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Abstract

The design, implementation and archiving of large sky
surveys is an important part of astronomy research. The
Sloan Digital Sky Survey (SDSS), The Two Micron All
Sky Survey (2MASS) are some such surveys producing
tera bytes of geographically distributed data which need
to be stored, analyzed and queried to enable scientific
discoveries. In this paper, we describe the architecture
of a system for Distributed Exploration of Massive As-
tronomy Catalogs (DEMAC) which is built on top of
the existing National Virtual Observatory environment.
We describe distributed algorithms for doing Principal
Component Analysis (PCA) using random projection
and sampling based techniques. Using the approximate
principal components, we develop a distributed outlier
detection algorithm which enables identification of data
points that deviate sharply from the “correlation struc-
ture” of the data. We provide simulation results with
data obtained from sky-surveys SDSS and 2MASS.

1 Introduction

The design, implementation, and archiving of very large
sky surveys is playing an increasingly important role
in today’s astronomy research. Many projects (such
as GALEX!, ROSAT?) are producing enormous geo-
graphically distributed catalogs (tables) of astronomi-
cal objects. These virtual catalogs are expected to in-
crease science return and enable scientific discoveries by
cross correlation of data across multiple sky surveys.
The development and deployment of a U.S. National
Virtual Observatory (NVO) [3] is a step in this direc-
tion. However, processing, mining, and analyzing these
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distributed and vast data collections are fundamentally
challenging tasks since most off-the-shelf data mining
systems require the data to be down-loaded to a single
location before further analysis. This imposes serious
scalability constraints on the data mining system and
fundamentally hinders the scientific discovery process.
This motivates the need to develop communication-
efficient distributed data mining (DDM) techniques.

In this paper, we extend the functionality of the
system for Distributed Exploration of Massive Astron-
omy Catalogs (DEMAC) [4]. Built on top of the
National Virtual Observatory, DEMAC facilitates dis-
tributed Principal Component Analysis (PCA), decision
tree induction and outlier detection for astronomy cat-
alogs. The work in [4] proposes an architecture for
DDM on astronomy catalogs and addresses the prob-
lem of distributed covariance matrix computation using
a random projection based approach. The main con-
tributions of this paper are: (1) Distributed covariance
matrix computation using random sampling and com-
parison with random projection based approach [4]. (2)
A PCA based algorithm for distributed outlier detec-
tion. (3) Two astronomical case studies, fundamental
plane computation and outlier detection.

2 DEMAC - A System for Distributed
Exploration of Massive Astronomical
Catalogs

This section describes the high level design of the
proposed DEMAC system. DEMAC is designed as an
additional web-service which seamlessly integrates into
the NVO. It consists of two basic services — (1) WS-
DDM: which provides DDM capabilities for vertically
distributed sky surveys and (2) WS-CM: which provides
cross-matching capabilities for vertically distributed sky
surveys and is intensively used by WS-DDM. We outline
here the architecture for the two web-services we will
develop.

2.1 WS-DDM - DDM for Heterogeneously
Distributed Sky-Surveys This web-service will allow
running DDM algorithms on a selection of sky-surveys.
The user would use existing NVO services to locate sky-



surveys and define the portion of the sky to be data
mined. The user would then use WS-CM to select a
cross-matching scheme for those sky-surveys. Following
these two preliminary phases the user would submit the
data mining task.

2.2 WS-CM - Cross-Matching for Heteroge-
neously Distributed Sky-Surveys We illustrate the
problem with two archives: the Sloan Digital Sky
Survey (SDSS) [1] (containing upward of 100 million
records) and the 2-Micron All-Sky Survey (2MASS)
[2] (containing 470 million records). Each record con-
tains sky coordinates (ra,dec) identifying the astronom-
ical point sources’ position in the celestial sphere as
well as many other attributes (460+ for SDSS; 420+
for 2MASS). While each of these catalogs individually
provides valuable data for scientific exploration, effi-
cient analysis of the virtual catalog formed by joining
these catalogs would enhance their scientific value sig-
nificantly.

