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Abstract

Uniform random sample is often useful in analyzing
data. Usually taking a uniform sample is not a problem if
the entire data resides in one location. However, if the data
is distributed in a peer-to-peer (P2P) network with different
amount of data in different peers, collecting a uniform sam-
ple of data becomes a challenging task. A random sampling
can be performed using random-walk, but due to varying
degrees of connectivity and different sizes of data owned
by each peer, this random walk gives a biased sample. In
this paper, we propose a random walk-based sampling al-
gorithm that can be used to sample data tuples uniformly
from a large, unstructured P2P network. We model the ran-
dom walk as a Markov chain and derive conditions to bound
the length of the random walk necessary to achieve unifor-
mity. A formal communication analysis shows logarithmic
communication cost to discover a uniform data sample.

1. Introduction

Peer-to-peer (P2P) systems such as Gnutella, Napster,
Kazaa are increasingly becoming popular for many appli-
cations that go beyond sharing media �les. Most of the off-
the-shelf data analysis/mining techniques do not work well
in such highly decentralized, distributed environment. They
are mostly designed for centralized applications where all
the data are stored in a single central place. That motivated
researchers to explore the possibilities of in-network analy-
sis of data[8]without moving any data from their sources.
However, complex data analysis procedures are hard to
solve in an exact manner in unstructured P2P network with-
out communication of the order of network size. Approxi-
mate techniques [5] can solve the problem with results rea-
sonably close to centralized approach with much less com-
munication though. Sampling is one of the basic statistical
tools frequently used in approximation, and it is a proven
∗Also af�liated with AGNIK LLC, Columbia, MD USA.

technique for effective estimation with probabilistic guar-
antee. Sampling can be very effectively used to derive im-
portant information regarding data distributed in a P2P net-
work. For example, average size or playing time of the
music �les shared or requested can be estimated closely
from a uniform sample of shared music �les in a P2P �le-
sharing network, while actually computing it requires the
near-impossible task of accessing all the �les in the entire
network. A uniform sample can be used for more compli-
cated data mining tasks in P2P network like association rule
mining and recommendation based on the that. It can also
be applied to sensor networks, where multiple sensors ob-
serve an attribute from different locations and an average
value of the attribute or its distribution over a time-period
is of interest. However, collecting a uniform random data
sample from a unstructured P2P network is challenging due
to irregular nature of the network (varying degrees of con-
nectivity between peers, widely varying amounts of shared
data). That motivates us to design an effective uniform ran-
dom sampling technique suitable for P2P network.

There exists a body of works on uniform sampling of
nodes from a graph-like structure using random walk. The
main technique used for this is random walk. A detailed
survey of random walk on graphs is provided in [9]. Gkant-
sidis et al. [6] provide an in-depth analysis of effective-
ness of random walk in P2P network in searching and net-
work discovery. Their work shows dependence of random
walk's performance on the underlying topology of the net-
work. Cooper et al. [4] use random sampling from a class
of graph sharing some property (e.g., degree distribution)
to model a P2P network. Note that there is a clear differ-
ence between the problem they address and the problem we
are trying to address, as we are interested in taking a uni-
form sample of data from a P2P network instead of sample
of nodes. Another closely related �eld of study is sampling
web-pages uniformly in World-Wide-Web (WWW). Hen-
zinger et al. [7] considered use of random walk on web-
graph to approximate uniform sampling the URL-s. Bar
et al. [15] uses random walk to answer aggregate queries
about webpages. Finally, Bash et. al [2] propose algorithm



to sample uniformly in a distributed sensor network based
on the geo-spatial information or location of each sensor.

In this paper, we propose an ef�cient sampling technique
that can collect uniform random sample of data distributed
in a P2P network taking care of irregular degrees of con-
nectivity and sizes of data shared by different peers within
a bounded communication cost. We believe that this is the
�rst attempt for collecting uniform sample of data from a
P2P network, and it makes a signi�cant contribution by pro-
viding a tool that did not exist so far. It opens up lots of pos-
sibilities for analyzing data in a P2P network and enhancing
P2P-users' experience.

