A Scalable Local Algorithm for Distributed

Multivariate Regression

Kanishka Bhaduti Hillol Kargupta ™
*Department of Computer Science and Electrical Enginegring
University of Maryland, Baltimore County,
1000 Hilltop Circle,
Baltimore, Maryland, 21250, USA
Email:{kanishkZ,hillol @cs.umbc.edu
“The author is also affiliated to Agnik, LLC., Columbia, MD, BS

A shorter version of this paper was published in SIAM Data ilinConference 2008

May 22, 2008 DRAFT

Abstract

This paper offers a local distributed algorithm for multiede regression in large peer-to-peer
environments. The algorithm can be used for distributedrarfcing, data compaction, data modeling
and classification tasks in many emerging peer-to-peeicgians for bioinformatics, astronomy, social
networking, sensor networks and web mining. Computing aajloegression model from data available
at the different peer-nodes using a traditional centrdlalgorithm for regression can be very costly and
impractical because of the large number of data sourcesagjechronous nature of the peer-to-peer
networks, and dynamic nature of the data/network. This papeposes a two-step approach to deal
with this problem. First, it offers an efficient local digtuted algorithm that monitors the “quality” of
the current regression model. If the model is outdated,asuhkis algorithm as a feedback mechanism
for rebuilding the model. The local nature of the monitoraigorithm guarantees low monitoring cost.

Experimental results presented in this paper strongly sugpe theoretical claims.

Index Terms

peer-to-peer, data mining, decision trees

I. INTRODUCTION

Multivariate Regression (MR) is a powerful statistical andchine learning tool that is widely
used for prediction, classification, and data compresditivariate regression is relatively well
understood given a sample of the data (input variables aneésmonding target output values)
at a single location. However, there are many emerging sicenahere data is distributed over
a network of machines. Peer-to-Peer (P2P) networks offersoich scenario. P2P systems such
as Gnutella, BitTorrents, e-Mule, Kazaa, and Freenet acee@singly becoming popular for
many applications that go beyond downloading music withgayting for it. Examples include
P2P systems for network storage, web caching, searchingnaeding of relevant documents
and distributed network-threat analysis. The next germraif advanced P2P applications for
bioinformatics [1] and client-side web mining [2][3] ar&kdily to need support for advanced
data analysis and mining. Performing basic operationsriggession is very challenging in a
P2P network because of the large number of data sourcessyhehaonous nature of the P2P
networks, and dynamic nature of the data.

This paper offers a local distributed algorithm for perfargy multivariate regression and

monitoring the model in a P2P network. The approach is stglaecentralized, asynchronous,

May 22, 2008 DRAFT

and inherently based on in-network computation. The allgaiic framework is local, in the
sense that the computation and communication load at ead isandependent of the size or
the number of nodes of the network. This is very importantther scalability of the algorithm
in large P2P networks. The proposed methodology takes astem-approach for building and
maintaining MR models in P2P networks. The first step in ogoathm is themonitoring phase

in which, given an estimate of the MR model to all the peersythsynchronously track any
change between the model and the global data using a proeabigct local algorithm. The
second step, known as tkemputation phaseaises the monitoring algorithm as a feedback loop
for triggering a new round of MR model-building if necessafe algorithm guarantees that
as long as the MR model correctly represents the data, Gtileputing and communication
resources are spent for monitoring the environment. Wherd#ta undergoes a change in the
underlying distribution and the MR model no longer représet) the feedback loop indicates
this and the model is rebuilt. Moreover, we also show thatredl data need not be centralized
to recompute the MR coefficients. We can do in-network aggjreg for finding them; thereby
using far less resources than brute force centralizatibme. Specific contributions of this paper

are as follows:

. To the best of the authors’ knowledge this is one of the firegnapts on developing a
completely asynchronous and local algorithm for doing mwdtiate regression in P2P
networks which is robust to data and network changes.

« Besides this, we have also derived an upper bound on themataber messages exchanged
between the peers in the worst case.

« Most of the previous work in the literature focuses on linesggression in distributed envi-
ronments. Our technique can be applied to most types of cammdtivariate regression.

The rest of the paper is organized as follows. Related backgl material is presented in

Section Il. Section Ill introduces the notations and problaefinition. Section IV presents the
MR monitoring algorithm, while Section V discusses the MRwpmtation problem. Experimental

results are presented in Section VII. Finally, Section \¢ébhcludes this paper.

[I. BACKGROUND

This section provides the necessary background material.

May 22, 2008 DRAFT

A. Approach

Statistical models can be built and updated from distridhut&ta in various ways. Thegeriodic
approach is to simply rebuild the model from time to time. Ti@ementalapproach is to update
the model whenever the data changes. Lastlyy¢hetiveapproach, what we propose here, is to
monitor the change, and rebuild the model only when it no éorgpits the data. Thperiodic
approach can be highly inefficient since, there is the riswadsting resources even if the data is
stationary and also the risk of model inaccuracy if the updas delayedincrementakllgorithms
can be very efficient; however their major drawback is thatpasate algorithm needs to be
handcrafted for every problem. Data drivezactive algorithms are efficient, simple and can
accommodate a wide variety of function computation. Thisasause the algorithm only reacts
and rebuilds the model if the data changes — in other casesaltforithm does nothing and
saves unnecessary communication.

The work presented in this paper considers building and tupglaegression models from
data distributed over a P2P network where each peer congaissbset of the data tuples.
In the distributed data mining literature, this is usualblled the horizontally partitioned or
homogeneously distributed data scenario. Building a dlobgression model (defined on the
union of all the data of all the peers) in large-scale netwaikd maintaining it is a vital task.
Consider a network where there are a number of nodes (by ned@ean peers, sensors, grid
components etc.) and each node gets a stream of tuples (s@Enber readings, music files etc.)
frequently. We may wish to build a regression model on théaldata to (1) compactly represent
the data and (2) predict the value of a target variable. Ehilifficult since the data is distributed
and more so because it is dynamic. Centralization obviodels not work because the data
may change at a faster rate than the rate at which it can beatieetl. Local algorithms are an
excellent choice in such scenarios since in a local algorigach peer computes the result based
on the information from only a handful of nearby neighborenkke local algorithms are highly
scalable and offer bounded communication complexity per.peherefore, such an algorithm

will enable the user to monitor regression models using lesources.

B. Related Work

The work presented in this paper is related to two main bodfelerature - multivariate

regression and computation in large distributed envirartme

May 22, 2008 DRAFT

1) Distributed Multi-variate RegressionThe problem of distributed multivariate regression
has been addressed by many researchers till date. Hersheéal. [4] considered the problem of
performing global MR in a vertically partitioned data distrtion scenario. The authors propose
a wavelet transform of the data such that, after the tramsition, effect of the cross terms can
be dealt with easily. The local MR models are then transpaxiethe central site and combined
to form the global MR model. Such synchronized techniques wanlikely to scale in large,
asynchronous systems such as modern P2P networks.

Many researchers have looked into the problem of doingibiged MR using distributed
kernel regression techniques such as Guestrin et al. [5]Rardd et al. [6]. The algorithm
presented by Guestrin et al. [5] performs linear regressioa network of sensors using in-
network processing of messages. Instead of transmittiagdtv data, the proposed technique
transmits constraints only, thereby reducing the comnaiitio complexity drastically. Similar
to the work proposed here, their work also uses local ruleprtme messages. However the
major drawback is that their algorithm is not suitable fondsnic data. It will be very costly if
the data changes since, as the authors point out, two pagsse=gaired over the entire network
to make sure that the effect of the measurements of each nmeder@pagated to every other
node. Moreover, contrary to the broad class of problemswigatan solve using our technique,
their technique is only applicable for solving the lineagnession problem.

Meta-learning is an interesting class of algorithms tylycased for supervised learning. In
a meta learning, such as bagging [7] or boosting [8] many fsodes induced from different
partitions of the data and these “weak” models are combirsedgua second level algorithm
which can be as simple as taking the average output of the Imxmteany new sample. Such a
technique is suitable for inducing models from distributieda as proposed by Stolfo et al. [9].
The basic idea is to learn a model at each site locally (no ceniration at all) and then, when
a new sample comes, predict the output by simply taking anageeof the local outputs. Xing
et al. [10] present such a framework for doing regressiondtetogenous datasets. However,
these techniques perform poorly as the number of such déii&igres increases to millions — as
in typical P2P systems.

A closely related topic is classification in which the outpitiscrete instead of real-valued.
Several algorithms have been proposed for distributediieetion. Here we present only a few

of them.