To form the virtual catalog, records must be
matched based on their position in the celestial sphere.
Consider record ¢ from SDSS and s from 2MASS with
sky coordinates t[ra,dec] and s[ra,dec]. Each record
represents a set of observations about an astronomical
object e.g. a galaxy. The sky coordinates are used to
determine if ¢ and s match, i.e. are close enough that ¢
and s represents the same astronomical object. For each
match (t,s), the result is a record ¢ < s in the virtual
catalog with all of the attributes of ¢ and s.

To achieve this, match indices are created and co-
located with each sky survey. Specifically, for each pair
of surveys (tables) T and S, a distinct pair of match
indices must be kept, one at each survey.The indices do
not need to be created each time a data mining task is
run. Instead, each pair of indices only need be created
once and then any data mining task can use them. The
net result is the ability to mine virtual tables at low
communication cost.

2.3 DDM Algorithms: Definitions and Nota-
tion In the next two sections we describe DDM al-
gorithms® to be used as part of the WS-DDM web
service. Let M denote an n x m matrix with real-
valued entries. This matrix represents a dataset of
n tuples from R™. Let M7 denote the j** column
and M7 (i) denote the i** entry of this column. Let
u(M7) and Var(M7) denote the sample mean and vari-
ance respectively of this column. Let Cov(M7, M*) de-
note the sample covariance of the jt* and k** columns

3All of these algorithms assume that the participating sites
have the appropriate match indices.
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Cov(M?, M?7)). Finally, let Cov(M) denote the covari-
ance matriz of M i.e. the m x m matrix whose (j, k)"
entry is Cov(M7, M*).

Assume this dataset has been vertically distributed
over two sites S4 and Sg. Since we are assuming that
the data at the sites is perfectly matched, then S has
the first p attributes and Sp has the last ¢ attributes
(p+q = m). Let A denote the n x p matrix representing
the dataset held by S4, and B denote the n X ¢ matrix
representing the dataset held by Sp. Let A : B denote
the concatenation of the datasets i.e. M = A : B. The
j** column of A : B is denoted [A : B)J.

Following standard practice in applied statistics, we
pre-process M by normalizing so that u(M7) = 0 and
Var(M7) =1. Let Ay > Ay > ... > )\, > 0 denote the
eigenvalues of Cov(M) and vy,vs, ..., v, the associated
eigenvectors (we assume the eigenvectors are column
vectors i.e. m x 1 matrices.) (pairwise orthonormal).
The j** principal direction of M is vj. The j*" principal
component is denoted z; and equals Mv; (the projection
of M along the j** direction).

3 Virtual
Analysis

Catalog Principal Component

PCA is a well-established data analysis technique used
in a large number of disciplines: astronomy, computer
science, biology, etc. To our knowledge, the problem
of vertically distributed PCA computation has been
addressed in [5], [7] and [4]. We briefly review the
algorithm for distributed PCA using random projection
in this section.

Recall that A : B is normalized to have zero column
sample mean and unit sample variance. As a result,

Cov([A : BY,[A : BF) = ZimlABPOUBIG piep
is the inner product between [A : B]Y and [A : BJF.
Clearly this inner product can be computed without
communication when [A : B}’ and [A : B]* are at
the same site (i.e. 1 < j,k < porp+1 < jk <
p+q). Tt suffices to show how the inner product can be
approximated across different sites, in effect, how AT B
can be approximated. The key idea is based on the
fact that high-dimensional random vectors are nearly
orthogonal [11].

Fact 1. Let R be an £ x n matriz each of whose entries
is drawn independently from a distribution with variance
one and mean zero. It follows that E[RT R] = (I,, where
I, is the n X n identity matriz.

