
1

A Scalable Local Algorithm for Distributed

Multivariate Regression

Kanishka Bhaduri∗, Hillol Kargupta †∗

∗Department of Computer Science and Electrical Engineering,

University of Maryland, Baltimore County,

1000 Hilltop Circle,

Baltimore, Maryland, 21250, USA

Email:{kanishk1,hillol}@cs.umbc.edu

§The author is also affiliated to Agnik, LLC., Columbia, MD, USA

A shorter version of this paper was published in SIAM Data Mining Conference 2008

May 22, 2008 DRAFT

2

Abstract

This paper offers a local distributed algorithm for multivariate regression in large peer-to-peer

environments. The algorithm can be used for distributed inferencing, data compaction, data modeling

and classification tasks in many emerging peer-to-peer applications for bioinformatics, astronomy, social

networking, sensor networks and web mining. Computing a global regression model from data available

at the different peer-nodes using a traditional centralized algorithm for regression can be very costly and

impractical because of the large number of data sources, theasynchronous nature of the peer-to-peer

networks, and dynamic nature of the data/network. This paper proposes a two-step approach to deal

with this problem. First, it offers an efficient local distributed algorithm that monitors the “quality” of

the current regression model. If the model is outdated, it uses this algorithm as a feedback mechanism

for rebuilding the model. The local nature of the monitoringalgorithm guarantees low monitoring cost.

Experimental results presented in this paper strongly support the theoretical claims.

Index Terms

peer-to-peer, data mining, decision trees

I. INTRODUCTION

Multivariate Regression (MR) is a powerful statistical andmachine learning tool that is widely

used for prediction, classification, and data compression.Multivariate regression is relatively well

understood given a sample of the data (input variables and corresponding target output values)

at a single location. However, there are many emerging scenarios where data is distributed over

a network of machines. Peer-to-Peer (P2P) networks offer one such scenario. P2P systems such

as Gnutella, BitTorrents, e-Mule, Kazaa, and Freenet are increasingly becoming popular for

many applications that go beyond downloading music withoutpaying for it. Examples include

P2P systems for network storage, web caching, searching andindexing of relevant documents

and distributed network-threat analysis. The next generation of advanced P2P applications for

bioinformatics [1] and client-side web mining [2][3] are likely to need support for advanced

data analysis and mining. Performing basic operations likeregression is very challenging in a

P2P network because of the large number of data sources, the asynchronous nature of the P2P

networks, and dynamic nature of the data.

This paper offers a local distributed algorithm for performing multivariate regression and

monitoring the model in a P2P network. The approach is scalable, decentralized, asynchronous,

May 22, 2008 DRAFT

3

and inherently based on in-network computation. The algorithmic framework is local, in the

sense that the computation and communication load at each node is independent of the size or

the number of nodes of the network. This is very important forthe scalability of the algorithm

in large P2P networks. The proposed methodology takes a two-step approach for building and

maintaining MR models in P2P networks. The first step in our algorithm is themonitoring phase

in which, given an estimate of the MR model to all the peers, they asynchronously track any

change between the model and the global data using a provablycorrect local algorithm. The

second step, known as thecomputation phase, uses the monitoring algorithm as a feedback loop

for triggering a new round of MR model-building if necessary. The algorithm guarantees that

as long as the MR model correctly represents the data, littlecomputing and communication

resources are spent for monitoring the environment. When the data undergoes a change in the

underlying distribution and the MR model no longer represents it, the feedback loop indicates

this and the model is rebuilt. Moreover, we also show that allthe data need not be centralized

to recompute the MR coefficients. We can do in-network aggregation for finding them; thereby

using far less resources than brute force centralization. The specific contributions of this paper

are as follows:

• To the best of the authors’ knowledge this is one of the first attempts on developing a

completely asynchronous and local algorithm for doing multi-variate regression in P2P

networks which is robust to data and network changes.

• Besides this, we have also derived an upper bound on the totalnumber messages exchanged

between the peers in the worst case.

• Most of the previous work in the literature focuses on linearregression in distributed envi-

ronments. Our technique can be applied to most types of common multivariate regression.

The rest of the paper is organized as follows. Related background material is presented in

Section II. Section III introduces the notations and problem definition. Section IV presents the

MR monitoring algorithm, while Section V discusses the MR computation problem. Experimental

results are presented in Section VII. Finally, Section VIIIconcludes this paper.

II. BACKGROUND

This section provides the necessary background material.

May 22, 2008 DRAFT

4

A. Approach

Statistical models can be built and updated from distributed data in various ways. Theperiodic

approach is to simply rebuild the model from time to time. Theincrementalapproach is to update

the model whenever the data changes. Lastly, thereactiveapproach, what we propose here, is to

monitor the change, and rebuild the model only when it no longer suits the data. Theperiodic

approach can be highly inefficient since, there is the risk ofwasting resources even if the data is

stationary and also the risk of model inaccuracy if the updating is delayed.Incrementalalgorithms

can be very efficient; however their major drawback is that a separate algorithm needs to be

handcrafted for every problem. Data drivenreactive algorithms are efficient, simple and can

accommodate a wide variety of function computation. This isbecause the algorithm only reacts

and rebuilds the model if the data changes — in other cases, the algorithm does nothing and

saves unnecessary communication.

The work presented in this paper considers building and updating regression models from

data distributed over a P2P network where each peer containsa subset of the data tuples.

In the distributed data mining literature, this is usually called the horizontally partitioned or

homogeneously distributed data scenario. Building a global regression model (defined on the

union of all the data of all the peers) in large-scale networks and maintaining it is a vital task.

Consider a network where there are a number of nodes (by node we mean peers, sensors, grid

components etc.) and each node gets a stream of tuples (can besensor readings, music files etc.)

frequently. We may wish to build a regression model on the global data to (1) compactly represent

the data and (2) predict the value of a target variable. This is difficult since the data is distributed

and more so because it is dynamic. Centralization obviouslydoes not work because the data

may change at a faster rate than the rate at which it can be centralized. Local algorithms are an

excellent choice in such scenarios since in a local algorithm, each peer computes the result based

on the information from only a handful of nearby neighbors. Hence local algorithms are highly

scalable and offer bounded communication complexity per peer. Therefore, such an algorithm

will enable the user to monitor regression models using low resources.

B. Related Work

The work presented in this paper is related to two main bodiesof literature - multivariate

regression and computation in large distributed environments.

May 22, 2008 DRAFT

5

1) Distributed Multi-variate Regression:The problem of distributed multivariate regression

has been addressed by many researchers till date. Hershberger et al. [4] considered the problem of

performing global MR in a vertically partitioned data distribution scenario. The authors propose

a wavelet transform of the data such that, after the transformation, effect of the cross terms can

be dealt with easily. The local MR models are then transported to the central site and combined

to form the global MR model. Such synchronized techniques are unlikely to scale in large,

asynchronous systems such as modern P2P networks.

Many researchers have looked into the problem of doing distributed MR using distributed

kernel regression techniques such as Guestrin et al. [5] andPredd et al. [6]. The algorithm

presented by Guestrin et al. [5] performs linear regressionin a network of sensors using in-

network processing of messages. Instead of transmitting the raw data, the proposed technique

transmits constraints only, thereby reducing the communication complexity drastically. Similar

to the work proposed here, their work also uses local rules toprune messages. However the

major drawback is that their algorithm is not suitable for dynamic data. It will be very costly if

the data changes since, as the authors point out, two passes are required over the entire network

to make sure that the effect of the measurements of each node are propagated to every other

node. Moreover, contrary to the broad class of problems thatwe can solve using our technique,

their technique is only applicable for solving the linear regression problem.

Meta-learning is an interesting class of algorithms typically used for supervised learning. In

a meta learning, such as bagging [7] or boosting [8] many models are induced from different

partitions of the data and these “weak” models are combined using a second level algorithm

which can be as simple as taking the average output of the models for any new sample. Such a

technique is suitable for inducing models from distributeddata as proposed by Stolfo et al. [9].

The basic idea is to learn a model at each site locally (no communication at all) and then, when

a new sample comes, predict the output by simply taking an average of the local outputs. Xing

et al. [10] present such a framework for doing regression in heterogenous datasets. However,

these techniques perform poorly as the number of such data partitions increases to millions – as

in typical P2P systems.

A closely related topic is classification in which the outputis discrete instead of real-valued.

Several algorithms have been proposed for distributed classification. Here we present only a few

of them.

May 22, 2008 DRAFT

6

Carageaet al. [11] presented a decision tree induction algorithm for bothhorizontally and

vertically distributed data. Noting that the crux of any decision tree algorithm is the use of an

effective splitting criteria, the authors propose a methodby which this criteria can be evaluated

in a distributed fashion. Their system is available as part of the INDUS system. A different

approach was taken by Giannellaet al. [12] and Olsen [13] for inducing decision tree in vertically

partitioned data. They used Gini information gain as the impurity measure and showed that

Gini between two attributes can be formulated as a dot product between two binary vectors.

To reduce the communication cost, the authors evaluated thedot product after projecting the

vectors in a random smaller subspace. The major disadvantages of these techniques are (1)

strong synchronization requirements and (2) inability to adapt to changes in data or network.

Distributed probabilistic classification on heterogenousdata sites have also been discussed by

Merugu and Ghosh [14]. Similarly, Parket al. have proposed a fourier spectrum-based approach

for decision tree induction in vertically partitioned datasets [15].