The paper is organized as follows: The next section de-
�nes the problem formally and discusses the background
knowledge necessary to understand our proposed sampling
approach. In section 3, we propose our main approach of
data sampling and show conditions necessary for uniformity
of data sample. We also discuss how to bound the length of
the random walk. Section 4 shows experimentally that our
proposed technique indeed achieve uniformity within rea-
sonable bound. Finally, section 5 concludes the paper.

2. Problem De�nition and Background

In this section, we �rst formally de�ne the speci�c prob-
lem we are interested in. Let there be n nodes in a peer-to-
peer system, N1, N2, . . . , Nn. Node Ni, i = 1, 2, . . . , n,
has a set of neighbors to which it is directly connected. This
set is denoted by Γ(i). Let X = X(1)

⋃
X(2)

⋃
. . .

⋃
X(n)

be the full dataset where X(i) ⊂ X, i = 1, 2, . . . , n, de-
notes the subset of the data at node Ni. Let X(i) =
{x(i)

1 , x
(i)
2 , . . . , x

(i)
ni } be the set of ni points in node i, and

its size is given by ni = |X(i)|. Note that dataset is homo-
geneously distributed, where each node has common set of
attributes. Let ni 6= nj∀j 6= i, or in other words, data-size
at individual peers are different from each other. The prob-
lem is how to take a sample s = {x1, x2, . . . , x|s|} of size
|s| from the network so that s represents a uniform, random
sample of data tuples taken from the whole data X.

We will be taking random walk-based approach to solve
the problem of data sampling in P2P network. Note that
this discussion is applicable to not only P2P network topol-
ogy, but to any general, �nite, undirected graph. We �rst
introduce the concept of random walk as Markov chain.
Let us de�ne some basic notations before the discussion.
Let G = (V, E) is a simple, connected, undirected graph
with number of nodes, |V | = n and number of edges,
|E| = m. Let, di denotes degree of node i, 1 ≤ i ≤ n,
which is the number of edges with one end as node i,
and dmax denotes maximum degree of all the nodes, i.e.
dmax ≥ (di) for all (1 ≤ i ≤ n). Let P = [pij ] denotes
the transition probability matrix for G , where 0 ≤ pij ≤ 1
is the probability of moving from node i to node j. Since,

there is no way to move from node i to a node j in one
hop without a direct link in between, pij = 0 for all node
j that are not neighbor of node i, and sum of the proba-
bilities for a node, including the probability of moving to
itself (self-transition probability) should be one, i.e. for any
i,

∑n
j=1 pij = 1. In other words, P is a row-stochastic

matrix.

2.1. Random Walk and Markov Chain

A random walk is a random process consisting of a se-
quence of discrete steps of �xed length, each in a random di-
rection. In a graph G, a simple random walk is a sequence of
nodes visited, where at each step, the next destination node
is selected with a �xed probability. The probability of mov-
ing from a node i to node j in a simple random walk is given
by the transition probability pij = 1/di for all j ∈ Γ(i). A
Markov chain, on the other hand, is a discrete-time stochas-
tic process for which the previous states are irrelevant for
predicting the subsequent states, given knowledge of the
current state. A Markov chain describes at successive times
the states of a system, and it is a memoryless system, i.e. it
does not `remember' the states it was in before and decides
which future state it will transit purely based on the present
state.

If the vertices of a graph can be thought of representing
the state at time t, Yt, in a �nite state space, then a random
walk on the graph represents a �nite stochastic process, and
can be modeled by a Markov chain. We can describe this
Markov chain by the transition probability matrix of the
graph, P = [pij ], as follows:

pij = Pr(Yt+1 = j|Yt = i), i, j = 1, . . . , n (1)

The right hand side of the above equation is independent
of t, and it shows that probability of moving to node j only
depends upon node i (memoryless Markov property). This
Markov chain is irreducible and aperiodic if the graph G is
connected (any node can be reached from any other node in
the graph) and aperiodic (greatest common divisor of all the
cycle lengths in G is 1).