We will use the following steps for computing AT B
— (1)S4 sends Sp a random number generator seed.
(2) S4 and Sp generate a £ x n random matrix R



where /. Each entry is generated independently and
identically from any distribution with mean zero and
variance one.(3) S4 sends RA to Sp; Sp sends RB to

S4. (4) S4 and Sp compute D = 7(1“)2(}23). Note that,
E[D] = E[AT(RgTR)B] = ATE[]}TR]B, which, by Fact 1,

equals ATUL)B _ TR, Hence, on expectation, the
algorithm is correct. However, its communication cost
(bytes) divided by the cost of the centralization-based
algorithm, 2mEtd — £ 4 L 145 gmall if £ << n. Indeed
£ provides a “knob” for tuning the trade-off between
communication-efficiency and accuracy.

Another technique to approximate principal compo-
nents is to use uniform sampling. The key steps involved
are as follows — (1) The central co-ordinator site sends
Sa and Sp the percentage p of data to be sampled. (2)
Sa and Sp send to the co-ordinator site p% of their
uniformly sampled local data. (3) The co-ordinator site
estimates the covariance matrix and hence the Princi-
pal Components (PCs) on the sampled data. (4)The
approximated PCs are sent to S4 and Sg.

4 PCA Based Methods for Outlier Detection

In this section, we describe a PCA-based technique for
outlier detection (on centralized data) using the last
principal components([6]). These techniques look to
identify data points which deviate sharply from the
“correlation structure” of the data.

Using the notation introduced in section 2.3, the
7*" component is a linear combination of the columns
of M (the k** column has coefficient v;(k)) with sample
variance A; 4.e.the variance over the entries of z; is
Aj.  Thus, if A; is very small and there were no
outlier data points, one would expect the entries of
z; to be nearly constant. In this case, v; expresses a
nearly linear relationship between the columns of M. A
data point which deviates sharply from the correlation
structure of the data will likely have its z; entry deviate
sharply from the rest of the entries (assuming no other
outliers). Since the last components have the smallest
N's, then an outlier’s entries in these components will
likely stand out. This motivates examination of the
following statistic for the i** data point (the i*" row in
M) and some 1 < a < m: df ;(a) = 3°7°, 2;(i)* where
2;(i) denotes the it" entry of z;. a is a user defined
parameter. A possible criticism of this approach as
pointed out in [6] is that df ; gives insufficient weight to
the last few PCs. This effect will be more pronounced if
some of the PCs have very small variances and these are
the ones that are of most interest in outlier detection.

To address this criticism, the components are nor-
malized to give equal weight. Let w; denote the nor-
malized j** principal direction: the m x 1 vector whose

th

v; (4
veve
nent is Z; = Mw;. The sample variance of Z; equals
one, 5o, the weights of the normalized components are
equal. This statistic we use for the i* data point is
d3;(a) = 37, 7(i)%. Next, we discuss the develop-
ment of a distributed algorithm for finding the top k&
ranked data points in [A : B] with respect to d3 ;(a).
For this, we only consider the case involving the last
component, a = m:

(4.1) dy ; = dj ;(m) = Zm (i),

The normalized j** principal compo-

ith entry is

4.1 Vertically Distributed Top k Outlier Detec-
tion First, the algorithm in Section 3 is applied to ap-
proximate Cov(A : B) — at the end, each site has the
approximation. The eigenvalues and vectors of this ma-
trix are computed Ay, ..., Ay and 61, . . ., U, along with
the normalized eigenvectors wy, ..., W, (no communi-
cation required). However, the approximations to the
last component cannot be computed without communi-
cation. The approximation to the last normalized prin-
cipal component is defined to be 25, = [A : Blwy,.

Let w,(A) denote the p x 1 vector consisting of
the first p entries of wp,. This is the part of wy,
corresponding to the attributes at site S4. Let i, (B)
denote the ¢ x 1 vector consisting of the last g entries
of wy,. This is the part of w,, corresponding to the
attributes at site Sp. We have 2z, = [A : Blu,, =
AW (A) + B (B) = Zm(A) + 2 (B). Given 1 <
i < n, let Z,(A,i) denote the it" entry of Auj,(A)
and z,(B,i) denote the i" entry of Buj,,(B). Since,
d3; = #m(i)?, we define the approximation to dj ; as

d;,iz = (Zm(A,i) + 2, (B,4))2. Our goal is to develop
a distributed algorithm for computing the top k among
{d;,i2 :1 <i < n}. Since #,(A,i) and 2, (B, 1) can be
computed without communication, it suffices to solve
the following problem.