Meta-classification from horizontally partitioned data for large distributed systems have been

proposed by Lou et al. [16]. The system builds local models which requires no communication at

all. When a new tuple arrives, it is broadcast to all the nodesand the output is determined using

a variation of the majority voting scheme which the authors term as distributed plurality voting

(DPV). Two disadvantages of this method are as follows. The tuple to be classified needs to be

flooded in the network. Similar to other meta-learning techniques, the quality of such algorithms

degrade as the size of the systems increases to millions of peers.

A robust, completely asynchronous and communication efficient algorithm for decision tree

induction from horizontally partitioned data distributedin large P2P systems has been proposed

by Bhaduri et al. [17]. The algorithm is eventually correct which means the decision tree inducted

by our algorithm is the same that would be induced given all the data at a central location. The

algorithm also seamlessly handles changes in the data and the network. Experimental results

show the low cost of building and maintaining the decision trees even when the data changes.

2) Computation in large distributed (P2P) systems:Computation for P2P networks span three

main areas: (1) best effort heuristics, (2) gossip based computations, (3) broadcast-based systems

and (4) local algorithms. For a detailed survey interested readers can refer to [18].

Algorithms using best effort heuristics have been developed for large distributed systems. The

P2Pk-Means algorithm by Bandyopadhyay et al. [19] is one such example. Typically for such

May 22, 2008 DRAFT

7

algorithms, a peer collects some samples from its own data and its neighbors and builds a model

on this sample. The samples are generally collected using some variations of random walk-based

techniques. These algorithms can be classified as probabilistic approximate algorithms since the

results are bounded only on average. A different class is theset of deterministic approximate

algorithms such as the inferencing problem in sensor networks using variational approximation

technique proposed by Mukherjee et al. [20].

Gossip algorithms rely on the properties of random samples to provide probabilistic guarantees

on the accuracy of the results. Researchers have developed different approaches for performing

basic operations (e.g. average, sum, max, random sampling) on P2P networks using gossip

techniques. Kempeet al. [21] and Boydet al. [22] present such primitives. In gossip protocols,

a peer exchanges data or statistics with a random peer. However, they can still be quite costly

– requiring hundreds of messages per peer for the computation of just one statistic. Another

closely related technique is to use deterministic gossip orflooding. In flooding, every peer

floods/broadcasts the data and therefore, eventually the data/statistic is propagated through the

entire network. Here again the major drawback is scalability and the answer to dynamic data.

Communication-efficient broadcast-based algorithms havebeen also developed for large clus-

ters such as the one developed by Sharfman et al. [23]. Since these algorithms rely on broadcasts

as their mode of communication, the cost quickly increases with increasing system size.

Local algorithms are a good choice for data mining in P2P networks since in a local algorithm,

the result is generally computed by communicating with a handful of nearby neighbors and

the total communication per peer is also bounded. Local algorithms rely on data dependent

conditions which we refer to as local rules, to stop propagating messages. This means that if

the data distribution does not change, the communication overhead is very low. On the other

hand, the local rules are violated when the distribution changes. On one hand, local algorithms

are highly efficient (and hence scalable). The exact local algorithms we consider in this paper

guarantee eventual convergence to theexactresult (equal to that which would be computed given

the entire data). This feature makes local algorithms exceptionally suitable for P2P networks as

well as to wireless sensor networks.

The idea of using local rules for algorithms dates back to theseventies. John Holland described

such rules for non-linear adaptive systems and genetic algorithms in his seminal work for

biological systems [24]. Local evolutionary rules for grid-based cellular automaton were first

May 22, 2008 DRAFT

8

introduced in 1950’s by John Von Neumann [25] and later adopted in many fields such as

artificial agents, VLSI testing, physical simulations to mention a few. In the context of graph

theory, local algorithms were used in the early nineties by Afek et al. [26] and Linial [27].

Naor and Stockmeyer [28] asked what properties of a graph canbe computed in constant time

independent of the graph size. Kutten and Peleg [29] have introduced local algorithms for fault-

detection in which the cost depends only on the unknown number of faults and not on the

entire graph size. They have developed solutions for some key problems such as the maximal

independent set (MIS) and graph coloring. Kuhnet al. [30] have suggested that some properties

of graphs cannot be computed locally.

More recently, local algorithms have been developed for several data mining problems: as-

sociation rule mining [31], facility location [32], L2 Thresholding [33], outliers detection [34],

meta-classification [16] and decision tree induction [17].Researchers have also looked at the

complexity of local algorithms using the concept of veracity radius [35].

III. N OTATIONS AND PROBLEM DEFINITION

A. Notations

Let V = {P1, . . . , Pn} be a set of peers connected to one another via an underlying com-

munication infrastructure such that the set ofPi’s neighbors,Γi, is known toPi. Additionally,

at a time t, Pi is given a stream of data vectors inRd. The local data of peerPi at time

t is Si =
[(−→

xi
1, f(
−→
xi

1)
)

,
(−→
xi

2, f(
−→
xi

2)
)

, . . .
]
, where each

−→
xi

j is a (d-1)-dimensional data point
[
xi

j1x
i
j2 . . . xi

j(d−1)

]
andf is a function fromR

d−1 → R. Every data point can be viewed as an

input and output pair. Below we define the global knowledge which is the union of all the data

of all the peers.

Definition 3.1 (Global knowledge):The global knowledge is the set of all inputs at timet

and is denoted byG =
⋃

i=1,...,n

Si.

Henceforth we will drop the indices inG.

In MR, the task is to learn the function̂f(−→x) which “best” approximatesf(−→x) according

to some measure such as least square. Now depending on the representation chosen for̂f(−→x),

various types of regression models (linear or nonlinear) can be developed. We leave this type

specification as part of the problem statement for our algorithm, rather than an assumption.

May 22, 2008 DRAFT

9

For each data point(−→x , f(−→x)), the error between̂f(−→x) and f(−→x) can be computed as[
f(−→x)− f̂(−→x)

]2

. Normally we require the error to be zero. However, since we have a dynamic

data change scenario we relax this assumption and consider asolution to be admissible if the

global error is less thanǫ, whereǫ is a user chosen threshold. For peerPi, this errorEi is a set

of points inR i.e. Ei =

{[
f(
−→
xi

1)− f̂(
−→
xi

1)
]2

,
[
f(
−→
xi

2)− f̂(
−→
xi

2)
]2

, . . .

}
. The average error forPi

is denoted byEi = 1
|Ei|

∑
j

[
f(
−→
xi

j)− f̂(
−→
xi

j)
]2

.

Moreover, in our scenario, this error value is distributed across the peers — therefore a good

estimate of the global error is the global average errori.e. EG = 1
n

∑
i Ei over all the points in

G.

Peers communicate with one another by sending sets of pointsin R or statistics as defined in

Section III-B. LetXi,j denote the last sets of points sent by peerPi to Pj. Assuming reliable

messaging, once a message is delivered bothPi andPj know Xi,j andXj,i. Our next definition

formally defines a message.

Definition 3.2 (Message):The messagethat peerPi needs to send toPj consists of a set of

vectors and is denoted byXi,j. Each vector is inR and the size of the set depends on the data

that peerPi needs to send toPj.

Below we show that for our case, sending the statistics of theset (such as mean and size) is

sufficient. Now we define four entities which are crucial to our algorithm.

Definition 3.3 (Knowledge):Theknowledgeof Pi is the union ofEi with Xj,i for all Pj ∈ Γi

and is denoted byKi = Ei ∪
⋃

Pj∈Γi

Xj,i.

Definition 3.4 (Agreement):The agreement of Pi and any of its neighborsPj is Ai,j =

Xi,j ∪Xj,i.

Definition 3.5 (Withheld knowledge):The subtraction of the agreement from the knowledge

is thewithheld knowledge of Pi with respect to a neighborPj i.e.Wi,j = Ki \ Ai,j.

We are interested in computing regression models defined onG. Note that no peer has the

global error orEG. Therefore each peer will estimateEG based on only its local knowledgeKi.

These sets can be arbitrarily large. Hence in order to represent these sets efficiently, we define

two statistics on each set: (1) theaveragewhich is the average of all the points in the respective

sets (e.g.Ki, Ai,j,Wi,j, Xi,j, Xj,i andEG), and (2) thesizesof the sets denoted by|Xi,j|, |Xj,i|,
|Ki|, |Ai,j|, |Wi,j|, and

∣∣EG
∣∣. Instead of communicating the entire sets of points, each peer can

May 22, 2008 DRAFT

10

communicate only these two statistics for each set which is sufficient to represent them.

B. Sufficient Statistics

Our algorithm relies on the fact that points sent by any peerPi to Pj are never sent back to

Pi. This can be done in several different ways such as message indexing, tagging and ensuring

that the graph topology has no cycles. In this paper we take a simpler approach — we assume

that a tree topology is imposed over the network. We could getaround this assumption in one

of two ways:

1) We can use a similar technique as proposed by Lisset al. [36] which extends the original

majority voting algorithm for arbitrary network topology.

2) There exist several techniques in the literature for maintaining tree communication topology

such as [37] (for wired networks) or [38] (for wireless networks).

