scheme there is a central authority who is always in charge of implement-
ing the penalty policy. In practice, it can be a variant of themechanism used in
the example described in the previous section. Unlike the 3-node example in the
last section, in this mechanism not everyone registers their intentions with a cen-
tral node. Instead, nodes approach other nodes with proposals to collude. If a
good node receives a proposal from a bad node then it reports to the central au-
thority which in turn penalizes the perpetrator. This scheme is relatively easy to
implement. However, it requires global synchronization. Since the penalty affects
the total number of iterations needed for completing the secure sum computation,
the process cannot start until the central authority makes adecision about the bad
nodes. This requires that all the nodes synchronize with this deciding node. Such

22

global synchronization may create a bottleneck and limit the scalability of a dis-
tributed system.

7.3.2 Asynchronous Distributed Control

Fortunately, in games like this whenever there is a solutionwith a mediator, there
is also a solution without one. Ben-Porath [6] showed that itis possible to sim-
ulate Nash equilibrium without a mediator as long as there isa proper strategy
to penalize lack of compliance. For a total asynchronous distributed control we
borrow the concept ofcheaptalk from game theory and economics [10] in order
to develop a distributed mechanism for penalizing policy violations. Cheap talk is
simply a pre-play communication which carries no cost. Before the game starts,
each player engages in a discourse with each other in order toinfluence the out-
come of the game and form an opinion about the other players inthe game. For
example, in the well known Prisoner’s Dilemma game [18] one might add a round
of pre-play communication where each player announces the action they intend to
take. Although cheap talk may not effect the outcome of Prisoner’s Dilemma, in
many other games the outcome may be significantly influenced by such pre-play
communication. We would like to use cheap talk to communicate the threat of
penalty. Cheap talk works when the parties depend on each other, their prefer-
ences are not opposite to each other, and the threat is real. Either Policy I or II can
be used for the penalty threat. Algorithm 1 (Secure Sum with Penalty (SSP)) de-
scribes a variant of the secure sum computation technique that offers a distributed
mechanism for penalizing policy violations using a cheap talk-like mechanism.

Consider a network ofn nodes where a node can either begoodor bad. Bad
nodes collude to reveal other nodes’ information; whilegood nodes follow the
correct secure sum protocol. Before the secure sum protocolstarts, the colluding
(bad) nodes send invitations for collusions randomly to nodes inthe network. If
such a message is received by agoodnode, then it knows that there are colluding
nodes in the network. To penalize nodes that collude, thisgoodnode splits its
local data intok′ random shares wherek′ is an estimate of the size of the largest
colluding groups. One possible way to estimate this could bebased on the number
of collusion invitations a good node receives. On the other side, thebadnodes, on
receiving such invitation messages, form a fully connectednetworks of colluding
groups. This initial phase of communication is cheap talk inour algorithm. Af-
ter this the secure sum protocol starts. As in the traditional secure sum protocol,
nodes forward their own data after doing the modulus operation and random num-
ber addition. However, good nodes do not send all the data at one go; rather they

23

send one random share at each round of the secure sum. Hence, it takes several
rounds for the secure sum to complete. The total number of rounds needed for one
complete secure sum computation is equal toMax(k′) wherek′ is the estimate of
k (the size of the colluding group) that every node has.

The following Lemma (Lemma 7.1) shows that the SSP algorithmconverges
to the correct result.

Lemma 7.1 Correctness and Convergence: SSP protocol converges to the cor-
rect result inO(nk) time. Heren is the total number of nodes in the network, and
k is the maximum size of the colluding groups .

Proof: (SKETCH) The basic idea behind this proof is that sum computation is
decomposable, and the order of addition of individual shares does not change the
total. In the SSP protocol, each partyPi splits its number intoki(ki ≥ 0) shares
and demandski rounds of secure sum computation. In each round, whenever a
party receives a message, it adds one of itski shares. If all its shares have been
added in, this party simply inputs an zero. Letk = maxi{ki}, after k rounds
of computation, all the parties have added their numbers andthe total sum is
obtained. In the traditional secure sum computation, the message is passed to each
node on the network sequentially. The convergence time is bounded byO(n). In
the SSP protocol, the total rounds of computation isk, therefore the overall time
required is bounded byO(nk).