PROBLEM 1. (DISTRIBUTED SUM-SQUARE ToP K)
Site SA has a1,...,a, € R and Sp has by,...,b, € R
Both sites have integer n > k > 0. The sites must
compute the top k among ¢ = (a1 + b))%, ...
cn = (an + by)2.

A communication-efficient algorithm for solving this
problem, Distributed Sum-Square Top K (DSSTK) is
described next.

4.2 An Algorithm for the DSSTK Problem In
this section, we describe an algorithm for solving the
problem when k£ = 1. At the end, both sites have indices
i* = argmaz{c; : 1 < i < n} and ¢;». Hence, the
problem when k& > 1 is solved by removing a;+ and b;-
then repeating, etc.



The algorithm for finding i* carries out two stages.
First, S4 and Sp solve the following two distributed
sub-problems: find i* = argmaz{a;+b;} (Distributed
Max Algorithm) and ™ = argmin{a; + b;} (Dis-
tributed Min Algorithm). Second, each site returns
argmaz{(a;m + bgm)?, (@ism + bi=m)?}. Clearly this
equals ¢*, so, all that remains is to explicate the Dis-
tributed Max algorithm. This is described in Algorithm
4.2.1. The Min algorithm is completely analogous and
obtained by replacing all occurrences of “argmax” with
“argmin”.

Algorithm 4.2.1 Distributed Max Algorithm

1. Sa selects i4 = argmaz{a; : 1 < i < n} and
sends (a;4,i4) to Sp. In parallel, Sp selects i® =
argmaz{b; : 1 < i < n} and sends (b;5,i?) to Sa.
[16 bytes]

2. Sy receives the message from Sp and replies with
(a;8). In parallel, Sp receives the message from Sy
and replies with (b;a). [8 bytes]

3. Both sites now have data points a;a, a;s, b;a,
b;z, and indices i4, i®. If {4 = ¢B, then both sites
terminate.

4. Otherwise, S4 replaces a;4 and a;z with
a,B+b,;B

a;a+b;a
2

and . Site Sp replaces b;4a and b;s in exactly
the same way. Goto step 1.

Next we prove that the Distributed Max Algorithm
is correct ¢.e. the algorithm terminates and both sites
return the correct index. In fact, we prove a more
general result. Namely, that both sites return index
i*M = argmaz{f(a; + b;)} where f : R — R is any
strictly increasing function.

Correctness of the algorithm follows from the result
that shows that for each i, a; and b; change values at
most once during the course of the algorithm. Moreover,
when they change, they change to %F%. Let a;(0), b;(0)
denote a;, b; and a;(5), bi(j) denote the value of a; and
b; held at the end of round j > 1.

LEMMA 4.1. Suppose the algorithm just completed
round t > 1. For each 1 < i < n, let j(i) denote
the round at which index i was first selected by either
site (if © was not selected during the t rounds, then let
j@@) =t+1). It is the case that

1. for all 1 <j < j(i), ai(j) = a; and b;(j) = b;;

2. for all j(i) < j <t, ai(j) = bi(j) = 4.

The proof (omitted due to space constraints) is
based on the following idea: Suppose the algorithm did
not terminate after n rounds. Let (if!,iP),..., (i2,i5)
denote the indices selected during each of n rounds. It

follows from Lemma 4.1 that a pair of indices (ij‘,if ),

will not be selected if ij‘ was selected at a previous
round, 7; < 7 and if was selected at a previous round,

j2 < j (possibly different than j;). Otherwise, i ﬁ

, 05 =1
and, hence, the algorithm would have termingmlted at
round j;. But, at most n — 1 pairs of indices can satisfy
this condition. A contradiction is reached.