If we assume that communication always takes place in an overlay tree topology, we can write

the following expressions for the sizes of the sets:

1. |Ai,j| = |Xi,j|+ |Xj,i|
2. |Ki| = |Ei|+

∑

Pj∈Γi

|Xj,i|, and

3. |Wi,j | = |Ki| − |Ai,j|.
Similarly for the average of the sets we can write,

1. Ai,j =
|Xi,j |

|Ai,j |
Xi,j +

|Xj,i|

|Ai,j |
Xj,i

2. Ki = |Ei|
|Ki|
Ei +

∑

Pj∈Γi

|Xj,i|
|Ki|

Xj,i

3.Wi,j = |Ki|
|Wi,j |
Ki − |Ai,j |

|Wi,j |
Ai,j

Note that, for any peer, any of these quantities can be computed based solely on its local data

and what it gets from its immediate neighbors.

Next we formally state the problem definition.

C. Problem Definition

Problem 1. [MR Problem] Given a time varying datasetSi, a user-defined thresholdǫ and

f̂(−→x) : R
d−1 → R to all the peers, the MR problem is to maintain af̂(−→x) at each peer such

that, at any timet, EG < ǫ.

May 22, 2008 DRAFT

11

For ease of explanation, we decompose this task into two subtasks. First, given a representation

of f̂(−→x) to all the peers, we want to raise an alarm wheneverEG > ǫ, whereǫ is a user-defined

threshold. This is themodel monitoring problem. Now if f̂(−→x) no longer representsf (−→x), we

sample from the network (or even better do an in-network aggregation) to find an updated̂f(−→x).

This is themodel computation problem. Mathematically, the subproblems can be formalized as

follows.

Problem 2.[Monitoring Problem] Given Si, andf̂(−→x) to all the peers, the monitoring problem

is to output 0 ifEG < ǫ, and 1 otherwise, at any timet.

Problem 3.[Computation Problem] The model computation problem is to find a neŵf(−→x)

based on a sample of the data collected from the network.

Also note that the case for which the output is 0 can be defined as the regionC−
ω =

{x ∈ R : 0 < x < ǫ}. The region in which the output is 1 can be defined asC+
ω = {x ∈ R : ǫ < x <∞}

Further, letCω = {C+
ω , C−

ω }. In order to ensure global correctness of the monitoring algorithm,

we have transformed the thresholding problem to a geometricproblem: we check if the global

average error lies inC−
ω . In Section IV, we discuss a lemma relying onCω which will guarantee

correctness of the monitoring algorithm.

D. Example

In this section we illustrate the P2P MR algorithm. Let therebe two peersPi and Pj. Let

the regression model be linear in the regression coefficients: a0 + a1x1 + a2x2, wherea0, a1

and a2 are the regression coefficients having values 1, 2 and -2 respectively andx1 and x2

are the two attributes of the data. The coefficients are givento all the peers. The data of

peer Pi is Si = {(3, 1, 3.9), (0,−1, 3.6)}, where the third entry of each data point is the

output generated according to the regression model. To this, we add 30% noise. Similarly,

for peer Pj, Sj = {(1, 4,−6.5), (−3, 2,−9.1)}. Now for peerPi, the squared error for each

point is: Ei = {(0.9)2, (0.6)2}. Similarly for Pj, the errors areEj = {(1.5)2, (2.1)2}. Hence

Ei =
{

(0.9)2+(0.6)2

2

}
= {0.585} and Ej =

{
(1.5)2+(2.1)2

2

}
= {3.33}. AssumingXi,j = Xj,i = 0,

for peer Pi, Ki = Ei = {0.585}. Similarly for peerPj , Kj = Ej = {3.33}. Also the global

May 22, 2008 DRAFT

12

average error isEG =
{

(0.9)2+(0.6)2+(1.5)2+(2.1)2

4

}
= {1.9575}. In R, the task is to determine if

1.9575 > ǫ for a user definedǫ.

E. Local Algorithm

Local algorithms, as defined by Das et al. [3], are parameterized by two quantities: (1)α

– which is the number of neighbors a peer contacts in order to find answers to a query and

(2) γ – which is the total size of the response which a peer receivesas the answer to all the

queries executed throughout the lifetime of the algorithm.α can be a constant or a function

parameterized by the size of the network whileγ can be parameterized by both the size of the

data of a peer and the size of the network. Here we present the definition proposed by Das et

al. [3].

Definition 3.6 (α-neighborhood of a vertex):Let G = (V, E) be the graph representing the

network whereV denotes the set of nodes andE represents the edges between the nodes. The

α-neighborhood of a vertexv ∈ V is the collection of vertices at distanceα or less from it in

G: Γv(α, v, V) = {u|dist(u, v) ≤ α}, wheredist(u, v) denotes the length of the shortest path

in betweenu andv and the length of a path is defined as the number of edges in it.

Definition 3.7 (α-local query): Let G = (V, E) be a graph as defined in last definition. Let

each nodev ∈ V store a data setXv. An α-local query by some vertexv is a query whose

response can be computed using some functionf(Xα(v)) whereXα(v) = {Xv|v ∈ Γv(α, v, V)}.
Definition 3.8 ((α, γ)-local algorithm): An algorithm is called(α, γ)-local if it never requires

computation of aβ-local query such thatβ > α and the total size of the response to all suchα-

local queries sent out by a peer is bounded byγ. α can be a constant or a function parameterized

by the size of the network whileγ can be parameterized by both the size of the data of a peer

and the size of the network.

The idea is to design algorithms that offers bounded total communication cost per node and also

spatially localized communication among the neighbors. Wecall such an (α, γ)-local algorithm

efficient if both α andγ are either small constants or some slow growing functions (sublinear)

with respect to its parameters. We prove that the regressionmonitoring algorithm is(O(1), O(n))-

local in Section IV-B.

May 22, 2008 DRAFT

13

IV. STEP 1: MONITORING REGRESSIONMODEL

In MR monitoring problem, each peer is given a datasetSi and an estimatêf(−→x). Our goal

is to monitorEG.

We present here a local algorithm which monitors the regression coefficients by thresholding

the average error. In our earlier work [33], we presented an algorithm for monitoring the L2

norm of the average vector distributed across a large numberof peers. The algorithm outputs

0 if
∣∣∣
∣∣∣
−→G

∣∣∣
∣∣∣ < ǫ and 1 otherwise. The algorithm presented in [33] is prone to noise in the data

since it communicates all the data for every data change. In this paper, we take care of that

problem by applying a different condition for sending messages and ensuring that all data is

not sent whenever a peer communicates. Rather, we keep some data (in the form of withheld

knowledge) so that if the data changes later, the change is less noisy. Here we use a similar

algorithm but inR and use a different set of conditions for sending messages inorder to reduce

the communication overhead in dynamically changing environments.

The regression monitoring algorithm guarantees eventual correctness, which means that once

computation terminates, each peer computes the correct result as compared to a centralized

setting. In a termination state, no messages traverse the network, and hence a peer can decide

solely based onKi, Ai,j, andWi,j, if EG is greater than or less thanǫ. As stated by the Theorem

below, if the following condition holds, the peer can stop sending messages and determine the

correct output based solely on its local averages.

Theorem 4.1:[Stopping Rule] Let P1, . . . , Pn be a set of peers connected to each other over

a spanning treeG (V, E). Let EG, Ki, Ai,j, andWi,j be as defined in the previous section. Let

R be any region inCω. If at time t no messages traverse the network, and for eachPi, Ki ∈ R

and for everyPj ∈ Γi, Ai,j ∈ R and eitherWi,j ∈ R orWi,j = ∅, thenEG ∈ R.

Proof: [Sketch]:We omit the formal proof here. Simply speaking, the theorem can be proved

by taking any two arbitrary peers and exchanging all of theirwithheld knowledge. We call this

the unification step. After unifying all the peers it can be shown thatEG ∈ R. Interested readers

are referred to [39].

The significance of Theorem 4.1 is that under the condition describedPi can stop sending

messages to its neighbors and output ifKi < ǫ. The idea is to ensure thatKi and EG finally

reside in the same region inCω. If the result of the theorem holds for every peer, then Theorem

May 22, 2008 DRAFT

14

4.1 guarantees this is the correct solution; else, there must either be a message in transit, or

some peerPk for whom the condition does not hold. Then eitherPk will send a message which

will change its output or the message will be received, leading to a change inKk eventually.

Thus eventual correctness is guaranteed. We formally provethis in Section IV-A.

Input : ǫ, Cω, Si, Γi andL
Output : 0 if Ki < ǫ, 1 otherwise
Initialization : Initialize vectors;
if MessageRecvdFrom

(
Pj, X, |X|

)
then

Xj,i ← X;
|Xj,i| ← |X|;
Update vectors;

end
if Si, Γi or Ki changesthen

forall Pj ∈ Γi do
if LastMsgSent > L time units agothen

if R = ∅ then

Xi,j ← |Ki|Ki−|Xj,i|Xj,i

|Ki|−|Xj,i|
;

|Xi,j| ← |Ki| − |Xj,i|;
end
if Ai,j 6∈ R or Wi,j 6∈ R then

SetXi,j and |Xi,j| such thatAi,j andWi,j ∈ R;
end
SendMessage

(
Pj, Xi,j, |Xi,j|

)
;

LastMsgSent← L;
Update all vectors;

end
elseWait L time units and then check again;

end
end

Algorithm 1 : Monitoring Regression Model.