8 Experimental Results

We have implemented the cheap talk-based secure sum with penalty protocol and
study the nature of the Nash equilibrium. This experiment assumes that the nodes
are rational in the sense that they choose actions that maximize their utility func-
tion, which in other words would mean that they minimize their cost.

8.1 Overview of the Simulation Set-Up

We set up a simulation environment comprised of a network ofn nodes where a
node can either begoodor bad. We have experimented with a ring topology of
500 nodes (n=500) using the use the Distributed Data Mining Toolkit (DDMT)
2 developed by the DIADIC research lab at UMBC. Our game consisted of both

2DDMT - http://www.umbc.edu/ddm/wiki/software/DDMT/

24

good and bad nodes wheregood nodes split the data into shares to thwart the
possibility of a privacy breach by thebadnodes. We have assumed that each node
has an integer vector of sizel and it wants to compute the vector sum using the
secure sum protocol for each of these integers. Therefore, there are going to bel
rounds of secure sum computation. For calculating the vector sum we have used
individual rounds of the secure sum protocol. As mentioned earlier, in order to
penalize thebadnodes,goodnodes split each of these data into random non-zero
shares. Therefore one round of the secure sum (sum computation for one of the
l vector elements) consists several iterations where in every iteration only one of
thek′ shares of every node is added to the secure sum. After every round of the
secure sum protocol (that is after one of thel sum computations), we measure
three quantities:

• Messages sent : Forgoodnodes, number of messages is equal to the num-
ber of iterations needed for one round of secure sum computation. Forbad
nodes the number of messages sent is higher because of the additional mes-
sages exchanged for colluding.

• Computational power used : In this case also thegoodnodes only require
computation necessary for the standard secure sum protocol. However, the
badnodes need additional computation for extracting other nodes values by
colluding with partners. We consider every mathematical operation (in this
case addition and modulus operation) as a unit of computation.

• Utility of collusion: This is the posterior probability that a node will guess
the correct distribution of the value a node has given the total sum of the
collusion. This quantity measures zero for thegoodnodes and varies among
the differentbadnodes depending on the size of the collusion that particular
node is part of and the distribution of the values at the different nodes.

8.2 Results

Initially we start with a fixed percentage (30%) of the nodes to be bad. After
every round each node measures the cost (or penalty) it incurred due to collusion.
If the penalty sustained is too high (a dynamic threshold currently set by the user),
some of the bad nodes decide not to collude again. Once thesebad nodes turn
into goodones, they send deallocate messages to their colluding groups and also
set their estimates of collusion sizek′ same as the size of the collusion to which
they belonged.

25

01132365496113

9200

9400

9600

9800

10000

10200

10400

10600

Number of colluding nodes
C

os
t

Figure 3: Variation of cost with changes in number of colluding nodes.

We observe in Figure 3 that for subsequent rounds of the secure sum compu-
tation the cost or overall penalty assigned decreases as thenumber ofbad nodes
decreases. When the ratio ofbad to goodnodes is significantly low, we can ob-
serve that the cost almost reaches an equilibrium. This is because the contribution
of the penalty function becomes negligible and the total cost is governed mainly
by the computation and communication costs that remain almost constant over
successive rounds of secure sum with hardly any collusion.

In Figure 4 we have shown how the number ofbadnodes decrease with suc-
cessive rounds of secure sum computation. Thebadnodes in the network start any
round of secure sum with the intention to collude. However, some of them do not
end up in any collusion since their invitations for collusion are not reciprocated
by thegoodnodes. So at any round ifb denotes the number ofbadnodes (nodes
with intentions to collude), the actual number of colludingnodesk is less than or
equal tob. The plot with circular markers demonstrate the decreasingvalues ofb
in consecutive rounds of secure sum whereas the one with square-shaped markers
presents the decreasing values ofk. In either case, we see that asb or k decreases,
the rate of their convergence to zero gradually falls due to the significantly low
ratio of good to bad nodes in the network. The third plot in Figure 4 represents
the decrease in the number ofbad nodes in a network with an initial count of
60% bad nodes. We observe that even if the number ofbadnodes in the network
be double, the algorithm still converges to the same state where the number of
colluding nodes in the network tend to zero.