May 22, 2008 DRAFT

Carageeet al. [11] presented a decision tree induction algorithm for blathmizontally and
vertically distributed data. Noting that the crux of any idamn tree algorithm is the use of an
effective splitting criteria, the authors propose a methgadvhich this criteria can be evaluated
in a distributed fashion. Their system is available as pérthe INDUS system. A different
approach was taken by Gianne#lbal.[12] and Olsen [13] for inducing decision tree in vertically
partitioned data. They used Gini information gain as theuntp measure and showed that
Gini between two attributes can be formulated as a dot ptodatween two binary vectors.
To reduce the communication cost, the authors evaluatedidhgproduct after projecting the
vectors in a random smaller subspace. The major disadwestafthese techniques are (1)
strong synchronization requirements and (2) inability da to changes in data or network.

Distributed probabilistic classification on heterogendaga sites have also been discussed by
Merugu and Ghosh [14]. Similarly, Pasgkt al. have proposed a fourier spectrum-based approach
for decision tree induction in vertically partitioned dseés [15].

Meta-classification from horizontally partitioned data farge distributed systems have been
proposed by Lou et al. [16]. The system builds local modelgwhequires no communication at
all. When a new tuple arrives, it is broadcast to all the nadesthe output is determined using
a variation of the majority voting scheme which the autherstas distributed plurality voting
(DPV). Two disadvantages of this method are as follows. Tipdetto be classified needs to be
flooded in the network. Similar to other meta-learning teghes, the quality of such algorithms
degrade as the size of the systems increases to millionsen$.pe

A robust, completely asynchronous and communication efficalgorithm for decision tree
induction from horizontally partitioned data distributedlarge P2P systems has been proposed
by Bhaduri et al. [17]. The algorithm is eventually corredtigh means the decision tree inducted
by our algorithm is the same that would be induced given aldhta at a central location. The
algorithm also seamlessly handles changes in the data &ndettwork. Experimental results
show the low cost of building and maintaining the decisia@es even when the data changes.

2) Computation in large distributed (P2P) systen@@omputation for P2P networks span three
main areas: (1) best effort heuristics, (2) gossip basedatations, (3) broadcast-based systems
and (4) local algorithms. For a detailed survey intereseadiers can refer to [18].

Algorithms using best effort heuristics have been develdpe large distributed systems. The

P2P k-Means algorithm by Bandyopadhyay et al. [19] is one suchmgta. Typically for such

May 22, 2008 DRAFT

algorithms, a peer collects some samples from its own datatameighbors and builds a model
on this sample. The samples are generally collected usimg sariations of random walk-based
techniques. These algorithms can be classified as praftabdipproximate algorithms since the
results are bounded only on average. A different class iséteof deterministic approximate
algorithms such as the inferencing problem in sensor nésvosing variational approximation
technique proposed by Mukherjee et al. [20].

Gossip algorithms rely on the properties of random sampl@sdvide probabilistic guarantees
on the accuracy of the results. Researchers have develdjpaemnt approaches for performing
basic operationse(g. average, sum, max, random sampling) on P2P networks usiagipjo
techniques. Kempet al. [21] and Boydet al. [22] present such primitives. In gossip protocols,
a peer exchanges data or statistics with a random peer. Howeey can still be quite costly
— requiring hundreds of messages per peer for the computafigust one statistic. Another
closely related technique is to use deterministic gossiglanding. In flooding, every peer
floods/broadcasts the data and therefore, eventually ttasthtistic is propagated through the
entire network. Here again the major drawback is scalgtaitd the answer to dynamic data.

Communication-efficient broadcast-based algorithms theen also developed for large clus-
ters such as the one developed by Sharfman et al. [23]. Swese algorithms rely on broadcasts
as their mode of communication, the cost quickly increasis wwcreasing system size.

Local algorithms are a good choice for data mining in P2P agks/since in a local algorithm,
the result is generally computed by communicating with adfianof nearby neighbors and
the total communication per peer is also bounded. Localrdlgos rely on data dependent
conditions which we refer to as local rules, to stop propagamessages. This means that if
the data distribution does not change, the communicati@rh@ad is very low. On the other
hand, the local rules are violated when the distributiomnges. On one hand, local algorithms
are highly efficient (and hence scalable). The exact logdrahms we consider in this paper
guarantee eventual convergence toaRactresult (equal to that which would be computed given
the entire data). This feature makes local algorithms ei@eglly suitable for P2P networks as
well as to wireless sensor networks.

The idea of using local rules for algorithms dates back testheenties. John Holland described
such rules for non-linear adaptive systems and geneticritlgts in his seminal work for

biological systems [24]. Local evolutionary rules for ghdsed cellular automaton were first

May 22, 2008 DRAFT

introduced in 1950’s by John Von Neumann [25] and later agbph many fields such as
artificial agents, VLSI testing, physical simulations tontien a few. In the context of graph
theory, local algorithms were used in the early nineties ligkAet al. [26] and Linial [27].
Naor and Stockmeyer [28] asked what properties of a graphbeatomputed in constant time
independent of the graph size. Kutten and Peleg [29] haveduated local algorithms for fault-
detection in which the cost depends only on the unknown nurobdaults and not on the
entire graph size. They have developed solutions for sompepkablems such as the maximal
independent set (MIS) and graph coloring. Kwgtral. [30] have suggested that some properties
of graphs cannot be computed locally.

More recently, local algorithms have been developed foesdwdata mining problems: as-
sociation rule mining [31], facility location [32], L2 Ths@olding [33], outliers detection [34],
meta-classification [16] and decision tree induction [IRg¢searchers have also looked at the

complexity of local algorithms using the concept of venacadius [35].

[11. NOTATIONS AND PROBLEM DEFINITION
A. Notations

Let V = {P,...,P,} be a set of peers connected to one another via an underlyimg co
munication infrastructure such that the setfos neighbors,l’;, is known to P,. Additionally,
at a timet, P, is given a stream of data vectors Rf. The local data of peeP; at time
tis S; = [(:c?,f(:?ﬁ))) <;;,f(;;)> ,} where each;;l> is a d-1)-dimensional data point
[x;'.lxj.Q . .x;'.(d_l)] and f is a function fromR?~! — R. Every data point can be viewed as an
input and output pair. Below we define the global knowledgéctviis the union of all the data
of all the peers.

Definition 3.1 (Global knowledge)The global knowledgeis the set of all inputs at time
and is denoted bg = [J S..

i=1,...,n
Henceforth we will drop the indices iG.

In MR, the task is to learn the functioﬁ(?) which “best” approximateg(z’) according
to some measure such as least square. Now depending on teeamfation chosen fq?(?),
various types of regression models (linear or nonlinean) lba developed. We leave this type

specification as part of the problem statement for our dlgari rather than an assumption.

May 22, 2008 DRAFT

For each data pointZ, f(7)), the error betweerf(Z) and f(7Z') can be computed as
—~ 2
[f(?) — f(?)] . Normally we require the error to be zero. However, since axseha dynamic
data change scenario we relax this assumption and consisi@iluon to be admissible if the
global error is less than wheree is a user chosen threshold. For pégrthis erroré; is a set
: _ _ — ~— 12 — ~— 12
of points inR i.e. & = {[f(x’l) - f(xll)} : [f(:cg) - f(x;)} ,} The average error foP;

_ — o~ 72
is denoted by¢; = |5_1\ > [f(x;l) - f(x;'.)] ,

Moreover, in our scenario, this error value is distributetbas the peers — therefore a good
estimate of the global error is the global average ermred = %EZE over all the points in
g.

Peers communicate with one another by sending sets of pgaifitsor statistics as defined in
Section IlI-B. LetX; ; denote the last sets of points sent by pégeto P;. Assuming reliable
messaging, once a message is delivered bbtind P; know X, ; and X; ;. Our next definition
formally defines a message.

Definition 3.2 (Message)The messagethat peerF; needs to send t&; consists of a set of
vectors and is denoted by, ;. Each vector is iR and the size of the set depends on the data
that peerP,; needs to send t@;.

Below we show that for our case, sending the statistics ok#tgsuch as mean and size) is
sufficient. Now we define four entities which are crucial ta algorithm.

Definition 3.3 (Knowledge)The knowledgeof P, is the union ofg; with X;; for all P; € T';
and is denoted byC; = & U U X

PjEFi
Definition 3.4 (Agreement)The agreementof P, and any of its neighbors’; is A;;, =

Xi; UXja

Definition 3.5 (Withheld knowledge)fhe subtraction of the agreement from the knowledge
is thewithheld knowledge of P, with respect to a neighba?; i.e. W, ; = K; \ A, ;.

We are interested in computing regression models defined.ddote that no peer has the
global error or€9. Therefore each peer will estimafé based on only its local knowleddeé,;.
These sets can be arbitrarily large. Hence in order to reptabese sets efficiently, we define
two statistics on each set: (1) thgeragewhich is the average of all the points in the respective
sets (e.9K;, A;j, Wi, Xij, Xji and&9), and (2) thesizesof the sets denoted by]y 12X 41,
|Ki

Aijl, Wil and|€9]. Instead of communicating the entire sets of points, eaen pen

May 22, 2008 DRAFT

10
communicate only these two statistics for each set whichufficgent to represent them.