Algorithm 1 presents the pseudo-code. The inputs to the algorithm areSi, Γi, ǫ andCω and

L. Each peer initializes its local statisticsKi, Ai,j andWi,j . A peer may need to send a message

if its local data changes, if it receives a message or if the set of neighbors change. In any of

these cases, the peer checks if the condition of the theorem holds. First peerPi finds the region

R ∈ Cω such thatKi ∈ R. If, for all Pj ∈ Γi, bothAi,j ∈ R andWi,j ∈ R, Pi does nothing; else

it needs to setXi,j and |Xi,j| and send those, such that after the message is sent, the condition

of the theorem holds for this peer. As we already pointed out that if a peer communicates all

May 22, 2008 DRAFT

15

of its data, then if the data changes again later, the change is far more noisy than the original

data. So we always setXi,j and |Xi,j| such that some data is retained while still maintaining

the conditions of the theorem. We do this by checking with an exponentially decreasing set of

values of|Wi,j | until either allKi, Ai,j andWi,j ∈ R, or |Wi,j |=0, in which case we have to

send everything. Note that other than these two cases, a peerneed not send a message since

the theorem guarantees eventual correctness. Similarly, whenever it receives a message (X and

|X|), it setsXj,i ← X and |Xj,i| ← |X|. This may trigger another round of communication

since itsKi can now change.

To prevent message explosion, in our event-based system we employ a “leaky bucket” mecha-

nism which ensures that no two messages are sent in a period shorter than a constantL. Whenever

a peer needs to send a message it checks ifL time units have passed since the last time it sent

a message. If yes, it simply sends the message and notes the time. If not, it sets up a timer and

initializes it to the time difference betweenL and the time it had sent the last message. When

the timer expires, the peer checks the conditions for sending messages and decides accordingly.

Note that this mechanism does not enforce synchronization or affect correctness; at most it might

delay convergence. This technique has been used elsewhere as well [33][17].

In the next two sections we discuss the correctness and locality of the multivariate regression

monitoring algorithm.

A. Correctness

In this section we prove that the regression monitoring algorithm is eventually correct. Theorem

4.2 formally proves the claim.

Theorem 4.2:[Correctness] The regression monitoring algorithm iseventually correct.

Proof: Each peer will continue to send messages and accumulate moreand more ofEG

in eachKi until one of the two things happen: either for every peer,Ki = EG or for everyPi,

bothKi, Ai,j, andWi,j are in the sameRℓ ∈ Cω. In the former case,Ki = EG, so every peer

obviously computes the correct output. In the latter case, Theorem 4.1 dictates thatEG ∈ Rℓ.

Since the function output (in this case 0 or 1) does not changeinside each of these regions in

Cω, andEG andKi lie inside the same region, the output of the testEG < ǫ will be the same as

Ki < ǫ. Therefore in either of the cases, the regression monitoring algorithm is correct.

May 22, 2008 DRAFT

16

B. Locality

In this section we claim that the regression monitoring algorithm is (O(1), O(n))-local. The art

of measuring(α, γ)-locality of algorithms is at its infancy. An attempt has been made to define

locality with respect to theVeracity Radiusof an aggregation problem [35]. However this method

does not extend well to algorithms that contain randomness (e.g., in message scheduling) or to

dynamic data and topology. Considering the (α, γ) framework we defined earlier, there always

exist problem instances for which any eventually correct algorithm (e.g. [16][31][33][40][41]

and the one described in this paper) will have worst caseγ = O(n) (as shown in Theorem

4.4), wheren is the size of the network. WhileO(n) is the upper bound on the communication

complexity, more accurate bounds onγ can be developed by identifying the specific problems

and input instances. We feel that there is an intrinsic relation betweenγ and ǫ. For example

increasingǫ decreasesγ though it needs to be investigated further.

Lemma 4.3:Considering a two node network,Pi andPj, the maximum number of messages

exchanged between them to come to a consensus about the correct output is 2.

Proof: Using the notations defined earlier, letKi ∈ Rk, Kj ∈ Rℓ and EG ∈ Rm, where

Rm, Rk, Rℓ ∈ Cω andk 6= ℓ andm = k or ℓ. Considering an initialization state, whereXi,j =

Xj,i = 0 such thatAi,j = 0 = Aj,i. In this case the condition of Theorem 4.1 does not hold for

eitherPi or Pj. Without loss of generality let us assume that the conditions are violated atPi.

It will send all of its datai.e.Ki to Pj which will enablePj to correctly computeEG (sinceEG

is a convex combination ofKi andKj). On receivingKi from Pi, Pj will apply the conditions

of Theorem 4.1. Since clearlyKj = EG ∈ Rm butAj,i = Ki ∈ Rk, the condition of the theorem

dictates it to send a message toPi and it will send all the data which it has not received fromPi

i.e.Kj . At this point bothPi andPj have bothKi andKj. Hence they can computeEG correctly.

Therefore the number of messages exchanged is 2.

Our next theorem bounds the total number of messages sent by the regression monitoring

algorithm. Because of the dependence on the data, counting the number of messages in a data

independent manner for such an asynchronous algorithm seems extremely difficult. Therefore

in the following theorem (Theorem 4.4), we find the upper bound of the number of messages

exchanged by any peer when the data of all the peer changes.

May 22, 2008 DRAFT

17

Lemma 4.4:[Communication Complexity] Let Dt be a state of the network at timet where

for everyPi, Ki ∈ Rℓ, Rℓ ∈ Cω. HenceEG ∈ Rℓ as well and thus the peers have converged to

the correct result. Let at timet′ > t the data of each peer changes. Without loss of generality, let

us assume that at timet′, Ki ∈ Ri where eachRi ∈ Cω. Let us also assume thatEG ∈ Rg, where

g /∈ {1 . . . n}. The maximum number of messages sent by any peerPi is (n− 1)× (|Γi| − 1) in

order to ensureKi ∈ Rg.

Proof: It is clear that the output of each peer will be correct only when eachKi = EG.

This will only happen when eachPi has communicated with all the peers in the network i.e.

Ki =
∑n

i=1Ki. Since the regression monitoring algorithm only communicates with immediate

neighbors, in the worst case any peerPi will be updated with each value ofKj, j 6= i one at

a time. Every timePi gets oneKj , it communicates with all its neighbors except the one from

which it gotKj. This process can be repeated in the worst case for(n − 1) times in order to

get all theKj ’s. At every such update,Pi will communicate with|Γi| − 1 neighbors. Therefore,

the total number of messages sent byPi is (n− 1)× (|Γi| − 1).

Our next theorem shows that the multivariate regression monitoring algorithm is(O(1), O(n))-

local.

Theorem 4.5:[Locality] The multivariate regression monitoring algorithm is(O(1), O(n))-

local.

Proof: The multivariate regression algorithm is designed to work by communicating with

immediate neighbors of a peer only. Hence by design,α = 1.

From Lemma 4.4, we know thatγ = O(n). Hence, the multivariate regression monitoring

algorithm is(O(1), O(n))-local.

Although the worst case communication complexityγ is O(n), for many interesting problem

instancesγ is a small constant and independent of the size of the networkas corroborated by

our extensive experimental results.

C. An Alternate Approach

In the previous section we used L2-norm monitoring as the building block for monitoring the

regression coefficients. In this section we discuss anotherprimitive viz. majority voting protocol

which can be used for the same matter.

May 22, 2008 DRAFT

18

Majority voting protocol for large P2P systems was proposedby Wolff and Schuster [31]. In

its basic form, each peerPi contains a real numberδi and the objective is to determine whether

∆ =
∑

i∈V δi ≥ ǫ′, whereǫ′ is a user chosen threshold.

The task of computing if∆ > ǫ′ can be achieved by the following algorithm. For peersPi

andPj , let δi,j denote the most recent message (a real number) peerPi sends toPj . Similarly

δj,i denotes the last message received byPi from Pj . Now using a similar mnemonic as done in

the previous sections, the knowledge ofPi is ∆i = δi +
∑

Pj∈Γi
δj,i. Similarly, the agreement of

peerPi andPj is ∆i,j = δi,j + δj,i, for each neighborPj ∈ Γi. The algorithm is entirely event

based — an event atPi can be one of the following: (i)Pi is initialized (enters the network

or otherwise begins computation of the algorithm); (ii)Pi experiences a data changeδi or a

change of its neighborhood,Γi; (iii) Pi receives a message from a neighborPj. If any of these

events occur, peerPi needs to check conditions on its knowledge and agreement to determine if

a message needs to be sent toPj. It can be shown that peerPi needs to send a message toPj

only if the following test returns true:(∆i,j ≥ 0 ∧∆i,j > ∆i) ∨ (∆i,j < 0 ∧∆i,j < ∆i). Since

all these events are local to a peer, the algorithm requires no form of global synchronization and

hence can be used for our regression monitoring algorithm.

What is left to discuss is whatPi sends toPj , if the conditions dictate so.Pi first setsδi,j to

β∆i− δj,i (thereby making∆i,j = β∆i) and sends it toj, whereβ is a fixed parameter between

0 and 1. Reducingβ reduces the number of messages in a dynamic setup while increasing the

convergence time. This mechanism replicates the one used byWolff et al. in [33] and Bhaduri

et al. [17]. The pseudo-code is presented in Algorithm 2.

In order to use this protocol for regression monitoring, thefollowing steps need to be taken:

• The inputδi for each peer should be the average error calculated on its own local dataset

Si i.e. δi = Ei = 1
|Si|

∑
−→x ∈Si

[
f(−→x)− f̂(−→x)

]2

.