Let π(t) ∈ Rn be the probability distribution of the state
at time t. It represents probability of being at node Ni at
time t. The state distribution satis�es the recursion that
transpose of the distribution, π(t + 1)T = π(t)T P . If P t

represents t-step probability transition matrix, then π(t)T =
π(0)T P t. For an aperiodic and irreducible Markov chain,
the stationary distribution follows πT = πT P , and Mot-
wani et. al. [10] shows that i-th element of this distribution,
corresponding to node Ni, is given by πi = di/2m for all
1 ≤ i ≤ n. This implies that for a long enough random
walk , the resulting sampling distribution is dependent on
the degree of the node di irrespective of its point of origin.
Since degrees of nodes vary widely in a P2P network ( in
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other words, the network topology is an irregular graph),
the sampling distribution is de�nitely non-uniform.

2.2. Uniform Sampling of Nodes from
Graph Using Random Walk

It is clear from the discussion so far that a random walk
on an irregular graph results in a non-uniform random sam-
ple of nodes depending upon the degrees of the nodes.
To make the resulting distribution uniform, the probability
transition matrix P needs to be modi�ed to remove the bias
due to irregular degrees of nodes. If πU denotes the station-
ary uniform distribution, then for a graph G with |V | = n,
πU = (1/n)1, where 1 represents a vector with all elements
equals to 1. The random walk can be represented with the
equation corresponding to Markov chain by πT

U = πT
UP ,

and plugging in the desired value of πU , we get 1T = 1T P ,
which means sum of the column vectors of P is 1. Since,
P is the transition probability matrix, it has to be a row-
stochastic matrix as described earlier. The new condition
implies that P is a doubly stochastic (row sum and column
sum are 1). P is also a symmetric (P = PT ) and non-
negative (pij ≥ 0for all elements of P ) matrix. We summa-
rize all the conditions need to be satis�ed by the transition
probability matrix P for a random walk of suf�cient length
to pick up a node uniformly in the following equation:

P1 = 1, 1T = 1T P, P ≥ 0, P = PT , (2)

Mixing-Time of Markov Chain: The length of random
walk necessary to converge to a stationary distribution is
known as the mixing time of Markov chain. Mixing time of
Markov chain depends upon the spectral properties of the
transition probability matrix[3]. Let, τ denotes the mix-
ing time of Markov chain and λ1, . . . , λn denote n distinct
eigenvalues of P. Using condition given in 2 (the relation
πT = πT P ), π is the left eigenvector of P with eigenvalue
1 and the most dominant eigenvalue is given by 1. So, the
eigenvalues of P can be represented by a non-increasing se-
quence 1 = |λ1| > |λ2| > . . . > |λn|. The quantity |λ2| or
`Second Largest Eigenvalue Modulus' (SLEM) governs the
rate of convergence of a Markov chain. For a non-negative
matrix like P, |λ2| = λ2. Sinclair [14] showed that the
mixing time shares the following relation with eigenvalues
and number of states n of the Markov chain

τ = O(
log(n)
1− |λ2| ) (3)

Note that for a random walk on a graph G(V, E), number
of states n is nothing but number of vertices of G (|V | = n)
and mixing time is the length of the random walk. From the
above equation, it is evident that smaller the value of |λ2|
(SLEM), smaller is the length of random walk necessary to
converge to a stationary distribution.