Let 1 < t < n denote the termination round and
let i™ denote the index agreed upon by both sites
upon termination. To complete the correctness proof,
we need show that ™ is the correct index, i*M =
argmax{f(a; + b;)}. Consider any index 1 < ¢ < n.
From Lemma 4.1, one of the following holds: (1)ae(t)
= ay and by(t) = bg; (2)ae(t) = be(t) = ‘“Zﬂ. In either
case it follows that a(t) + be(t) = ag + be. Hence, i*M
= argmazx{f(a;(t) + b;(t))}.

By definition of the algorithm, i¥ = argmaz{a;(t)}
= argmazx{b;(t)}. Thus, a;m (t) +b;m (t) > ag(t) +be(t).
Therefore, since f is strictly increasing, f(a;m(t) +
b (t)) > f(ag(t) + be(t)). We conclude that iM =
argmaz{f(a;(t) + b;i(t))} = i*M as desired.

Comment: Each round of the Distributed Max al-
gorithm requires 24 bytes of communication. Thus, the
total communication is 24p where p is the number of
rounds until termination. This is quite a small commu-
nication requirement unless p is large(In the worst case
p is O(n), equivalent to centralizing the data. On av-
erage case it is O(lg n)). However, this communication
efficiency is won at a price — the algorithm requires p
rounds of synchronization. Even for relatively modest
p, the cost of these synchronizations could be unaccept-
ably high. A simple way to address this problem is to
have each site, at each round, select its top v > 1 tuples
instead of just its top tuple. The communication cost
per round increases to 24v bytes, but the total number
of rounds executed will decrease to p/v.

5 Experimental Results

The identification of correlations among astrophysical
parameters has lead to important discoveries in astron-
omy. For e.g., the class of elliptical and spiral galax-
ies have been found to occupy a 2D space (called the
Fundamental Plane[9]) inside a 3D space of observed
parameters — radius, mean surface brightness and ve-
locity dispersion. Identification of galaxies that do not
lie on the fundamental plane is interesting since out-
liers can lead to the discovery of unusual or rare types
of astronomical sources or phenomena ([10]). This sec-
tion presents a case study involving the detection of
outliers in the fundamental plane of galaxy parameters
distributed across two catalogs: 2MASS and SDSS.

In our study we measure the accuracy of our dis-
tributed versus the centralized approach. We mea-
sure the amount of variance captured by the first two



PCs in the distributed and centralized setting using
— (1) random sampling and (2) random projection.
Next, we use the approximate PCs to perform the
outlier detection. For brevity, we simply use the ap-
proximate PCs obtained from the sampling scheme®.
The metric used for comparison of outliers is Normail-
ized Ranking Error (NRE) which is defined as follows:

Kcentralized— Kdistribute : :
rankeentratizea—rankaisirivuted| Note that if NRE is 0, the

Number of tuples .
two algorithms chose the same outliers.

5.1 Experiment Set One We prepared our test
data as follows. Using the web interfaces of 2MASS?
and SDSS®, we obtain a dataset of galaxies lying in
the sky region between right ascension (RA) 150 and
200 degrees, declination (dec) 0 and +15. It had the
following attributes from SDSS: Petrosian I band an-
gular effective radius (laer), redshift (rs), and velocity
dispersion (vd);” and K band mean surface brightness
(Kmsb)® from 2MASS. After removing tuples with miss-
ing attributes, we had a 1307 tuple dataset with four
attributes. The pre-processing step involved producing
two new attributes, logarithm Petrosian I band effec-
tive radius (log(1er)), as log(laer*rs) and logarithm ve-
locity dispersion (log(vd)). The final dataset had three
attributes log(Ter), log(vd), Kmsb and was normalized.

We applied PCA directly to this dataset to obtain
the centralization based results. Then we treated this
dataset as if it were distributed with attributes log(Ier)
and log(vd) located at one site and attribute Kmsb at
another. We applied both our sampling and random
projection based algorithms to approximate the PCs.