• Chooseǫ′ = ǫ× n, wheren is the total number of nodes in the network.

Other than these two changes, the majority voting algorithmcan be used for regression

monitoring without any further change.

In the next section we discuss the algorithm for computing the regression coefficients.

May 22, 2008 DRAFT

19

V. STEP 2: COMPUTING REGRESSIONMODEL

The regression monitoring algorithm presented in the earlier section can be viewed as a flag

which is raised by a peer wheneverEG > ǫ. In this section we discuss how the peers collaborate

to find a newf̂(−→x) using a convergecast-broadcast technique.

The basic idea is to use theconvergecastphase to sample data from the network to a central

post and compute, based on this sample, a newf̂(−→x). The broadcastphase distributes this

f̂(−→x) to the network. The monitoring algorithm now monitors the quality of the result. The

efficiency and correctness of the monitoring algorithm allows a very simple sampling technique

to be used – if an ill-fit model is built at all, it will soon be detected by the local algorithm

resulting in another round of convergecast in the worst case. Another point to note is that, in

our convergecast-broadcast process, we do not specify the root of the convergecast tree. Rather

we let the network structure (edge delays and data skewness)decide it. This is significant since

it ensures (1) decentralized control, (2) load balancing, and (3) robustness against a single point

of failure.

In the convergecast phase there are two main parameters. Each peer maintains a user selected

alert mitigation constant,τ and the sample size. An alert should be stable for a given period

of time τ before the peer can send its data, thereby preventing a possibly false alarm from

propagating. In order to do this, the peer relies on the underlying monitoring algorithm. If the

monitoring algorithm raises a flag, the peer notes the time, and sets a timer toτ time units. If the

timer expires, or a data message is received from one of its neighbors,Pi first checks if there is

an existing alert and if it has been recordedτ or more time units ago. If so, it counts the number

of neighbors from which it has received data messages. Once it receives data messages from all

of its neighbors, the peer computes a new regression modelf̂(−→x) based on the sample it received

and sends it to itself. It then moves to the broadcast phase and sendsf̂(−→x) to all its neighbors.

On the other hand, if it has received data messages from all but one of the neighbors then it

takes a uniform sample (of user-defined size) from its own data and the data it has received from

its neighbors. It then forwards the sample to the peer from which it has not received data and

marks its state as broadcast. The peer does nothing if it has not received data from two or more

neighbors. Note that, at each peer, the sampling technique is such that, each data point gets an

equal chance of being included in the sampled data set. We do this by properly weighing every

May 22, 2008 DRAFT

20

(a) Initial state (b) Activated leaves (c) Activated intermediate
nodes

(d) Activated roots

Fig. 1. Convergecast and broadcast through the different steps. In subfigure 1(a), the peers do not raise a flag. In subfigure 1(b),
the two leaves raise their flags and send their data up (to the parent) as shown using arrows. Figure 1(c) shows an intermediate
step. Finally, the roots (two of them) become activated in subfigure 1(d) by exchanging data with each other.

data point by size of the subtree from which the sample was received.

The broadcast phase is fairly straightforward. Every peer which receives the neŵf(−→x), restarts

a new regression monitoring algorithm with this neŵf(−→x). It then, sends the neŵf(−→x) to its

other neighbors and changes the status to convergecast. There could be one situation in which a

peer receives a neŵf(−→x) when it is already in the broadcast phase. This is when two neighbor

peers concurrently become roots for the convergecast tree.To break this tie, we select thêf(−→x)

to propagate the root of which has a higher id. Figure 1 shows asnap-shot of the convergecast

broadcast steps as it progresses up the communication tree.The pseudo-code is presented in

Algorithm 3.

VI. SPECIAL CASE : L INEAR REGRESSION

In many cases, sampling from the network is communication intensive. We can find the

coefficients using an in-network aggregation if we choose tomonitor a widely used regression

modelviz. linear regression (linear with respect to the parameters orthe unknown weights).

Let the global dataset over all the peers be denoted by:

May 22, 2008 DRAFT

21

G =





x11 x12 . . . x1(d−1) f(−→x1)

x21 x22 . . . x2(d−1) f(−→x2)
...

...
...

...

xj1 xj2 . . . xj(d−1) f(−→xj)
...

...
...

...

x|G|1 x|G|2 . . . x|G|(d−1) f(−→x|G|)





where−→xj =
{
xj1xj2 . . . xj(d−1)

}
.

In MR, the idea is to learn a function̂f(−→xj) which approximatesf(−→xj) for all the data points

in G. For linear regression, that function̂f(−→xj) is chosen to be a linear function i.e. ad − 1

degree polynomial fitted to the input attribute points
{
xj1xj2 . . . xj(d−1)

}
∀j = 1 to |G|. More

specifically, the linear model which we want to fit be:f̂(−→xj) = a0+a1xj1+a2xj2+...+aj(d−1)xd−1,

whereai’s are the coefficients that need to be estimated from the global datasetG. We drop the

cross terms involvingxjk andxjℓ for simplicity ∀k, ℓ ∈ [1..(d− 1)].

For every data point in the setG, the squared error is:

E1 =
[
f (−→x1)− a0 − a1x11 − a2x12 − . . .− ad−1x1(d−1)

]2

E2 =
[
f (−→x1)− a0 − a1x21 − a2x22 − . . .− ad−1x2(d−1)

]2

...

E|G| =
[
f

(−→x|G|

)
− a0 − a1x|G|1 − a2x|G|2 − . . .− ad−1x|G|(d−1)

]2

Thus the total square error over all the data points is

SSE =

|G|∑

j=1

Ej =

|G|∑

j=1

[
f (−→xj)− a0 − a1xj1 − a2xj2 − . . .− ad−1xj(d−1)

]2

For linear regression, closed form expressions exist for finding the coefficientsai’s by finding

the partial derivatives of SSE with respect to theai’s and setting them to zero:

May 22, 2008 DRAFT

22

∂

∂a0

SSE = 2

|G|∑

j=1

[
f (−→xj)− a0 − a1xj1 − a2xj2 − . . .− ad−1xj(d−1)

]
(−1) = 0

∂

∂a1
SSE = 2

|G|∑

j=1

[
f (−→xj)− a0 − a1xj1 − a2xj2 − . . .− ad−1xj(d−1)

]
(−xj1) = 0

∂

∂a2

SSE = 2

|G|∑

j=1

[
f (−→xj)− a0 − a1xj1 − a2xj2 − . . .− ad−1xj(d−1)

]
(−xj2) = 0

...

∂

∂ad−1
SSE = 2

|G|∑

j=1

[
f (−→xj)− a0 − a1xj1 − a2xj2 − . . .− ad−1xj(d−1)

]
(−xj(d−1)) = 0

In the matrix form this can be written as:





|G| ∑|G|
j=1 xj1 . . .

∑|G|
j=1 xj(d−1)

∑|G|
j=1 xj1

∑|G|
j=1(xj1)

2 . . .
∑|G|

j=1 xj1 ∗ xj(d−1)

...
...

. . .
...

∑|G|
j=1 xj(d−1)

∑|G|
j=1 xj(d−1) ∗ xj1 . . .

∑|G|
j=1(xj(d−1))

2





×





a0

a1

...

ad−1




=





∑|G|
j=1 f(−→xj)

∑|G|
j=1 f(−→x j)xj1

...
∑|G|

j=1 f(−→x j)xj(d−1)




⇒ Xa = Y

Therefore for computing the matrix (or more appropriately vector) a, we need to evaluate

the matricesX andY. This can be done in a communication efficient manner by noticing that

the entries of these matrices are simply sums. Consider the distributed scenario whereG is

distributed amongn peersS1, S2, . . . , Sn. Any entry ofX, say
∑|G|

j=1(xj1)
2, can be decomposed

as

May 22, 2008 DRAFT

23

|G|∑

j=1

(xj1)
2 =

∑

xj1∈S1

(xj1)
2

︸ ︷︷ ︸
for S1

+
∑

xj1∈S2

(xj1)
2

︸ ︷︷ ︸
for S2

+ . . . +
∑

xj1∈Sn

(xj1)
2

︸ ︷︷ ︸
for Sn

Therefore each entry ofX and Y can be computed by simple sum over all the peers. Thus,

instead of sending the raw data in the convergecast round, peerPi can forward a locally computed

matrix Xi andYi. PeerPj, on receiving this, can forward a new matrixXj andYj by aggregating,

in a component-wise fashion, its local matrix and the received ones. Note that the avoidance

of the sampling technique ensures that the result is exactlythe same compared to a centralized

setting.

Communication Complexity: Next we prove a lemma which states the communication

complexity of computing the linear regression model.

Lemma 6.1:The communication complexity of computing a linear regression model is only

dependent on the degree of the polynomial (d) and is independent of the number of data points

i.e. |G|.
Proof: As shown in Section VI, the task of computing the regression coefficients{a0, a1, . . . ad−1}

can be reduced to computing the matricesXi andYi. The dimensionality ofXi d.d = d2. Similarly

the dimensionality ofYi d.1 = d. Therefore the total communication complexity isO(d2), which

is independent of the size of the dataset|G|.
The efficiency of the convergecast process is due to the fact that d ≪ |G|. Hence there can

be significant savings in terms of communication by not communicating the raw data.