The Metropolis-Hasting Algorithm: One of the al-
gorithms that �rst tried to achieve uniform sampling us-
ing principle of random-walk is a simple adaptation of
Metropolis-Hasting [11] algorithm. In this algorithm, node
i collects the degree information from all of its immediate
neighbors (node j where j ∈ Γ(i)) before assigning tran-
sition probability, and computes transition probability for
each edge based on the node with higher degree that is con-
nected by that edge. For details of the algorithm , refer
to [11], [1]. Experimental results shows that Metropolis-
Hasting algorithm achieves uniformity [1] with an average
length of random walk equals to 10.log(n) where n = |V |
is the network size.

3. Uniform Random Sampling of Data Dis-
tributed in a Peer-to-peer Network

We now propose our algorithm for uniform sampling of
data distributed homogeneously, but non-uniformly in a P2P
network. By `homogeneous', we mean that the data is hori-
zontally partitioned and distributed (each peer has same set
of attributes for their data tuple), and by `non-uniform', we
mean that each peer has different number of tuples. Note
that we are interested in a uniform sample of data from a
P2P network, which is different than the problem of uni-
form sampling of peers (nodes in a graph) described in the
previous section.

3.1. Concept: Virtual Data Network

In this section, we �rst introduce the basic concept we
use to take a uniform sample of data from P2P network.
Our algorithm is inspired by Metropolis-Hasting algorithm
[11]. Uniform sampling of data distributed in a network can
be thought as a special case of uniform sampling of nodes
in a network where every node has only one data tuple. The
main idea is to create a virtual network with each nodes
holding only one data tuple and then apply one of the avail-
able techniques of uniform node sampling on the virtual
graph. The virtual graph can be created by replacing i-th
node with ni data tuples, with ni virtual nodes, fully con-
nected with each other and each connected with all the data
tuples of neighbors of Ni (Njs where j ∈ Γ(i)). The links
connecting two data tuples belonging to same real node is
called Internal links. A random walk on such links does not
involve any real communication. There are ni× (ni− 1)/2
internal links along with ni virtual nodes per peer Ni. Each
actual link Eij connecting nodes Ni and Nj in the real net-
work, on the other hand, is replaced by (ni × nj) External
links. Note walking along this link involves actually moving
from one node to other node in the original graph. Degree
of connectivity of each identical virtual node (data tuple)
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belonging to peer Ni is given by
∑

j∈Γ(i) nj +(ni−1). To-
tal number of virtual nodes in the network becomes equal
to total number of data tuples, or size of the total dataset
|X| =

∑n
i=1 ni. Let us denote this virtual network graph

by G(V , E), where V represents set of all virtual nodes and
E represents set of al edges connecting these virtual nodes.

To sample any of the virtual nodes uniformly using
random-walk on this virtual graph, the transition probabil-
ity should satisfy the conditions given by Equation 2. To
achieve these conditions, we introduce a transition prob-
ability matrix similar to the one proposed by Metropolis-
Hasting algorithm[11]. Let us denote the set of virtual
nodes belonging to real node Ni as {Ni} and neighbors of
a virtual node NK by Γ̄(K). A virtual random walk on the
virtual graph G(V , E) along the virtual edge EKL, where
virtual node K ∈ {Ni} and virtual node L ∈ {Nj}, uses
the following transition probability to decide the next stop :

pV
KL =





1/Max((ni,K∈{Ni} − 1 +
∑

g∈Γ(i),K∈{Ni} ng),
(nj,L∈{Nj} − 1 +

∑
h∈Γ(j),L∈{Nj} nh))

if L 6= K and EKL ∈ E

1−∑
Ĺ∈Γ̄(K) pV

KĹ
if L = K

0 Otherwise,

Note that,
∑

g∈Γ(i),K∈Ni
ng represents total amount of

data contained by all the neighbors of real node Ni.
Clearly, the transition probability matrix given by the

above equation, which is a |X| × |X| matrix, satis�es the
conditions given by above equation, and a virtual random
walk on G of length O(log(|X|)/(1− |λ2|)) will land on a
virtual node with probability approaching 1/|X| where |λ2|
is SLEM of the transition probability matrix P.