26

1 2 3 4 5 6 7 8

10

20

30

40

50

60

Rounds of Secure Sum (increasing time)

P
er

ce
nt

ag
e

of
 b

ad
 n

od
es

Nodes with bad intentions for network with 30% bad nodes
Colluding nodes (k) for network with 30% bad nodes
Nodes with bad intentions for network with 60% bad nodes

Figure 4: Change in the number of bad nodes in the network overtime. It shows
that both the number of nodes interested in violating the policy and the number of
nodes that form collusions decrease to zero due to the penalty scheme.

9 Conclusions

This paper pointed out that many of the existing privacy-preserving data mining
algorithms often assume that the parties are well-behaved and they abide by the
protocols as expected. Parties compute whatever is needed,communicate cor-
rectly following the rules, and do not collude with other parties for exposing third
party sensitive data. This paper argued that most of these nice assumptions fall
apart in real-life applications of privacy-preserving distributed data mining. The
paper offered a more realistic formulation of the PPDM problem as a multi-party
game where each party tries to maximize its own objective or utility.

The paper considered the multi-party secure sum computation problem for il-
lustrating the game theoretic formulation. It pointed out that the expected strategy
of every party in a traditional secure sum algorithm does notcorrespond to a Nash
equilibrium state. The paper analyzed a variant of this algorithm which assign
penalty to the policy-violators in a distributed manner. Experimental results point
out that the equilibrium behavior of the algorithm corresponds to the desired no-
collusion strategy.

The paper opens up many new possibilities. It offers a new approach to study
the behavior of existing PPDM algorithms and invent new ones. We plan to con-
sider other popular PPDM algorithms for computing inner product, clustering, and
association rule learning in order to study those using the game theoretic frame-
work developed here.

27

References

[1] Ittai Abraham, Danny Dolev, Rica Gonen, and Joe Halpern.Distributed
computing meets game theory: Robust mechanisms for rational secret shar-
ing and multiparty computation. InTwenty-Fifth Annual ACM Symposium
on Principles of Distributed Computing (PODC), Denver, Colorado, USA,
July 2006.

[2] Charu C. Aggarwal and Philip S. Yu. A condensation based approach to
privacy preserving data mining. InProceedings of the 9th International
Conference on Extending Database Technology (EDBT’04), pages 183–199,
Heraklion, Crete, Greece, March 2004.

[3] R. Agrawal and R. Srikant. Privacy preserving data mining. In Proceedings
of the ACM SIGMOD Conference on Management of Data, pages 439–450,
Dallas, TX, May 2000.

[4] M. J. Atallah, E. Bertino, A. K. Elmagarmid, M. Ibrahim, and V. S. Verykios.
Disclosure limitation of sensitive rules. InProceedings of the IEEE Knowl-
edge and Data Engineering Workshop, pages 45–52, 1999.

[5] R. J. Bayardo and R. Agrawal. Data privacy through optimal k-
anonymization. InProceedings of the 21st International Conference on Data
Engineering (ICDE’05), pages 217–228, Tokyo, Japan, April 2005.

[6] E. Ben-Porath. Cheap talk in games with incomplete information. Journal
of Economic Theory, 108(1):45–71, 2003.

[7] K. Chen and L. Liu. Privacy preserving data classification with rotation
perturbation. InProceedings of the Fifth IEEE International Conference on
Data Mining (ICDM’05), pages 589–592, Houston, TX, November 2005.

[8] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Zhu. Tools for privacy
preserving distributed data mining.ACM SIGKDD Explorations, 4(2), 2003.