VII. EXPERIMENTAL RESULTS

In this section we discuss the experimental setup and analyze the performance of the P2P

regression algorithm.

A. Experimental Setup

We have implemented our algorithms in the Distributed Data Mining Toolkit (DDMT) [42]

developed by the DIADIC research lab at UMBC. We use topological information generated

by the Barabasi Albert (BA)model in BRITE [43] since it is often considered a reasonable

May 22, 2008 DRAFT

24

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10

6

0

25

50

75

100

Time

%
 p

e
e
rs

 w
ith

 E
G

<
ε

(a) Percentage of peers withKi < ǫ

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x 10

6

0

0.25

0.5

0.75

1

Time

N
o
rn

a
liz

e
d
 M

e
ss

a
g
e
s

(b) Monitoring Cost

Fig. 2. A typical experiment is run for 10 equal length epochs. Quality and overall cost are measured across the entire
experiment – including transitional phases. The monitoring cost is measured on the last80% of every epoch, in order to ignore
transitional effects.

model for the internet. BA also defines delay for network edges, which is the basis for our time

measurement1. On top of the network generated by BRITE, we overlay a communication tree.

B. Data Generation

The input data of a peer is a vector(x1, x2, . . . , xd) ∈ R
d, where the firstd − 1 dimensions

correspond to the input variables and the last dimension corresponds to the output. We have

conducted experiments on both linear and non-linear regression models. For the linear model,

the output is generated according toxd = a0 + a1x1 + a2x2 + . . . + ad−1xd−1. We have used

three functions for the non-linear model: (1)x3 = a0 + a1a2x1 + a0a1x2 (multiplicative), (2)

x3 = a0 × sin(a1 + a2x1) + a1 × sin(a2 + a0x2) (sinusoidal) and (3)x3 = a0
√

x0a1 + a1
√

x1a0

(square root). Every time a simulated peer needs an additional data point, it chooses the values

of x1, x2, . . . xd−1, each independently in the range -100 to +100. Then it generates the value of

the target variablexd using any of the above functions and adds a uniform noise in the range 5

to 20% of the value of the target output. The regression weights a0, a1, . . . , ad−1’s are changed

randomly at controlled intervals to create an epoch change.

C. Measurement Metric

In our experiments, the two most important parameters for measurement are thequality of

the result and thecost of the algorithm.

1Wall time is meaningless when simulating thousands of computers on a single PC.

May 22, 2008 DRAFT

25

For the regression monitoring algorithm, quality is measured in terms of the percentage of

peers which correctly compute an alert,i.e., the number of peers which report thatKi < ǫ

when EG < ǫ and similarlyKi > ǫ when EG > ǫ. We also report the overall quality which is

average of the qualities for both less than and greater thanǫ and hence lies in between those two.

Moreover, for each quality graph in Figures 3, 4, 5, 6, 7 and 8 we report two quantities — (1)

the average quality over all peers, all epochs and 10 independent trials (the center markers) and

(2) the standard deviation over 10 independent trials (error bars). For the regression computation

algorithm, quality is defined as the L2 norm distance betweenthe solution of our algorithm and

the actual regression weights. We compare this to a centralized algorithm having access to all

of the data.

We refer to the cost of the algorithm as the number ofnormalized messagessent, which is

the number of messages sent by each peer per unit of leaky bucket L. Hence, 0.1 normalized

messages means that nine out of ten times the algorithm manages to avoid sending a message.

We report both overall cost and the monitoring cost (stationary cost), which refers to the “wasted

effort” of the algorithm. We also report, where appropriate, messages required for convergecast

and broadcast of the model.

D. Typical Experiments

A typical experiment is shown in Figure 2. In all the experiments, about 4% of the data of

each peer is changed every 1000 simulator ticks. Moreover, after every 5× 105 simulator ticks,

the data distribution is changed. Therefore there are two levels of data change — (1) every 1000

simulator ticks we sample 4% of new data from the same distribution (stationary change) and

(2) every 5× 105 clock ticks we change the distribution (non-stationary change). To start with,

every peer is supplied the same regression coefficients as the coefficients of the data generator.

Figure 2(a) shows that for the first epoch, the quality is veryhigh (nearly 96%). After 5×
105 simulator ticks, we change the weights of the generator without changing the coefficients

given to each peer. Therefore the percentage of peers reporting Ki < ǫ drops to 0. For the cost,

Figure 2(b) shows that the monitoring cost is low throughoutthe experiment if we ignore the

transitional effects.

May 22, 2008 DRAFT

26

E. Results: Regression Monitoring

There are four external parameters which can influence the behavior of the regression moni-

toring algorithm: size of local buffer|Si|, the thresholdǫ, size of the leaky bucketL and noise in

the data. Apart from these there are also the system size (number of peers) and dimensionality

of the multivariate regression problem which can affect performance. In this section we present

the quality (less thani.e. EG < ǫ, greater thani.e. EG > ǫ and overall) and cost of the algorithm

w.r.t. different parameters. Note that, unless otherwise stated, we have used the following default

values for the different parameters: number of peers = 1000,|Si| = 50, ǫ = 1.5, d = 10, k = 8

andL = 500 (where the average edge delay is about 1100 time units). As wehave already stated,

independent of the regression function chosen, the underlying monitoring problem is always in

R. The results reported in this section are with respect to linear model since it is the most

widely used regression model. Results of monitoring more complex models are reported in the

next section.

Figures 3(a) and 3(b) show the quality and cost of the algorithm as the size of local buffer is

changed. As expected, the quality when the average is less thanǫ increases and the cost decreases

as the size of buffer increases. The other quality is very high throughout. This stems from the

fact that, with the noise in the data, it is easy for a peer to get flipped over when it is checking

for less thanǫ. On the other hand, noise cannot change the belief of the peerwhen the average

is greater thanǫ. In the second set of experiments, we variedǫ from 1.0 to 2.5 (Figure 4(a) and

4(b)). Here also, the quality increases asǫ is increased. This is because with increasingǫ, there

is a bigger region in which to bound the global average. This is also reflected with decreasing

number of messages. Note that, even forǫ = 1.0, the normalized messages are around 1.6, which

is far less than the theoretical maximum of 2 (assuming two neighbors per peer). The third set

of experiments analyzes the effect of leaky bucketL. As shown in Figure 5(a) quality does not

depend onL, while Figure 5(b) shows that the cost decreases slowly withincreasingL. Figures

6(a) and 6(b) depict the dependence of the noise on the monitoring algorithm. Quality degrades

and cost increases with increasing noise. This is expected,since with increasing noise a peer is

more prone to random effects. This effect can, however, be nullified by using a large buffer or

biggerǫ.

Our next experiment analyzes the scalability of the monitoring algorithm w.r.t the number

May 22, 2008 DRAFT

27

25 50 100 200

90

95

100

|S
i
|

%
 c

o
rr

e
c
t

p
e

e
rs

EG<ε
EG>ε
Overall

(a) Quality vs.|Si|

25 50 100 200
0

0.05

0.1

0.15

0.2

0.25

|S
i
|

N
o
rm

a
liz

e
d
 M

e
s
s
a
g
e
s

Stationary
Overall

(b) Cost vs.|Si|

Fig. 3. Behavior of the monitoring algorithm with changes inthe size of the dataset.

1 1.3 1.5 2.0 2.5
40

60

80

100

ε

%
 c

o
rr

e
c
t
p
e
e
rs

EG<ε
EG>ε
Overall

(a) Quality vs.ǫ

1 1.3 1.5 2 2.5
0

0.4

0.8

1.2

1.6

2

ε

N
o
rm

a
liz

e
d
 M

e
s
s
a
g
e
s

Stationary
Overall

(b) Cost vs.ǫ

Fig. 4. Behavior of the monitoring algorithm with changes inǫ.

100 200 500 700 1000

85

90

95

100

L

%
 c

o
rr

e
c
t
p
e
e
rs

EG<ε
EG>ε
Overall

(a) Quality vs.L

100 200 500 700 1000
0

0.05

0.1

0.15

0.2

L

N
o
rm

a
liz

e
d
 M

e
s
s
a
g
e
s

Stationary
Overall

(b) Cost vs.L

Fig. 5. Behavior of the monitoring algorithm with size ofL.

May 22, 2008 DRAFT

28

5 10 15 20

50

60

70

80

90

100

Percentage noise

%
 c

o
rr

e
c
t
p
e
e
rs

EG<ε
EG>ε
Overall

(a) Quality vs. Noise

5 10 15 20
0

0.1

0.2

0.3

0.4

Percentage noise

N
o
rm

a
liz

e
d
 M

e
s
s
a
g
e
s

Stationary
Overall

(b) Cost vs. Noise

Fig. 6. Behavior of the monitoring algorithm with variationof noise in the data.

200 500 1000 2000 3000
85

90

95

100

%
 c

o
rr

e
c
t
p
e
e
rs

Number of peers

EG < ε
EG > ε
Overall

(a) Quality vs. number of peers

200 500 1000 2000 3000
0

0.1

0.2

0.3

Number of peers

N
o
rm

a
liz

e
d
 M

e
s
s
a
g
e
s

Stationary
Overall

(b) Cost vs. number of peers

Fig. 7. Scalability with respect to number of peers.

of peers and dimension of the multivariate problem. As Figures 7(a) and 7(b) show, both the

quality and cost of the algorithm converge to a constant as the number of peers increase. This is

a typical behavior of local algorithms. For any peer, since the computation is dependent on the

result from only a handful of its neighbors, the overall sizeof the network does not degrade the

quality or cost. Similarly, Figures 8(a) and 8(b) show that the quality or the cost does not depend

on the dimension of the multivariate problem either. This independence of the quality and cost

can be explained by noting that the underlying monitoring problem is in R. Therefore for a

given problem, the system size or dimensionality of the problem has no effect on the quality or

the cost.