3.2. Sampling Algorithm: P2P-Sampling

Given the basic concept behind the uniform sampling
technique, we now present our sampling algorithm for uni-
form random sampling from P2P network. We call this
technique as `P2P-Sampling'.

Initialization: We assume that before the algorithm be-
gins, each node Ni in the network discovers its immedi-
ate neighbor nodes Γ(i)(nodes with which it is directly con-
nected), local data sizes of neighbors, Nj-s where j ∈ Γ(i),
and total neighborhood data size of each of the neighbors,∑

h∈Γ(j) nh∀j ∈ Γ(i). Considering a stationary data dis-
tribution (where amount of data per node does not change
over time in a P2P network), this information can be pre-
computed and shared with immediate neighbors before the
sampling procedure begins. Each node in its �rst round
of communication discovers its immediate neighbor and
its neighborhood data size by a point-to-point handshake
message similar to `ping'. Every `send' message contains

node id of the sender node, and is acknowledged by the im-
mediate neighbor with an acknowledgement message con-
taining the receiver node id and its own local datasize.
Upon receipt of all the messages from all the neighbors,
every node Ni computes the neighborhood data size as
ℵi =

∑
g∈Γ(i) ng and stores it. Only one arbitrarily se-

lected node performs the sampling procedure by launching
multiple random walks according to our algorithm. Let us
name this node as `Source Node', denoted by NS . This part
is shown in pseudocode 3.2.1 under the heading `Initializa-
tion'.

Algorithm: Note that, the concept of virtual network
was introduced in previous section to convey the idea of
selecting data tuple uniformly from the P2P network. To
actually sample data tuples form real P2P network, we are
interested in generating transition probability matrix for the
real P2P networks which is equivalent to virtual transition
probability matrix given by pV . The important point to note
for that is that a transition through any internal link (over
an edge EKL, where both K, L ∈ Ni for any real node
Ni) is equivalent to going to another data tuple in the same
node. Keeping that in mind, we transform the transition
probability matrix for virtual network to the probability of
transition to be used for random walk in a real P2P network.
The probability of transition at any real peer Ni is given by
:

pp2p
ij =





ni/(ni − 1 +
∑

g∈Γ(i) ng)
probability of going to another
data tuple randomly in current node Ni

nj/Max((ni − 1 +
∑

g∈Γ(i) ng),
(nj − 1 +

∑
h∈Γ(j) nh))

probability of going to a data tuple in node Nj

1−∑
j∈Γ(i) pp2p

ij probability of doing nothing
0 for Nj-s not in Γ(i)

The transition matrix given by the above equation is used
by the random walk at its current position, node Ni, to de-
cide about its next destination/step. A random walk fol-
lowing this transition probability picks up a data tuple after
executing O(log|X|/(1− |λ2|)) steps, and by virtue of the
Markovian property, it is a uniformly sampled data tuple.

The pseudocode for P2P-Sampling is given in 3.2.1.
Computation of transition probability by any node Ni re-
quires the knowledge of local data sizes of neighbors, nj-s
for all node Nj ∈ Γ(i), and total neighborhood data size,
ℵi, which is pre-computed during initialization. The total
datasize of neighbors of immediate neighbors (second im-
mediate neighborhood datasize over a particular edge Eij ,
ℵj =

∑
h∈Γ(j) nh) can be shared during the actual sam-

pling procedure. While the random walk is at any node
Nk on its `-th state and Nk wants to decide what should
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be the next step according to probabilities given by pp2p, it
asks from all its immediate neighbors their neighbor data-
size

∑
h∈Γ(j) nh, ∀j ∈ Γk. After receiving the informa-

tion from all it neighbors, Nk computes the probabilities
of picking up another data tuple from itself or moving to
any of it neighbors, or doing nothing other than increasing
random walk-length counter to (` + 1). The whole proce-
dure is repeated until the walk reaches its Lwalk-th state,
where Lwalk is the pre-speci�ed limit of the random walk
(Lwalk = O(log(|X|), we will talk about how to decide
about Lwalk in next section). The data-point reached on
Lwalk-th state of the random walk is marked as a uniformly
sampled data tuple.