B. Sufficient Statistics

Our algorithm relies on the fact that points sent by any péeto FP; are never sent back to
P;. This can be done in several different ways such as messdggimg, tagging and ensuring
that the graph topology has no cycles. In this paper we takenpler approach — we assume
that a tree topology is imposed over the network. We couldagetind this assumption in one

of two ways:

1) We can use a similar technique as proposed by ¢iisd. [36] which extends the original
majority voting algorithm for arbitrary network topology.
2) There exist several techniques in the literature for ma@img tree communication topology

such as [37] (for wired networks) or [38] (for wireless netks).

If we assume that communication always takes place in arlagveee topology, we can write
the following expressions for the sizes of the sets:
L[Al = X5] + 1X5,]
2.1G = |&]+) |X;4l, and

P;el’;

J
3. Wi = IKil = | Al
Similarly for the average of the sets we can write,

1 A |XZJ|X _‘_‘XJ’L‘X
: \ i1 \AU|
2.K; = vc|
Pjel’;
— _ kil Ay, |
3. Wij = piKi— |W/J\“4

Note that, for any peer, any of these quantities can be cadpudsed solely on its local data
and what it gets from its immediate neighbors.

Next we formally state the problem definition.

C. Problem Definition

Problem 1.[MR Problem] Given a time varying dataset;, a user-defined threshold and
f(?) : R! — R to all the peers, the MR problem is to maintairy?a?) at each peer such
that, at any time, £9 < e.

May 22, 2008 DRAFT

11

For ease of explanation, we decompose this task into twaskbt First, given a representation
of f(?) to all the peers, we want to raise an alarm when&er- ¢, wheree is a user-defined
threshold. This is thenodel monitoring problemNow if f(?) no longer representg(7’), we
sample from the network (or even better do an in-network egggion) to find an updatef(?).
This is themodel computation problenMathematically, the subproblems can be formalized as

follows.

Problem 2[Monitoring Problem] Given S;, andf(?) to all the peers, the monitoring problem

is to output 0 if€9 < ¢, and 1 otherwise, at any time

Problem 3[Computation Problem] The model computation problem is to find a nq/ﬂ\/&?)

based on a sample of the data collected from the network.

Also note that the case for which the output is 0 can be defireedha regionC; =
{r € R:0 < z < ¢}. The region in which the output is 1 can be defined’gs= {zr € R: ¢ < z < o0}
Further, letC,, = {C},C_}. In order to ensure global correctness of the monitoringrétgm,
we have transformed the thresholding problem to a geomptablem: we check if the global
average error lies i’ . In Section 1V, we discuss a lemma relying 6f) which will guarantee

correctness of the monitoring algorithm.

D. Example

In this section we illustrate the P2P MR algorithm. Let thbeetwo peersP; and P;. Let
the regression model be linear in the regression coeff&ienqt+ a;z, + aszo, Whereag, a;
and a, are the regression coefficients having values 1, 2 and -2césply andx; and z-
are the two attributes of the data. The coefficients are gieemll the peers. The data of
peer P, is S; = {(3,1,3.9),(0,—-1,3.6)}, where the third entry of each data point is the
output generated according to the regression model. To wWesadd 30% noise. Similarly,
for peer P;, S; = {(1,4,—6.5),(—3,2,-9.1)}. Now for peerP;, the squared error for each
point is: & = {(0.9)2,(0.6)?}. Similarly for P;, the errors aref; = {(1.5) (2.1)?}. Hence
& = {(09 2} {0.585} and &, = {M} {3.33}. AssumingX,, = X,; = 0,
for peer P, K; = & = {0.585}. Similarly for peerP;, K; = £ = {3.33}. Also the global

May 22, 2008 DRAFT

12

average error i€9 = {(0‘9)2“0‘6)21(1'5)2+(2‘1)2} = {1.9575}. In R, the task is to determine if

1.9575 > € for a user defined.

E. Local Algorithm

Local algorithms, as defined by Das et al. [3], are paranegdrby two quantities: (1
— which is the number of neighbors a peer contacts in ordemtb dnswers to a query and
(2) v — which is the total size of the response which a peer recasethe answer to all the
gueries executed throughout the lifetime of the algoritlimcan be a constant or a function
parameterized by the size of the network whjlean be parameterized by both the size of the
data of a peer and the size of the network. Here we presentetatibn proposed by Das et
al. [3].

Definition 3.6 (-neighborhood of a vertex)tet G = (V, E) be the graph representing the
network wherel” denotes the set of nodes aAdrepresents the edges between the nodes. The
a-neighborhood of a vertexv € V' is the collection of vertices at distaneeor less from it in
G: Ty(a,v,V) = {uldist(u,v) < a}, wheredist(u,v) denotes the length of the shortest path
in betweenu andv and the length of a path is defined as the number of edges in it.

Definition 3.7 @-local query): Let G = (V, E) be a graph as defined in last definition. Let
each nodev € V store a data sek,. An a-local query by some vertex) is a query whose
response can be computed using some funcfiox, (v)) where X, (v) = {X,|v € I'y,(a, v, V) }.

Definition 3.8 (v,)-local algorithm): An algorithm is called«, v)-local if it never requires
computation of a3-local query such that > o and the total size of the response to all sueh
local queries sent out by a peer is boundedyby can be a constant or a function parameterized
by the size of the network while can be parameterized by both the size of the data of a peer
and the size of the network.

The idea is to design algorithms that offers bounded totalroanication cost per node and also
spatially localized communication among the neighbors.calesuch an ¢, «)-local algorithm
efficient if both o and~ are either small constants or some slow growing functiooblijsear)
with respect to its parameters. We prove that the regressaonitoring algorithm iSO(1), O(n))-

local in Section IV-B.

May 22, 2008 DRAFT

13

IV. STEP1: MONITORING REGRESSIONMODEL

In MR monitoring problem, each peer is given a datageand an estimaté’(?). Our goal
is to monitor&9.

We present here a local algorithm which monitors the regsassoefficients by thresholding
the average error. In our earlier work [33], we presented lgorghm for monitoring the L2
norm of the average vector distributed across a large numibpeers. The algorithm outputs
0 if HaH < e and 1 otherwise. The algorithm presented in [33] is pronedisenin the data
since it communicates all the data for every data changehithpaper, we take care of that
problem by applying a different condition for sending megsaand ensuring that all data is
not sent whenever a peer communicates. Rather, we keep satadim the form of withheld
knowledge) so that if the data changes later, the changesssrieisy. Here we use a similar
algorithm but inR and use a different set of conditions for sending messagesdier to reduce
the communication overhead in dynamically changing emvirents.

The regression monitoring algorithm guarantees evenmaéctness, which means that once
computation terminates, each peer computes the correglt i@s compared to a centralized
setting. In a termination state, no messages traverse tinonke and hence a peer can decide
solely based oiiC;, A; ;, andW,, if £9 is greater than or less thanAs stated by the Theorem
below, if the following condition holds, the peer can stopdiag messages and determine the
correct output based solely on its local averages.

Theorem 4.1:[Stopping Rule] Let P, ..., P, be a set of peers connected to each other over
a spanning tre€ (V, E). Let £9, K;, A; ;, and W, ; be as defined in the previous section. Let
R be any region irC,,. If at time ¢ no messages traverse the network, and for €a¢cliC; € R
and for everyP; € T;, A;; € R and eithenV,; € R or W, ; = (), then&9 € R.

Proof: [Sketch]:We omit the formal proof here. Simply speaking, the theoramlze proved
by taking any two arbitrary peers and exchanging all of tethheld knowledge. We call this
the unification step. After unifying all the peers it can bewh that9 € R. Interested readers
are referred to [39]. [|

The significance of Theorem 4.1 is that under the conditioscdeed P, can stop sending
messages to its neighbors and outpukif < e. The idea is to ensure thaf; and £9 finally

reside in the same region @,. If the result of the theorem holds for every peer, then Taeor

May 22, 2008 DRAFT

14

4.1 guarantees this is the correct solution; else, there mitlteer be a message in transit, or
some peelP, for whom the condition does not hold. Then eith&rwill send a message which
will change its output or the message will be received, legdd a change iriC;, eventually.

Thus eventual correctness is guaranteed. We formally pitusen Section IV-A.

Input: ¢, C,, S;, I'; and L
Output: 0 if K; < ¢, 1 otherwise
Initialization : Initialize vectors;
if MessageRecvdFrortP;, X, |X|) then
Xji = X;
| Xl — | XT3
Update vectors;
end
if S;, I'; or K; changegshen
forall P; € I'; do
if LastMsgSent > L time units agahen

if R =0 then
— il i =1 X, X
Xi ISErenm
d|Xm'| — G| = [Xjls
en

if 4;;¢ RorW,; ¢ R then
Set X;; and|X, ;| such that4; ; and W, ; € R;
end
SendMessagel;, X; ;. | Xi;|);
LastMsgSent «— L,

Update all vectors;
end

elseWait L time units and then check again;
end
end

Algorithm 1: Monitoring Regression Model.