Figure 1 shows the average percentage of variance
captured as a function of communication percentage.
Error bars indicate standard deviation over 100 trials.
The percentage captured by the centralized approach,
90.5%, replicates the known result that a fundamental
plane exists among these parameters. Also observe that
the percentage of variance captured by the distributed
algorithm using as little as 10% communication never
strays more than 5% from 90.5% for both techniques.
This is a reasonably accurate result indicating that the
distributed algorithms identify the existence of a plane
using 90% less communication.

Figure 2 illustrates the mean NRE as a function

INote that Random Sampling is shown to have a better

approximation compared to Random Projection for both the
datasets used.
S5http://irsa.ipac.caltech.edu/applications/Gator/
6http://cas.sdss.org/astro/en/tools/crossid /upload.asp
"petroRad_i (galaxy view), z (SpecObj view) and velDisp
(SpecObj view) in SDSS DR4
8k _mnsurfb_eff in the extended source
catalog in the All Sky Data Release,
http://www.ipac.caltech.edu/2mass/releases/allsky /index.html

of the communication percentage. At 10% communi-
cation, the average NRE is found to 0.08 which is a
reasonably good approximation at 90% less communi-
cation cost.
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Figure 1: Communication percentage vs. Percentage
of variance captured by Centralization, Random Pro-
jection and Uniform Sampling on the (log(Ier), log(vd),
Kmsb) dataset.
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Figure 2: Communication percentage vs. Normalized
Rank Error on the, (log(Ier), log(vd), Kmsb) dataset.

5.2 Experiment Set Two Using the web interfaces
of 2MASS and SDSS as before, we obtained a dataset
having the following attributes from SDSS: Petrosian
Flux in the R band (petroR) and Petrosian Flux in
the I band (petrol)?; and from 2MASS: K band mean
surface brightness (Kmsb) and K concentration index
(KconInd).!® We had a 29638 tuple dataset with
seven attributes. The pre-processing step involved
production of new attributes,petroR-I = petroR - petrol

gpetroMag_r, petroMag_i from (PhotoObjAll)
0k _mnsurfb_eff and k_con_indz in the extended source cata-
log in the All Sky Data Release



and logarithm K concentration index (log(Kconlnd)).
The final dataset was normalized and consisted of
attributes petroR-I, log(KconInd), and Kmsb.
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Figure 3: Communication percentage vs. Percent-
age of variance captured in Centralization, Random
Projection and Uniform Sampling on the (petroR-I,
log(KconInd),Kmsb) dataset.
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Figure 4: Communication percentage vs. Normal-
ized Rank Error on the (petroR-I, log(KconInd),Kmsb)
dataset.

As in Experiment One, we compared the percent-
age of variance captured by the principal components in
the distributed (Random Projection and Uniform Sam-
pling) versus the centralized case. The Figure 3 shows
the percentage of variance captured on the petroR-I
dataset as a function of communication percentage. Fig-
ure 4 reports the mean NRE as a function of the com-
munication percentage for the topmost outlier produced
by the centralized and distributed algorithms.

6 Conclusions and Future Work

We proposed a system for the Distributed Exploration
of Massive Astronomical Catalogs (DEMAC) in an ear-

lier work [4]. It is built on top of the existing U.S.
National Virtual Observatory environment and provides
tools for data mining (as web services) without requiring
datasets to be down-loaded to a centralized server. In
order to extend the functionality of the system, we de-
veloped an algorithm for distributed PCA using uniform
sampling and compared its performance with a random
projection based approach proposed earlier. Using the
approximate PCs we designed a communication-efficient
distributed algorithm for outlier detection. We carried
out two case studies for detecting outliers in the fun-
damental planes of astronomical parameters. We envi-
sion DEMAC to increase the ease with which large, geo-
graphically distributed astronomy catalogs are explored
and astronomers can better tap the riches of distributed
virtual sky survey catalogs.
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