Overall, the results show that the monitoring algorithm offers extremely good quality, incurs

low monitoring cost and has high scalability.

May 22, 2008 DRAFT

29

2 5 10 15 20
85

90

95

100

Dimension

%
 c

o
rr

e
c
t
p
e
e
rs

EG<ε
EG>ε
Overall

(a) Quality vs. dimension

2 5 10 15 20
0

0.05

0.1

0.15

0.2

Dimension

N
o

rm
a

liz
e

d
 M

e
s
s
a

g
e

s

Stationary
Overall

(b) Cost vs. dimension

Fig. 8. Scalability with respect to dimension of the multivariate problem.

F. Results: Regression Models

Our next set of experiments measure the quality of the regression model computed by our

algorithm against a centralized algorithm having access tothe entire data. There are two important

parameters to be considered here – (1) the alert mitigation constant (τ) and (2) the sample

size (for non-linear regression). For computing the non-linear regression coefficients, we have

implemented the Nelder-Mead simplex method [44].

We have conducted experiments on three datasets. Figures 9(a), 10(a) and 11(a) presents

two sets of error bars. The square markers show the L2 norm distance between the distributed

coefficients and the actual ones. Also shown in each figure is the L2 norm distance between the

coefficients found by a centralized algorithm and the actualones (diamond markers). The first

pair of figures, Figures 9(a) and 9(b) show the results of computing a linear regression model.

Our aim is to measure the effect of variation of alert mitigation periodτ on quality and cost. As

shown in Figure 9(a), the quality of our algorithm deteriorates asτ increases. This is because,

on increasingτ , a peer builds a model later and therefore is inaccurate for alonger intermediate

period. Figure 9(b) shows that the number of data collectionrounds (dot markers) decrease from

four times to twice per epoch. This results from a decrease inthe number of false alerts. Also

shown are monitoring messages (green squares).

Figures 10(a) and 10(b) analyzes the quality of our algorithm while computing a non-linear

multiplicative regression modelviz. x3 = a0 +a1a2x1 +a0a1x2. Figure 10(a) presents the quality

as other parameterviz. sampling size is varied. As expected, the results from the distributed

May 22, 2008 DRAFT

30

500 1000 2000 4000

0.15

0.2

0.25

Alert Mitigation period (τ)

D
is

ta
nc

e
to

 o
pt

im
al

 c
oe

ff

Centralized
Distributed

(a) Quality for linear model

5001000 2000 4000
2

3

4

D
at

a
C

ol
le

ct
io

n

Alert mitigation period (τ)
5001000 2000 4000

0.14

0.16

0.18

N
or

m
al

iz
ed

 L
2

M
es

sa
ge

s

(b) Cost for linear model

Fig. 9. Quality and cost of computing regression coefficients for a linear model.

500 1000 2000 4000
0.45

0.5

0.55

0.6

0.65

Sample Size

D
is

ta
nc

e
to

 o
pt

im
al

 c
oe

ff

Centralized
Distributed

(a) Quality for multiplicative model

5001000 2000 4000
2

3

4

D
at

a
C

ol
le

ct
io

n

Sample Size
5001000 2000 4000

0.1

0.12

0.14

N
or

m
al

iz
ed

 L
2

M
es

sa
ge

s

(b) Cost for multiplicative model

Fig. 10. Quality and cost of computing regression coefficients for x3 = a0 + a1a2x1 + a0a1x2.

and centralized computations converge with increasing sample size. Also the number of data

collection rounds as depicted in Figure 10(b) decrease as sample size is increased.

The third pair of figures, Figures 11(a) and 11(b) show the same results for a sinusoidal model:

x3 = a0 ∗ sin(a1 + a2x1) + a1 ∗ sin(a2 + a0x2). Here also the quality becomes better and the

cost decreases as the sample size is increased.

Finally Figures 12(a) and 12(b) demonstrate the effect on quality of the regression model built

and the cost incurred as the for building a model of the formx3 = a0
√

x0a1 + a1
√

x1a0. As

shown here, the quality improves and the cost decreases as the sample size is increased.

To sum everything up, the regression computation algorithmoffers excellent accuracy and low

monitoring cost. Also, the number of convergecast-broadcast rounds is also two times per epoch

on an average. We have tested our algorithm on several regression functions and the results are

highly satisfactory.

May 22, 2008 DRAFT

31

500 1000 2000 4000
0

0.01

0.02

0.03

0.04

Sample Size

D
is

ta
nc

e
to

 o
pt

im
al

 c
oe

ff

Centralized
Distributed

(a) Quality for sinusoidal model

5001000 2000 4000

2

3

D
at

a
C

ol
le

ct
io

n

Sample Size
5001000 2000 4000

0.6

0.62

0.64

N
or

m
al

iz
ed

 L
2

M
es

sa
ge

s

(b) Cost for sinusoidal model

Fig. 11. Quality and cost of computing regression coefficients for x3 = a0 × sin(a1 + a2x1) + a1 × sin(a2 + a0x2).

500 1000 2000 4000
0

0.5

1

Sample Size

D
is

ta
nc

e
to

 o
pt

im
al

 c
oe

ff

Centralized
Distributed

(a) Quality for modelx3 = a0

√
x0a1 + a1

√
x1a0

500 1000 2000 4000
2

3

4

5

6

D
at

a
C

ol
le

ct
io

n

Sample Size
500 1000 2000 4000

0.1

0.2

0.3

N
or

m
al

iz
ed

 L
2

M
es

sa
ge

s

(b) Cost for modelx3 = a0

√
x0a1 + a1

√
x1a0

Fig. 12. Quality and cost of computing regression coefficients for x3 = a0

√
x0a1 + a1

√
x1a0.

VIII. C ONCLUSIONS AND FUTURE WORK

To the best of the authors’ knowledge this is one of the first attempts on developing a

completely local and asynchronous regression algorithm for P2P systems which maintains the

same regression models given all the data to all the peers. The algorithm is suitable for scenarios

in which the data is distributed across a large P2P network asit seamlessly handles data changes

and node failures. We have performed dynamic experiments with random epoch changes which

showed that the algorithm is accurate, efficient and highly scalable. Such algorithms are needed

for next generation P2P applications such as P2P bioinformatics, P2P web mining and P2P

astronomy using National Virtual Observatories. As a next step, we plan to explore other methods

of learning such as support vector machines and decision trees.

May 22, 2008 DRAFT

32

ACKNOWLEDGEMENT

This work was supported by the United States National Science Foundation Grant IIS-0093353

and NASA Grant NNX07AV70G.

REFERENCES

[1] “Chinook,” http://smweb.bcgsc.bc.ca/chinook/index.html.

[2] K. Liu, K. Bhaduri, K. Das, and H. Kargupta, “Client-sideWeb Mining for Community Formation in Peer-to-Peer

Environments,”SIGKDD Explorations, vol. 8, no. 2, pp. 11–20, December 2006.

[3] K. Das, K. Bhaduri, K. Liu, and H. Kargupta, “DistributedIdentification of Top-l Inner Product Elements and its Application

in a Peer-to-Peer Network,”IEEE Transactions on Knowledge and Data Engineering (TKDE), vol. 20, no. 4, pp. 475–488,

2008.

[4] D. E. Hershberger and H. Kargupta, “Distributed Multivariate Regression Using Wavelet-based Collective Data Mining,”

Journal of Parallel and Distributed Computing, vol. 61, no. 3, pp. 372–400, 2001.

[5] C. Guestrin, P. Bodi, R. Thibau, M. Paski, and S. Madden, “Distributed Regression: an Efficient Framework for Modeling

Sensor Network Data,” inProceedings of IPSN’04, Berkeley, California, 2004, pp. 1–10.

[6] J. Predd, S. Kulkarni, and H. Poor, “Distributed Kernel Regression: An Algorithm for Training Collaboratively,”arXiv.cs.LG

archive, 2006.

[7] L. Breiman, “Bagging predictors,”Machine Learning, vol. 2, pp. 123–140, 1996.

[8] J. Friedman, T. Hastie, and R. Tibshirani, “Additive Logistic Regression: a Statistical View of Boosting,” Dept. ofStatistics,

Stanford University, Tech. Rep., 1998.

[9] S. J. Stolfo, A. L. Prodromidis, S. Tselepis, W. Lee, D. W.Fan, and P. K. Chan, “JAM: Java Agents for Meta-Learning

over Distributed Databases,” inProceedings of KDD’97, Newport Beach, California, 1997, pp. 74–81.

[10] Y. Xing, M. G. Madden, J. Duggan, and G. J. Lyons, “Distributed Regression for Heterogeneous Data Sets,”Lecture Notes

in Computer Science, vol. 2810, pp. 544–553, 2003.

[11] D. Caragea, A. Silvescu, and V. Honavar, “A Framework for Learning from Distributed Data Using Sufficient Statistics

and Its Application to Learning Decision Trees,”International Journal of Hybrid Intelligent Systems, vol. 1, no. 1-2, pp.