Algorithm 1 presents the pseudo-code. The inputs to therithhgo are S;, I';, e and C,, and
L. Each peer initializes its local statistits, A; ; andW, ;. A peer may need to send a message
if its local data changes, if it receives a message or if theob@eighbors change. In any of
these cases, the peer checks if the condition of the theoodus.HFirst peerP; finds the region
R € C, such thatC; € R. If, for all P; € I';, both A; ; € R andW, ; € R, P; does nothing; else
it needs to sefX; ; and|X; ;| and send those, such that after the message is sent, thei@ondi

of the theorem holds for this peer. As we already pointed bat if a peer communicates all

May 22, 2008 DRAFT

15

of its data, then if the data changes again later, the chanégr imore noisy than the original
data. So we always set;; and | X; ;| such that some data is retained while still maintaining
the conditions of the theorem. We do this by checking with gmoeentially decreasing set of
values of|[W; ;| until either all;, A;; andW,; € R, or |W,;|=0, in which case we have to
send everything. Note that other than these two cases, angeer not send a message since
the theorem guarantees eventual correctness. Similangnever it receives a message énd
| X]), it setsX;; «— X and|X;,| < |X|. This may trigger another round of communication
since its/C; can now change.

To prevent message explosion, in our event-based systermpi®ye a “leaky bucket” mecha-
nism which ensures that no two messages are sent in a peadérstian a constarit. Whenever
a peer needs to send a message it checkstifne units have passed since the last time it sent
a message. If yes, it simply sends the message and notesnhelftinot, it sets up a timer and
initializes it to the time difference betwedn and the time it had sent the last message. When
the timer expires, the peer checks the conditions for sgnaiessages and decides accordingly.
Note that this mechanism does not enforce synchronizatiaffect correctness; at most it might
delay convergence. This technique has been used elsewherelld33][17].

In the next two sections we discuss the correctness andtioocalthe multivariate regression

monitoring algorithm.

A. Correctness

In this section we prove that the regression monitoringréigm is eventually correct. Theorem
4.2 formally proves the claim.

Theorem 4.2:[Correctness] The regression monitoring algorithm éventually correct

Proof: Each peer will continue to send messages and accumulate andrenore of£¢

in eachC; until one of the two things happen: either for every péér= £9 or for every P;,
both KC;, A, ;, andW, ; are in the samé&z, € C,. In the former caselC; = &9, so every peer
obviously computes the correct output. In the latter casmofem 4.1 dictates tha&¥ ¢ R,.
Since the function output (in this case 0 or 1) does not chamgjde each of these regions in
C.,, and&Y andK; lie inside the same region, the output of the €%t< ¢ will be the same as

K; < e. Therefore in either of the cases, the regression mongaalgorithm is correct. [|

May 22, 2008 DRAFT

16

B. Locality

In this section we claim that the regression monitoring athm is (O(1), O(n))-local. The art
of measuring «, y)-locality of algorithms is at its infancy. An attempt has beeade to define
locality with respect to th&eracity Radiuof an aggregation problem [35]. However this method
does not extend well to algorithms that contain randomness, (in message scheduling) or to
dynamic data and topology. Considering tle) framework we defined earlier, there always
exist problem instances for which any eventually corregoathm (e.g. [16][31][33][40][41]
and the one described in this paper) will have worst case O(n) (as shown in Theorem
4.4), wheren is the size of the network. Whil@(n) is the upper bound on the communication
complexity, more accurate bounds grcan be developed by identifying the specific problems
and input instances. We feel that there is an intrinsic i@abetweeny and e. For example
increasinge decreases though it needs to be investigated further.

Lemma 4.3:Considering a two node network; and F;, the maximum number of messages
exchanged between them to come to a consensus about thet aartput is 2.

Proof: Using the notations defined earlier, €t € R, K; € R, and€9 € R,,, where
R,., Ry, R, € C, andk # ¢ andm = k or £. Considering an initialization state, Whe@ =
X;; =0 such that4d; ; = 0 = A;,. In this case the condition of Theorem 4.1 does not hold for
either P, or P;. Without loss of generality let us assume that the conditiare violated af’;.

It will send all of its datai.e. K; to P; which will enableP; to correctly compute&9 (since&Y
is a convex combination of; and ;). On receivingk; from P;, P; will apply the conditions
of Theorem 4.1. Since clearlf; = £9 € R,, but A;, = K; € Ry, the condition of the theorem
dictates it to send a messageRpand it will send all the data which it has not received frétn
i.e. K;. At this point bothP; and P; have bothiC; andC;. Hence they can comput®’ correctly.
Therefore the number of messages exchanged is 2. []
Our next theorem bounds the total number of messages seritebgegiression monitoring
algorithm. Because of the dependence on the data, coutttngumber of messages in a data
independent manner for such an asynchronous algorithmssegtremely difficult. Therefore
in the following theorem (Theorem 4.4), we find the upper lboh the number of messages

exchanged by any peer when the data of all the peer changes.

May 22, 2008 DRAFT

17

Lemma 4.4:[Communication Complexity] Let D, be a state of the network at timevhere
for every P, K; € Ry, R, € C,,. Hence&Y € R, as well and thus the peers have converged to
the correct result. Let at tim# > ¢ the data of each peer changes. Without loss of generality, le
us assume that at timé K, € R; where each?; € C.,. Let us also assume th&f < R,, where
g ¢ {1...n}. The maximum number of messages sent by any peés (n — 1) x (|I;] — 1) in
order to ensureC; € R,.

Proof: It is clear that the output of each peer will be correct onlyewreachkC; = £9.
This will only happen when eacl; has communicated with all the peers in the network i.e.
K; = >, K;. Since the regression monitoring algorithm only commuteisavith immediate
neighbors, in the worst case any peerwill be updated with each value df;, j # i one at
a time. Every timeP; gets onekK;, it communicates with all its neighbors except the one from
which it got K;. This process can be repeated in the worst casérfor 1) times in order to
get all thekC,’s. At every such update?; will communicate with|T;| — 1 neighbors. Therefore,
the total number of messages sentRyis (n — 1) x (|I';] — 1). u

Our next theorem shows that the multivariate regressionitoramg algorithm is(O(1), O(n))-
local.

Theorem 4.5:[Locality] The multivariate regression monitoring algorithm(i(1), O(n))-
local.

Proof: The multivariate regression algorithm is designed to workcommunicating with
immediate neighbors of a peer only. Hence by desigs; 1.

From Lemma 4.4, we know that = O(n). Hence, the multivariate regression monitoring
algorithm is(O(1), O(n))-local. u

Although the worst case communication complexijtis O(n), for many interesting problem
instancesy is a small constant and independent of the size of the netasr&orroborated by

our extensive experimental results.

C. An Alternate Approach

In the previous section we used L2-norm monitoring as th&limg block for monitoring the
regression coefficients. In this section we discuss angdhsritive viz. majority voting protocol

which can be used for the same matter.

May 22, 2008 DRAFT

18

Majority voting protocol for large P2P systems was proposgd\Volff and Schuster [31]. In
its basic form, each peé€¥; contains a real numbeét and the objective is to determine whether
A =30 >¢, wheree is a user chosen threshold.

The task of computing ifA > ¢ can be achieved by the following algorithm. For peé¥s
and P;, let "/ denote the most recent message (a real number) Pesends toP;. Similarly
67" denotes the last message receivedjrom P;. Now using a similar mnemonic as done in
the previous sections, the knowledgeffis A* = §* + ZPjeri 5%, Similarly, the agreement of
peer P, and P; is A" = ¢ + 7%, for each neighboi; € T';. The algorithm is entirely event
based — an event &, can be one of the following: (i)7; is initialized (enters the network
or otherwise begins computation of the algorithm); (i) experiences a data changeor a
change of its neighborhoody; (iii) F; receives a message from a neighlsyr If any of these
events occur, peeP; needs to check conditions on its knowledge and agreemerdgtéondine if
a message needs to be sento It can be shown that pedr, needs to send a messageRp
only if the following test returns true(A™ > 0 A A% > A') vV (A% < 0 A A" < A?). Since
all these events are local to a peer, the algorithm requeenmn of global synchronization and
hence can be used for our regression monitoring algorithm.

What is left to discuss is wha®; sends toP;, if the conditions dictate sab; first setsé*’ to
BA?—§7 (thereby making\i/ = SA?Y) and sends it tg, whereg is a fixed parameter between
0 and 1. Reducing reduces the number of messages in a dynamic setup whileasiogethe
convergence time. This mechanism replicates the one us&tlotfy et al. in [33] and Bhaduri
et al. [17]. The pseudo-code is presented in Algorithm 2.