[9] A. Evfimevski, J. Gehrke, and R. Srikant. Limiting privacy breaches in pri-
vacy preserving data mining. InProceedings of the ACM SIGMOD/PODS
Conference, San Diego, CA, June 2003.

[10] J. Farrell and M. Rabin. Cheap talk.The Journal of Economic Perspectives,
10(3):103–118, 1996.

28

[11] Joseph Halpern and Vanessa Teague. Rational secret sharing and multiparty
computation: extended abstract. InProceedings of the thirty-sixth annual
ACM symposium on Theory of computing, pages 623 – 632, Chicago, IL,
USA, 2004.

[12] R. Hardin. Collective action as an agreeable n-prisoners’ dilemma.Journal
of Behavioral Science, 16:472–481, September 1971.

[13] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On the privacy preserv-
ing properties of random data perturbation techniques. InProceedings of the
IEEE International Conference on Data Mining, Melbourne, FL, November
2003.

[14] M. Kearns and L. Ortiz. Algorithms for interdependent security games.Ad-
vances in Neural Information Processing Systems, 2004.

[15] Howard Kunreuther and Geoffrey Heal. Interdependent security. Journal of
Risk and Uncertainty, 26(2-3):231–249, 2003.

[16] K. Liu, H. Kargupta, and J. Ryan. Random projection-based multiplica-
tive data perturbation for privacy preserving distributeddata mining.IEEE
Transactions on Knowledge and Data Engineering (TKDE), 18(1):92–106,
January 2006.

[17] J. Nash. Equilibrium points in n-person games.Proceedings of the National
Academy of the USA, 36(1):48–49, 1950.

[18] M. Osborne.Game Theory. Oxford University Press, 2004.

[19] B. Pinkas. Cryptographic techniques for privacy preserving data mining.
SIGKDD Explorations, 4(2):12–19, 2002.

[20] Adi Shamir. How to share a secret.Communications of the ACM,
22(11):612–613, November 1979.

[21] L. Sweeney. k-anonymity: a model for protecting privacy. Interna-
tional Journal on Uncertainty, Fuzziness and Knowledge-based Systems,
10(5):557–570, 2002.

[22] M. Trottini, S. E. Fienberg, U. E. Makov, and M. M. Meyer.Additive noise
and multiplicative bias as disclosure limitation, techniques for continuous

29

microdata: A simulation study.Journal of Computational Methods in Sci-
ences and Engineering, 4:5–16, 2004.

[23] A. C. Yao. How to generate and exchange secrets. InProceedings 27th IEEE
Symposium on Foundations of Computer Science, pages 162–167, 1986.

[24] Nan Zhang, Wei Zhao, and Jianer Chen. Performance measurements for pri-
vacy preserving data mining. InAdvances in Knowledge Discovery and Data
Mining, 9th Pacific-Asia Conference, PAKDD 2005, pages 43–49, Hanoi,
Vietnam, May 2005.

30

Algorithm 1 Secure Sum with Penalty (SSP)
Input of node Pi: NeighborPj, vi, k′ estimated from prior cheap talk
Output of node Pi: Correct secure sum
Data structure for Pi: NODETYPE (0 stands forgood, 1 stands forbad, and 2
stands for initiator), colluding group (colludeList), random shares ofvi

(randSharesList)
Initialization:
IF NODETYPE==0

Initialize colludeList
Exchange sum of elements in colludeList

ELSE IF NODETYPE==1
Split the local datavi into at least (k′) random shares
Initialize randSharesList

ELSE IF NODETYPE==2
Send its datavi after adding a random number and performing a modulo
operation

ENDIF
ENDIF

ENDIF
On receiving a message:
IF NODETYPE==2

IF randSharesList==NULL (for every node)
End Simulation
Send sum to all nodes

ELSE
Start another round of secure sum

ENDIF
ELSE IF randSharesList!=NULL

Select next data share from randSharesList
Forward received data and new share to next neighbor

ENDIF
ENDIF

31