80–89, 2004.

[12] C. Giannella, K. Liu, T. Olsen, and H. Kargupta, “Communication Efficient Construction of Deicision Trees Over

Heterogeneously Distributed Data,” inProceedings of ICDM’04, Brighton, UK, 2004, pp. 67–74.

[13] T. Olsen, “Distributed Decision Tree Learning From Multiple Heterogeneous Data Sources,” Master’s thesis, University

of Maryland, Baltimore County, Baltimore. Maryland, October 2006.

[14] S. Merugu and J. Ghosh, “A Distributed Learning Framework for Heterogeneous Data Sources,” inProceedings of KDD’05,

2005, pp. 208–217.

[15] B. Park, R. Ayyagari, and H. Kargupta, “A Fourier Analysis-Based Approach to Learn Classifier from Distributed

Heterogeneous Data,” inProceedings of SDM’01, Chicago, IL, April 2001.

[16] P. Luo, H. Xiong, K. Lü, and Z. Shi, “Distributed Classification in Peer-to-Peer Networks,” inProceedings of KDD’07,

2007, pp. 968–976.

[17] K. Bhaduri, R. Wolff, C. Giannella, and H. Kargupta, “Distributed Decision Tree Induction in Peer-to-Peer Systems,”

Statistical Analysis and Data Mining Journal (accepted in press), 2008.

May 22, 2008 DRAFT

33

[18] S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kargupta, “Distributed Data Mining in Peer-to-Peer Networks,”IEEE

Internet Computing, vol. 10, no. 4, pp. 18–26, 2006.

[19] S. Bandyopadhyay, C. Giannella, U. Maulik, H. Kargupta, K. Liu, and S. Datta, “Clustering Distributed Data Streamsin

Peer-to-Peer Environments,”Information Science, vol. 176, no. 14, pp. 1952–1985, 2006.

[20] S. Mukherjee and H. Kargupta, “Distributed Probabilistic Inferencing in Sensor Networks using Variational Approximation,”

Journal of Parallel and Distributed Computing, vol. 68, no. 1, pp. 78–92, 2008.

[21] D. Kempe, A. Dobra, and J. Gehrke, “Computing AggregateInformation using Gossip,” inProceedings of FOCS’03,

Cambridge, 2003.

[22] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip Algorithms: Design, Analysis and Applications,” inProceddings

of INFOCOMM’05, Miami, March 2005, pp. 1653–1664.

[23] I. Sharfman, A. Schuster, and D. Keren, “A Geometric Approach to Monitoring Threshold Functions over Distributed Data

Streams,” inProceedings of SIGMOD’06, Chicago, Illinois, June 2006, pp. 301–312.

[24] J. H. Holland,Adaptation in Natural and Artificial Systems. University of Michigan Press, 1975.

[25] J. V. Neumann,Theory of Self-Reproducing Automata. Champaign, IL, USA: University of Illinois Press, 1966.

[26] Y. Afek, S. Kutten, and M. Yung, “Local Detection For Global Self Stabilization,”In Theoretical Computer Science, vol.

186, no. 1–2, pp. 199–230, October 1997.

[27] N. Linial, “Locality in Distributed Graph Algorithms,” SIAM Journal of Computing, vol. 21, pp. 193–201, 1992.

[28] M. Naor and L. Stockmeyer, “What Can be Computed Locally?” in Proceedings of STOC’93, 1993, pp. 184–193.

[29] S. Kutten and D. Peleg, “Fault-Local Distributed Mending,” in Proceedings of PODC’95, Ottawa, Canada, August 1995,

pp. 20–27.

[30] F. Kuhn, T. Moscibroda, and R. Wattenhofer, “What Cannot Be Computed Locally!” inProceedings of PODC’04, St.

John’s, Newfoundland, Canada, 2004, pp. 300–309.

[31] R. Wolff and A. Schuster, “Association Rule Mining in Peer-to-Peer Systems,”IEEE Transactions on Systems, Man and

Cybernetics - Part B, vol. 34, no. 6, pp. 2426 – 2438, December 2004.

[32] D. Krivitski, A. Schuster, and R. Wolff, “Local Hill Climbing in Sensor Networks,” inProceedings of DMSN workshop,

in conjunction with SDM’05, Newport Beach, California, April 2005.

[33] R. Wolff, K. Bhaduri, and H. Kargupta, “Local L2 Thresholding Based Data Mining in Peer-to-Peer Systems,” in

Proceedings of SDM’06, Bethesda, MD, 2006, pp. 430–441.

[34] J. Branch, B. Szymanski, C. Gionnella, R. Wolff, and H. Kargupta, “In-network outlier detection in wireless sensor

networks,” inProceedings ofICDCS’06, Lisbon, Portugal, July 2006.

[35] Y. Birk, I. Keidar, L. Liss, A. Schuster, and R. Wolff, “Veracity Radius - Capturing the Locality of Distributed

Computations,” inProceedings of PODC ’06, Colorado, Denver, 2006, pp. 102–111.

[36] Y. Birk, L. Liss, A. Schuster, and R. Wolff, “A Local Algorithm for Ad Hoc Majority Voting via Charge Fusion,” in

Proceedings of DISC’04, Amsterdam, Netherlands, 2004, pp. 275–289.

[37] J. Garcia-Luna-Aceves and S. Murthy, “A Path-Finding Algorithm for Loop-Free Routing,”IEEE Transactions on

Networking, vol. 5, no. 1, pp. 148–160, 1997.

[38] N. Li, J. Hou, and L. Sha, “Design and Analysis of an MST-Based Topology Control Algorithm,”IEEE Transactions on

Wireless Communications, vol. 4, no. 3, pp. 1195–1205, 2005.

[39] K. Bhaduri, “Efficient local algorithms for distributed data mining in large scale peer to peer environments: A deterministic

approach,” Ph.D. dissertation, University of Maryland, Baltimore County, March 2008.

May 22, 2008 DRAFT

34

[40] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. Murray, “Distributed Averaging on Peer-to-Peer Networks,” in

Proceedings of CDC’05, Spain, 2005.

[41] D. S. Scherber and H. S. Papadopoulos, “Distributed Computation of Averages Over ad hoc Networks,”IEEE Journal on

Selected Areas in Communications, vol. 23, no. 4, pp. 776–787, 2005.

[42] “DDMT,” http://www.umbc.edu/ddm/Sftware/DDMT/.

[43] “BRITE,” http://www.cs.bu.edu/brite/.

[44] J. Nelder and R. Mead, “A simplex method for function minimization,” The Computer Journal, vol. 7, pp. 308–313, 1965.

May 22, 2008 DRAFT

35

Input : δi, Γi, L, β
Output : if ∆i ≥ 0 then1 else0
Local variables: ∀Pj ∈ Γi : δj,i, δi,j

Definitions: ∆i = δi +
∑

Pj∈Γi δj,i, ∆i,j = δi,j + δj,i

Initialization:
begin

forall Pj ∈ Γi do
δi,j = δj,i = 0;
SendMessage(Pj);

end
end
if MessageRecvd(Pj , δ) then δj,i ← δ;
if PeerFailure(Pj ∈ Γi) then Γi ← Γi \ {Pj};
if AddNeighbor(Pj ∈ Γi) then Γi ← Γi ∪ {Pj};
if Γi, δi changes or MessageRecvdthen call OnChange();
FunctionOnChange()
begin

forall Pj ∈ Γi do
if (∆i,j ≥ 0 ∧∆i,j > ∆i) ∨ (∆i,j < 0 ∧∆i,j < ∆i) then

call SendMessage(Pj);
end

end
end
FunctionSendMessage(Pj)
begin

if time ()− last message ≥ L then
δi,j ← (β∆i − δj,i);
last message← time ();
Send〈δi,j〉 to Pj ;

end
else

Wait L− (time ()− last message) time units;
Call OnChange();

end
end

Algorithm 2 : Local Majority Vote

May 22, 2008 DRAFT

36

Input : ǫ, Cω, Si, Γi, L, f̂ and τ
Output : f̂ such thatEG < ǫ
Initialization
begin

Initialize vectors;
MsgType= MessageRecvdFrom(Pj);

end
if MsgType = Monitoring Msg then Pass Message to Monitoring Algorithm;
if MsgType = New Model Msg then

Updatef̂ ;
Forward newf̂ to all neighbors;
Datasent=false;
Restart Monitoring Algorithm with neŵf ;

end
if MsgType = Dataset Msg then

if Received from all but one neighborthen
flag=Output Monitoring Algorithm();
if Datasent = false and flag = 1 then

if DataAlert stable forτ time then
D=Sample(Si, Recvd Dataset);
Datasent=true;
SendD to remaining neighbor

end
elseDataAlert=CurrentTime;

end
end
if Received from all neighborsthen

D=Sample(Si, Recvd Dataset);
f̂=Regression(D);
Forward newf̂ to all neighbors;
Datasent=false;
Restart Monitoring Algorithm with neŵf ;

end
end
if Si, Γi or Ki changesthen

Run Monitoring Algorithm;
flag=OutputMonitoring Algorithm();
if flag=1 and Pj=IsLeaf() then

Execute the same conditions asMsgType = Dataset Msg
end

end
Algorithm 3 : P2P Regression Algorithm.

May 22, 2008 DRAFT