In order to use this protocol for regression monitoring, filkowing steps need to be taken:

« The inputé® for each peer should be the average error calculated on itslaval dataset

5110 = B =t Yae, [F@) - F@)]
o Choosed’ = ¢ x n, wheren is the total number of nodes in the network.

Other than these two changes, the majority voting algorittan be used for regression
monitoring without any further change.

In the next section we discuss the algorithm for computirggréigression coefficients.

May 22, 2008 DRAFT

19

V. STEP 2: COMPUTING REGRESSIONMODEL

The regression monitoring algorithm presented in the easéction can be viewed as a flag
which is raised by a peer whenew&t > ¢. In this section we discuss how the peers collaborate
to find a newf(?) using a convergecast-broadcast technique.

The basic idea is to use tlwonvergecasphase to sample data from the network to a central
post and compute, based on this sample, a g?éW). The broadcastphase distributes this
f(?) to the network. The monitoring algorithm now monitors thealify of the result. The
efficiency and correctness of the monitoring algorithmvalia very simple sampling technique
to be used — if an ill-fit model is built at all, it will soon be weted by the local algorithm
resulting in another round of convergecast in the worst.cAsether point to note is that, in
our convergecast-broadcast process, we do not specifyotieof the convergecast tree. Rather
we let the network structure (edge delays and data skewdesg)e it. This is significant since
it ensures (1) decentralized control, (2) load balancimgl, @) robustness against a single point
of failure.

In the convergecast phase there are two main parametets.peac maintains a user selected
alert mitigation constant; and the sample size. An alert should be stable for a giverogeri
of time 7 before the peer can send its data, thereby preventing abbogalse alarm from
propagating. In order to do this, the peer relies on the uyidgr monitoring algorithm. If the
monitoring algorithm raises a flag, the peer notes the time,s&ts a timer te time units. If the
timer expires, or a data message is received from one of ighbers, P, first checks if there is
an existing alert and if it has been recordedr more time units ago. If so, it counts the number
of neighbors from which it has received data messages. @meedives data messages from all
of its neighbors, the peer computes a new regression nﬁmé} based on the sample it received
and sends it to itself. It then moves to the broadcast pha}tesandsf(?) to all its neighbors.
On the other hand, if it has received data messages from albriel of the neighbors then it
takes a uniform sample (of user-defined size) from its owa datl the data it has received from
its neighbors. It then forwards the sample to the peer fronchvit has not received data and
marks its state as broadcast. The peer does nothing if it biagceived data from two or more
neighbors. Note that, at each peer, the sampling techngjgaah that, each data point gets an

equal chance of being included in the sampled data set. Whislty properly weighing every

May 22, 2008 DRAFT

20

\ Flag=1£ Flag & Flag=1 Flag=1 Flag & Flag=1

0/ f \0 o/i\o o d ’}O ?
a\ Lod% e e 4% LN %

. . . . Flag=1 Flag=1 Flag=1 Flag=1 Flag=1 Flag=1 Flag=1 Flag=1 Flag=1 Flag=1
(a) Initial state (b) Activated leaves (c) Activated intermediate (d) Activated roots
nodes

Fig. 1. Convergecast and broadcast through the differepsstn subfigure 1(a), the peers do not raise a flag. In subfitfim),
the two leaves raise their flags and send their data up (toatenp) as shown using arrows. Figure 1(c) shows an inteatedi
step. Finally, the roots (two of them) become activated infigure 1(d) by exchanging data with each other.

data point by size of the subtree from which the sample wasived.

The broadcast phase is fairly straightforward. Every pdackreceives the ne\ﬁ(?), restarts
a new regression monitoring algorithm with this nﬂv?). It then, sends the ne\ﬁ(?) to its
other neighbors and changes the status to convergecasé dd@d be one situation in which a
peer receives a neﬁ(?) when it is already in the broadcast phase. This is when twghteir
peers concurrently become roots for the convergecastTeebreak this tie, we select t@@(?)
to propagate the root of which has a higher id. Figure 1 showsap-shot of the convergecast
broadcast steps as it progresses up the communicationTineepseudo-code is presented in
Algorithm 3.

VI. SPECIAL CASE: LINEAR REGRESSION

In many cases, sampling from the network is communicatidansive. We can find the
coefficients using an in-network aggregation if we choosentmitor a widely used regression
modelviz. linear regression (linear with respect to the parameteth@unknown weights).

Let the global dataset over all the peers be denoted by:

May 22, 2008 DRAFT

21

T T2 ... Ti(d-1) f(?l)

T2l T22 ... T2(d-1) f(?z)
g =

Jj‘jl .Z’jQ . xj(d—l) f(.l’—;)

Tigh Tigle --- g1 f(Tg))

wherez; = {zj12j2... . Tj4-1)}-

In MR, the idea is to learn a functioﬁ(x_j) which approximateg () for all the data points
in G. For linear regression, that functiqﬂx_j) is chosen to be a linear function i.e.da— 1
degree polynomial fitted to the input attribute poifts; ;- ...x;4-1)} Vj = 1 to |G|. More
specifically, the linear model which we want to fit tﬁa?j) = ap+a17j1+axTjo+... +aj(d—1)Ta—1,
wherea;’s are the coefficients that need to be estimated from theagldétaset;. We drop the
cross terms involving:; andx;, for simplicity V&, ¢ € [1..(d — 1)].

For every data point in the sé, the squared error is:

2
By = [f («T_l)) — Qo — 111 — A2d12 — ... Cld—1$1(d—1)}
2
Ey = [f ($_>1) — Qg — a1l21 — Ag2X22 — ... — Cld—1$2(d—1)}
2
Eg = [f(¥g]) — a0 — awign — azrigip — - = Aa-171g/(a-1)]

Thus the total square error over all the data points is

4 4
SSE = ZEJ = Z [f (z) — ag — Cl,ll'jl — 0,21']'2 — ... Cl,d_ll'j(d_l)}z
j=1

j=1
For linear regression, closed form expressions exist falirfimthe coefficients;’s by finding

the partial derivatives of SSE with respect to this and setting them to zero:

May 22, 2008 DRAFT

22

0

%SSE = 2 Z [f (l—’;) — Qg — 151 — A2 — ... — ad_lz):j(d_l)} (—1) =0
0 =1
9 G|
a—al»SSE = 2 Z [f (l—’;) — ag — alzjl — 0,21’]'2 — ... ad_lz):j(d_l)} (—l'jl) =0
j=1
9 4
%SSE = 2 Z [f (x_;) — Qo — @1 Tj51 — A2X52 — - ad—lxj(d—l)} (—%2) =0
2 =1
9 G|
aad 1SSE = 2 Z [f (l—’;) — ag — alzjl — 0,21’]'2 — ... ad_lz):j(d_l)} (_xj(d—l)) =0
_ st

In the matrix form this can be written as:

g
G| Shan o S ey
Z\g\ Z\g\ ()2 Z\g\ Tj1 % Ti(a1)

Zy 1Lj(d-1) Z] 1 Lj(d-1) ¥ Tj1 .- Zy 1(xjd 1)

ap Z|g|1 f(x])
Gl =
| 2 L xasy
N
Qg1 > o f(2)z

Therefore for computing the matrix (or more appropriategctor) a, we need to evaluate
the matricesX andY. This can be done in a communication efficient manner by imgfithat
the entries of these matrices are simply sums. Consider itgbdted scenario wherg is
distributed among: peerss;, Ss, ..., S,. Any entry of X, say>_7 (z;1)?, can be decomposed

as

May 22, 2008 DRAFT

23

4

@)= @)+) (@a)++) ()

j=1 x;1€51 x;1€52 x;1€Sn
Vv ~ Vv - W
for S, for S, for S,

Therefore each entry of andY can be computed by simple sum over all the peers. Thus,
instead of sending the raw data in the convergecast roued/pean forward a locally computed
matrix X; andY,. PeerP;, on receiving this, can forward a new matkx andY ; by aggregating,
in a component-wise fashion, its local matrix and the rez@iones. Note that the avoidance
of the sampling technique ensures that the result is ex#totly\same compared to a centralized
setting.

Communication Complexity: Next we prove a lemma which states the communication
complexity of computing the linear regression model.

Lemma 6.1:The communication complexity of computing a linear regi@ssnodel is only
dependent on the degree of the polynomigldnd is independent of the number of data points
i.e. |Gl

Proof: As shown in Section VI, the task of computing the regressaeffcients{ag, a;, ... aq_1}
can be reduced to computing the matriggsandY ;. The dimensionality oX; d.d = d?. Similarly
the dimensionality off; d.1 = d. Therefore the total communication complexityQd$d?), which
is independent of the size of the dataggt u
The efficiency of the convergecast process is due to the fattit< |G|. Hence there can

be significant savings in terms of communication by not comicating the raw data.

VIlI. EXPERIMENTAL RESULTS

In this section we discuss the experimental setup and amdahg performance of the P2P

regression algorithm.

A. Experimental Setup

We have implemented our algorithms in the Distributed Daiaihy Toolkit (DDMT) [42]
developed by the DIADIC research lab at UMBC. We use topahginformation generated
by the Barabasi Albert (BA)model in BRITE [43] since it is often considered a reasonable

May 22, 2008 DRAFT

24

w 100 T o o 1
pe & 20.75
2 =
£ >0 - 0.5
$ 25 Iy
% @ 0.25;
S £
0 051 15 2 25 3 35 4 45 5 20
dime x 10° 05 1 15 2 25 3 35 4 45 5
Time x 10°
(a) Percentage of peers with; < e (b) Monitoring Cost

Fig. 2. A typical experiment is run for 10 equal length epocQsiality and overall cost are measured across the entire
experiment — including transitional phases. The monigpdost is measured on the la&t% of every epoch, in order to ignore
transitional effects.

model for the internet. BA also defines delay for network edgenich is the basis for our time

measuremeht On top of the network generated by BRITE, we overlay a conigation tree.

B. Data Generation

The input data of a peer is a vectar;, o, ...,z,) € R?, where the firsid — 1 dimensions
correspond to the input variables and the last dimensioresponds to the output. We have
conducted experiments on both linear and non-linear regnesnodels. For the linear model,
the output is generated according#@ = ag + ayx1 + asxs + ... + ag_1x4-1. We have used
three functions for the non-linear model: (1) = ap + aja221 + apayze (Multiplicative), (2)
x3 = ag X sin(a; + asx1) + a1 X sin(az + apxz) (sinusoidal) and (ks = ag\/Toar + a1/Z1a0
(square root). Every time a simulated peer needs an additdata point, it chooses the values
of x1,x,...24_1, €ach independently in the range -100 to +100. Then it géesethe value of
the target variable:; using any of the above functions and adds a uniform noisedrrdhge 5
to 20% of the value of the target output. The regression vigigh a,,...,aq_1’S are changed

randomly at controlled intervals to create an epoch change.

C. Measurement Metric

In our experiments, the two most important parameters foasuement are thquality of
the result and theostof the algorithm.

IWall time is meaningless when simulating thousands of cderplon a single PC.

May 22, 2008 DRAFT

25

For the regression monitoring algorithm, quality is meaduin terms of the percentage of
peers which correctly compute an aleirg., the number of peers which report that <
when &9 < ¢ and similarlyC; > ¢ when &9 > . We also report the overall quality which is
average of the qualities for both less than and greaterdlaaa hence lies in between those two.
Moreover, for each quality graph in Figures 3, 4, 5, 6, 7 andeBrgport two quantities — (1)
the average quality over all peers, all epochs and 10 indegperirials (the center markers) and
(2) the standard deviation over 10 independent trials (draos). For the regression computation
algorithm, quality is defined as the L2 norm distance betwersolution of our algorithm and
the actual regression weights. We compare this to a cexgthlalgorithm having access to all
of the data.

We refer to the cost of the algorithm as the numbenofmalized messagesent, which is
the number of messages sent by each peer per unit of leaketlckence, 0.1 normalized
messages means that nine out of ten times the algorithm resnagvoid sending a message.
We report both overall cost and the monitoring cost (statigrcost), which refers to the “wasted
effort” of the algorithm. We also report, where approprjateessages required for convergecast
and broadcast of the model.

D. Typical Experiments

A typical experiment is shown in Figure 2. In all the expents about 4% of the data of
each peer is changed every 1000 simulator ticks. Moreofter, every 5x 10° simulator ticks,
the data distribution is changed. Therefore there are tweldeof data change — (1) every 1000
simulator ticks we sample 4% of new data from the same digtab (stationary change) and
(2) every 5x 10° clock ticks we change the distribution (non-stationaryng®. To start with,
every peer is supplied the same regression coefficientseasoifficients of the data generator.
Figure 2(a) shows that for the first epoch, the quality is vieigh (nearly 96%). After 5x
105 simulator ticks, we change the weights of the generatorowmittthanging the coefficients
given to each peer. Therefore the percentage of peers irpdit < ¢ drops to 0. For the cost,
Figure 2(b) shows that the monitoring cost is low throughthgt experiment if we ignore the

transitional effects.

May 22, 2008 DRAFT

26

E. Results: Regression Monitoring

There are four external parameters which can influence thevioer of the regression moni-
toring algorithm: size of local buffelS;|, the threshold, size of the leaky bucket and noise in
the data. Apart from these there are also the system sizebg@mai peers) and dimensionality
of the multivariate regression problem which can affecfqrenance. In this section we present
the quality (less thane. £9 < ¢, greater than.e. £9 > ¢ and overall) and cost of the algorithm
w.r.t. different parameters. Note that, unless otherwiated, we have used the following default
values for the different parameters: number of peers = 108)0= 50, ¢ = 1.5, d = 10, k = 8
andL = 500 (where the average edge delay is about 1100 time units). Azawe already stated,
independent of the regression function chosen, the uridgriyonitoring problem is always in
R. The results reported in this section are with respect tealinmodel since it is the most
widely used regression model. Results of monitoring momaplex models are reported in the
next section.

Figures 3(a) and 3(b) show the quality and cost of the aligarias the size of local buffer is
changed. As expected, the quality when the average is lass thcreases and the cost decreases
as the size of buffer increases. The other quality is ver iigoughout. This stems from the
fact that, with the noise in the data, it is easy for a peer tdflgged over when it is checking
for less thare. On the other hand, noise cannot change the belief of thevgeen the average
is greater than. In the second set of experiments, we variefidom 1.0 to 2.5 (Figure 4(a) and
4(b)). Here also, the quality increaseseas increased. This is because with increasinthere
is a bigger region in which to bound the global average. Téialso reflected with decreasing
number of messages. Note that, evenefer 1.0, the normalized messages are around 1.6, which
is far less than the theoretical maximum of 2 (assuming twighters per peer). The third set
of experiments analyzes the effect of leaky bucke®As shown in Figure 5(a) quality does not
depend onl, while Figure 5(b) shows that the cost decreases slowly initreasingL. Figures
6(a) and 6(b) depict the dependence of the noise on the mimgtalgorithm. Quality degrades
and cost increases with increasing noise. This is expestade with increasing noise a peer is
more prone to random effects. This effect can, however, tidied by using a large buffer or
biggere.

Our next experiment analyzes the scalability of the moimtpialgorithm w.r.t the number

May 22, 2008 DRAFT

% correct peers

100

©
A

©
==

S i

} >EC<s

. EG>s
| ‘ ‘ ¢ Overall
25 50 100 200

S|

(a) Quality vs.|S;|

Fig. 3. Behavior of the monitoring algorithm with changesttie size of the dataset.

% correct peers

100¢——% i oo Pt
80r {}
60! { > EG<s
% °EC>¢
40— ‘ ‘ ‘ ¢ Overall
1 13 15 2.0 25

(a) Quality vs.ce

©0.25 .
o > Stationary
§ 0.2 o Qverall
Lo15
©
g o1 1
£ 0.05/ }’ H
[e)
2 0550 100 200
S|
(b) Cost vs.|S;]

8 2 ' ' ' [>S :
o)) tatlonary
5160 % o Overall
$19
O
NO8
Toa
s, Woou gl

1 13 15 2 25

Fig. 4. Behavior of the monitoring algorithm with changescin

% correct peers

Fig. 5. Behavior of the monitoring algorithm with size bf

May 22, 2008

100 7§ & ‘ T‘ T T}
o I # # P
90 DEG<£
g5 E >t
¢ Overall ‘ ‘ ‘
100 200 700 1000

500
L

(a) Quality vs.L

(b) Cost vs.c

Normalized Messages
o
=

| > Stationary
o Overall
g b ,
! }
bk by P
100 200 560L 700 1000

(b) Cost vs.L

27

DRAFT

% correct peers

90

80r

70 1
> EC<g %

601 EC>e [» 7

50} o Overall

1007 e 7 i’% I# ¢

5 10 15 20
Percentage noise

(a) Quality vs. Noise

Fig. 6. Behavior of the monitoring algorithm with variatiaf noise in the data.

100

% correct peers

95

90r

85

7y f i
HE b
~EC<e
nEC >
‘ ‘ ‘ ‘ ¢ Qverall
200 500 1000 2000 3000

Number of peers

() Quality vs. number of peers

Fig. 7. Scalability with respect to number of peers.

of peers and dimension of the multivariate problem. As Fégur(a) and 7(b) show, both the
guality and cost of the algorithm converge to a constant asittmber of peers increase. This is
a typical behavior of local algorithms. For any peer, siroe computation is dependent on the
result from only a handful of its neighbors, the overall sitg¢he network does not degrade the
guality or cost. Similarly, Figures 8(a) and 8(b) show thne quality or the cost does not depend
on the dimension of the multivariate problem either. Thideipendence of the quality and cost

0 ;
% > Stationary
@ 0.4 0 Overall %
(0]
>0.3
O
B02 $ b
£0.1 B b
5 | d
2 ok ‘ ‘ ‘
5 10 15 20
Percentage noise
(b) Cost vs. Noise
> Stationary
03 o Overall

o
[
——
——t
Ll
—5—

Normalized Messages
o
N

o

200 500 1000 2000
Number of peers

3000

(b) Cost vs. number of peers

28

can be explained by noting that the underlying monitoringbgem is inR. Therefore for a

given problem, the system size or dimensionality of the |lenmbhas no effect on the quality or

the cost.

Overall, the results show that the monitoring algorithmeodfextremely good quality, incurs

low monitoring cost and has high scalability.

May 22, 2008

DRAFT

29

o
[N

100 T -
> Stationary

o g g ° w ‘
p % T% T T ! % 5 Overall
$ % ‘% % % ©0.15
a 95]> {> 2 %
g = 01 % %
: e b b
o\o §005’
S S 4 ..
10 . 15 20 2 5 10 15 20
Dimension Dimension
(a) Quality vs. dimension (b) Cost vs. dimension

Fig. 8. Scalability with respect to dimension of the multiaée problem.

F. Results: Regression Models

Our next set of experiments measure the quality of the regnesnodel computed by our
algorithm against a centralized algorithm having accedisd@ntire data. There are two important
parameters to be considered here — (1) the alert mitigatimstant €) and (2) the sample
size (for non-linear regression). For computing the noedr regression coefficients, we have
implemented the Nelder-Mead simplex method [44].

We have conducted experiments on three datasets. Figuags 19(a) and 11(a) presents
two sets of error bars. The square markers show the L2 nortandis between the distributed
coefficients and the actual ones. Also shown in each figureeid 2 norm distance between the
coefficients found by a centralized algorithm and the actueds (diamond markers). The first
pair of figures, Figures 9(a) and 9(b) show the results of aging a linear regression model.
Our aim is to measure the effect of variation of alert mitigafperiodr on quality and cost. As
shown in Figure 9(a), the quality of our algorithm detertesasr increases. This is because,
on increasingr, a peer builds a model later and therefore is inaccurate fonger intermediate
period. Figure 9(b) shows that the number of data colleatbamds (dot markers) decrease from
four times to twice per epoch. This results from a decreagb@emumber of false alerts. Also
shown are monitoring messages (green squares).

Figures 10(a) and 10(b) analyzes the quality of our algorithhile computing a non-linear
multiplicative regression modeiz. x3 = ag+ ajas21 + aga;zo. Figure 10(a) presents the quality

as other parameteriz. sampling size is varied. As expected, the results from tis¢riduted

May 22, 2008 DRAFT

30

g [}
8 0.18 2
3 A 8
< 0.25; .5 g
: : g
Q- —

g 0.2r H’ % % 8 3 0,16ﬁ
:c; 0.15 o ant_ralized] 8 =
@ L |0 Distributed ol £
© 50010002000 riod (1 0% 5001000 2000 2000142

Alert Mitigation period (1) ‘Alert mitiaation period (1)

() Quality for linear model (b) Cost for linear model

Fig. 9. Quality and cost of computing regression coeffideot a linear model.

= v
© 0.65 0.14 %
8 0 Centralized A g
TEU 0.6 ll, o Distributed || S o
£ F 5 s
g 0.55¢ % # 8 3 0.12 %l
® o e
A ;], IS e
Boa5. ‘ ¢ 2| 6‘).1 5
0 *""5001000 2000 4000 5001000_ 2000 . 4000 " =
Sample Size Sample Size
(a) Quality for multiplicative model (b) Cost for multiplicative model

Fig. 10. Quality and cost of computing regression coeffisidor s = ao + a1a2x1 + aoaixa.

and centralized computations converge with increasingpgarsize. Also the number of data
collection rounds as depicted in Figure 10(b) decrease raplsasize is increased.

The third pair of figures, Figures 11(a) and 11(b) show theesaaults for a sinusoidal model:
x3 = ag * sin(a; + asxy) + ay * sin(as + agrs). Here also the quality becomes better and the
cost decreases as the sample size is increased.

Finally Figures 12(a) and 12(b) demonstrate the effect alityuof the regression model built
and the cost incurred as the for building a model of the fagm= ay\/zoa; + a1\/T1a9. AS
shown here, the quality improves and the cost decreases aaithple size is increased.

To sum everything up, the regression computation algoritffers excellent accuracy and low
monitoring cost. Also, the number of convergecast-brosidacands is also two times per epoch
on an average. We have tested our algorithm on several sggmefsinctions and the results are

highly satisfactory.

May 22, 2008 DRAFT

31

o
o
=
o
o
N

¢ Centralized
O Distributed ||

o
o
O

W

Distance to optimal coeff
o
o
N
Data Collection
o
[9)]
N
Normalized L2 Messages

0.01
2,
O ‘ ‘ ‘ 6).6
500 1000 2000 4000 5001000_ 2000 400
Sample Size Sample Size
(a) Quality for sinusoidal model (b) Cost for sinusoidal model

Fig. 11. Quality and cost of computing regression coeffisidor 3 = ao X sin(ai + a2z1) + a1 x sin(az + aoz2).

= n
S 1 : 6 03%
5] © Centralized @
— . . c)
] # o Distributed S5 2
E 3 B s
8 2 ~
c05 ¢ 34 0.2

°©
3 § 23 5
3 # e £
g o ‘ T T 0.1
O “500 1000 2000 4000 500 1000 2000 400 =z

Sample Size Sample Size

(a) Quality for modelmg = ao+/Toa1 + a1/T1a0 (b) Cost for mOdelbg = ap+/Toa1 + ai1/xr100

Fig. 12. Quality and cost of computing regression coeffisdar x5 = ao+\/Toa1 + a1+/T1a0.

VIIl. CONCLUSIONS ANDFUTURE WORK

To the best of the authors’ knowledge this is one of the firs¢napts on developing a
completely local and asynchronous regression algorithnPP systems which maintains the
same regression models given all the data to all the peeesalfjorithm is suitable for scenarios
in which the data is distributed across a large P2P networkseamlessly handles data changes
and node failures. We have performed dynamic experimerits andom epoch changes which
showed that the algorithm is accurate, efficient and higblable. Such algorithms are needed
for next generation P2P applications such as P2P bioinficejaP2P web mining and P2P
astronomy using National Virtual Observatories. As a neeg,swe plan to explore other methods

of learning such as support vector machines and decisies.tre

May 22, 2008 DRAFT

32

ACKNOWLEDGEMENT

This work was supported by the United States National Seié&muindation Grant [1S-0093353
and NASA Grant NNX07AV70G.

(1]
(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

“Chinook,” http://smweb.bcgsc.bc.ca/chinook/indexl.

K. Liu, K. Bhaduri, K. Das, and H. Kargupta, “Client-sidd/eb Mining for Community Formation in Peer-to-Peer
Environments,"SIGKDD Explorationsvol. 8, no. 2, pp. 11-20, December 2006.

K. Das, K. Bhaduri, K. Liu, and H. Kargupta, “Distributédentification of Topt Inner Product Elements and its Application
in a Peer-to-Peer NetworklEEE Transactions on Knowledge and Data Engineering (TKDB). 20, no. 4, pp. 475488,
2008.

D. E. Hershberger and H. Kargupta, “Distributed Multizde Regression Using Wavelet-based Collective Data mgifii
Journal of Parallel and Distributed Computingol. 61, no. 3, pp. 372—-400, 2001.

C. Guestrin, P. Bodi, R. Thibau, M. Paski, and S. Madddistributed Regression: an Efficient Framework for Modglin
Sensor Network Data,” ifProceedings of IPSN'QBerkeley, California, 2004, pp. 1-10.

J. Predd, S. Kulkarni, and H. Poor, “Distributed Kern@ldRession: An Algorithm for Training Collaborativel\gtXiv.cs.LG
archive 2006.

L. Breiman, “Bagging predictors,Machine Learningvol. 2, pp. 123-140, 1996.

J. Friedman, T. Hastie, and R. Tibshirani, “Additive listic Regression: a Statistical View of Boosting,” Dept Sitistics,
Stanford University, Tech. Rep., 1998.

S. J. Stolfo, A. L. Prodromidis, S. Tselepis, W. Lee, D. ®an, and P. K. Chan, “JAM: Java Agents for Meta-Learning
over Distributed Databases,” Broceedings of KDD’97Newport Beach, California, 1997, pp. 74-81.

Y. Xing, M. G. Madden, J. Duggan, and G. J. Lyons, “Distied Regression for Heterogeneous Data Skes;ture Notes
in Computer Sciengevol. 2810, pp. 544-553, 2003.

D. Caragea, A. Silvescu, and V. Honavar, “A Framework lfearning from Distributed Data Using Sufficient Statistic
and Its Application to Learning Decision Treesiternational Journal of Hybrid Intelligent Systemsl. 1, no. 1-2, pp.
80-89, 2004.

C. Giannella, K. Liu, T. Olsen, and H. Kargupta, “Comnuation Efficient Construction of Deicision Trees Over
Heterogeneously Distributed Data,” Froceedings of ICDM’'04Brighton, UK, 2004, pp. 67—74.

T. Olsen, “Distributed Decision Tree Learning From Mpie Heterogeneous Data Sources,” Master's thesis, Wsitye
of Maryland, Baltimore County, Baltimore. Maryland, Océ&st2006.

S. Merugu and J. Ghosh, “A Distributed Learning Framewfor Heterogeneous Data Sources,’Aroceedings of KDD’'05
2005, pp. 208-217.

B. Park, R. Ayyagari, and H. Kargupta, “A Fourier Anal8ased Approach to Learn Classifier from Distributed
Heterogeneous Data,” iRroceedings of SDM’'Q1Chicago, IL, April 2001.

P. Luo, H. Xiong, K. Lu, and Z. Shi, “Distributed Cla§isation in Peer-to-Peer Networks,” iAroceedings of KDD’07
2007, pp. 968-976.

K. Bhaduri, R. Wolff, C. Giannella, and H. Kargupta, “fiibuted Decision Tree Induction in Peer-to-Peer Sysfems
Statistical Analysis and Data Mining Journal (accepted regs) 2008.

May 22, 2008 DRAFT

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

33

S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kapgda, “Distributed Data Mining in Peer-to-Peer NetworkEEE
Internet Computingvol. 10, no. 4, pp. 18-26, 2006.

S. Bandyopadhyay, C. Giannella, U. Maulik, H. Kargydta Liu, and S. Datta, “Clustering Distributed Data Streams
Peer-to-Peer Environmentdfiformation Sciencevol. 176, no. 14, pp. 1952-1985, 2006.

S. Mukherjee and H. Kargupta, “Distributed Probaliitisnferencing in Sensor Networks using Variational Apgroation,”
Journal of Parallel and Distributed Computingol. 68, no. 1, pp. 78-92, 2008.

D. Kempe, A. Dobra, and J. Gehrke, “Computing Aggregaifrmation using Gossip,” irProceedings of FOCS’Q3
Cambridge, 2003.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “GossipAilgms: Design, Analysis and Applications,” Proceddings
of INFOCOMM’'05 Miami, March 2005, pp. 1653-1664.

I. Sharfman, A. Schuster, and D. Keren, “A Geometric Aggzh to Monitoring Threshold Functions over Distributeat®
Streams,” inProceedings of SIGMOD’Q6Chicago, lllinois, June 2006, pp. 301-312.

J. H. Holland,Adaptation in Natural and Artificial SystemsUniversity of Michigan Press, 1975.

J. V. NeumannTheory of Self-Reproducing AutomataChampaign, IL, USA: University of Illinois Press, 1966.

Y. Afek, S. Kutten, and M. Yung, “Local Detection For Gial Self Stabilization, 'n Theoretical Computer Scienceol.
186, no. 1-2, pp. 199-230, October 1997.

N. Linial, “Locality in Distributed Graph Algorithm$,SIAM Journal of Computingvol. 21, pp. 193-201, 1992.

M. Naor and L. Stockmeyer, “What Can be Computed Lo&illin Proceedings of STOC'93993, pp. 184-193.

S. Kutten and D. Peleg, “Fault-Local Distributed Memgli’ in Proceedings of PODC’950ttawa, Canada, August 1995,
pp. 20-27.

F. Kuhn, T. Moscibroda, and R. Wattenhofer, “What CanBe Computed Locally!” inProceedings of PODC’Q4St.
John’s, Newfoundland, Canada, 2004, pp. 300-309.

R. Wolff and A. Schuster, “Association Rule Mining in €&teto-Peer Systems|EEE Transactions on Systems, Man and
Cybernetics - Part Bvol. 34, no. 6, pp. 2426 — 2438, December 2004.

D. Krivitski, A. Schuster, and R. Wolff, “Local Hill Clnbing in Sensor Networks,” iProceedings of DMSN workshop,
in conjunction with SDM’05Newport Beach, California, April 2005.

R. Wolff, K. Bhaduri, and H. Kargupta, “Local L2 Threddong Based Data Mining in Peer-to-Peer Systems,” in
Proceedings of SDM’Q6Bethesda, MD, 2006, pp. 430—441.

J. Branch, B. Szymanski, C. Gionnella, R. Wolff, and Hargupta, “In-network outlier detection in wireless sensor
networks,” inProceedings oiCDCS’06, Lisbon, Portugal, July 2006.

Y. Birk, I. Keidar, L. Liss, A. Schuster, and R. Wolff, ‘&racity Radius - Capturing the Locality of Distributed
Computations,” inProceedings of PODC 'Q6Colorado, Denver, 2006, pp. 102-111.

Y. Birk, L. Liss, A. Schuster, and R. Wolff, “A Local Algithm for Ad Hoc Majority Voting via Charge Fusion,” in
Proceedings of DISC’Q4Amsterdam, Netherlands, 2004, pp. 275-289.

J. Garcia-Luna-Aceves and S. Murthy, “A Path-Findindg@ithm for Loop-Free Routing,”IEEE Transactions on
Networking vol. 5, no. 1, pp. 148-160, 1997.

N. Li, J. Hou, and L. Sha, “Design and Analysis of an MSasBd Topology Control Algorithm JEEE Transactions on
Wireless Communicationsol. 4, no. 3, pp. 1195-1205, 2005.

K. Bhaduri, “Efficient local algorithms for distributiedata mining in large scale peer to peer environments: Arehéntéstic

approach,” Ph.D. dissertation, University of Maryland|tBaore County, March 2008.

May 22, 2008 DRAFT

34

[40] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and Rrayu“Distributed Averaging on Peer-to-Peer Networks,” i
Proceedings of CDC’05Spain, 2005.

[41] D. S. Scherber and H. S. Papadopoulos, “Distributed @dation of Averages Over ad hoc NetworkdEZEE Journal on
Selected Areas in Communication®l. 23, no. 4, pp. 776-787, 2005.

[42] “DDMT,” http://www.umbc.edu/ddm/Sftware/DDMT/.

[43] “BRITE,” http://www.cs.bu.edu/brite/.

[44] J. Nelder and R. Mead, “A simplex method for function miization,” The Computer Journalol. 7, pp. 308-313, 1965.

May 22, 2008 DRAFT

35

Input: &%, T, L, 3
Output: if A’ >0 then1 else0
Local variables: VP; € T : 67, 6%
Definitions: A" = 6° + 37, s 07, AW = 87 + 6%
Initialization:
begin
forall P; € I do
5 = 597 = 0;
SendMessagéy);
end
end

if MessageRec\d;, §) then §7* — §;
if PeerFailureP; € T') then T" «— I' \ {P;};
if AddNeighbotP; € I') then I'" « I'"" U { P;};
if T, 6° changes or MessageRecthkn call OnChang€);
FunctionOnChange()
begin
forall P; e I do
if (A% >0AAY > AV (AY <0AAW < AY) then
call SendMessag@>;));
end
end
end

FunctionSendMessagéy;)
begin
if time () — last_message > L then
5@',3’ - (6Az _ 5j,z');
last_message «— time ();
Send(¢*7) to P;;
end
else
Wait L — (time () — last_message) time units;

Call OnChang«);
end
end

Algorithm 2: Local Majority Vote

May 22, 2008 DRAFT

36

Input: ¢, Cy,, Si, I'i, L, fandr
Output: f such thatg9 < ¢
Initialization
begin

Initialize vectors;

dMngype= MessageRecvdFromy);
en
if MsgType = Monitoring_Msg then Pass Message to Monitoring Algorithm;

if MsgType = New_Model_Msg then
Updatef; R
Forward newf to all neighbors;
Datasent=false; R
dRestart Monitoring Algorithm with newf;
en
if MsgType = Dataset_Msg then
if Received from all but one neighbtren
flag=Output Monitoring Algorithm();
if Datasent = false and flag = 1 then
if DataAlert stable for- time then
D=Samplef;, Recvd_Dataset);
Datasent=true;
SendD to remaining neighbor
end

elseDataAler=CurrentTime;
end

end
if Received from all neighborthen
D=Samplef;, Recvd_Dataset);
J=RegressionD);
Forward newf to all neighbors;
Datasentfalse; R
Restart Monitoring Algorithm with new;
end
end
if S;, I'; or K; changeghen
Run Monitoring Algorithm;
flag=OutputMonitoring_Algorithm();
if flag=1 and P;=IsLeaf() then
Execute the same conditions &6sgType = Dataset_Msg
end
end

Algorithm 3: P2P Regression Algorithm.

May 22, 2008 DRAFT