Algorithm 3.2.1 Uniform P2P-Sampling
BInitialization: At each node Ni

for all j ∈ Γi where nj is NOT known do
Send message to Nj containing sender id and data size i, ni.
Receive response containing local datasize of j,j, nj .

end for
Calculate neighborhood datasize ℵi =

P
g∈Γ(i) ng .

B P2P-Sampling:
Current node Ni = Source Node NS

Walk length ` = Walk limit Lwalk = O(log(Estimated Total
Datasize)).
while ` > 0 do

for all j ∈ Γi do
Get neighborhood datasize ℵj .
Calculate transition probability to node Nj , pij =
nj/Max((ni − 1 + ℵi), (nj − 1 + ℵj)).

end for
Calculate probability of picking up another data tuple from
Ni, pii = ni/(ni − 1 + ℵi).
Calculate probability of `No Change', pi0 = 1 − pii −P

j∈Γi
pij .

Decides the next state based on transition probability pix.
if Next state is Nj then

Set current node Ni = Nj .
end if
Reduce walklength ` = `− 1.

end while
Mark one data tuple xi ∈ X(i) uniformly randomly in current
node Ni as a sample.
xi is sent to source node NS via shortest path in P2P network.

B Data Sampling: P2P Sampling is repeated |s| times by
source node NS to collect a uniform sample of size |s|.

To collect a data sample of size |s|, NS launches |s| such
random walks, each of length Lwalk and collects one data
tuple per random walk. Each random walk marks the data
tuple at which it terminates as a sample, and then they are
transmitted to the source node NS via direct point-to-point
communication between the owner node of that data tuple
and NS .

3.3. Communication Topology for Efficient
Sampling

Our proposed P2P sampling procedure is conceptually
equivalent to a Markov-chain on a virtual graph with num-
ber of nodes equals to total data size in the network, |X|. It
is already known that the length of the random walk neces-
sary for uniform sampling is O(log|X|/(1 − |λ2|)). Now
we derive a bound for the `spectral gap' of the transition
probability matrix P to limit the desired length of the ran-
dom walk. Estimating the second largest eigenvalue of the
entire transition probability matrix (λ2) to evaluate the spec-
tral gap is a hard problem. We will not delve into how to es-
timate λ2 exactly here. Instead, we will show how to bound
the inverse of the spectral gap of P .

Bounding the Spectral Gap: The transition probabil-
ity matrix P is a double stochastic matrix, and hence, the
dominant most eigenvalue is 1, with 1T , the row of ones,
as its eigenvector. We are looking for an upper bound for
second largest eigenvalue λ2 with column eigenvector X .
Let us form the column vector C by taking the largest ele-
ment from each row of P. Each element of C, the maximum
row-element of P , is nothing but the probability of going
to another virtual node (data tuple) belonging to same peer,
i.e. 1/(ni − 1 +

∑
g∈Γ(i) ng) for a virtual node belonging

to peer Ni with ni data tuples.
Given, 1T X = 0 and PX = λ2X , we can write

(P − C1T )X = λ2X . Taking Gerschgorin disks from the
column sums, we see that the column sums of P are unity
and those of C are all equal and equal to the sum of the
maximum elements of each row. Thus

|λ2| ≤ (
|X|∑

i=1

Ci)− 1

≤
n∑

i=1

1
1 +

∑
g∈Γ(i) ng/ni

− 1 (4)

Note that the sum is transformed to sum over the number
of peers (n) in P2P network as there are ni identical virtual
nodes per peer Ni, each having same maximal transition
probability. Let us denote the ratio

∑
g∈Γ(i) ng/ni for node

Ni as ρi, the ratio of total neighborhood data and local data.
This is an important factor in deciding about the walk length
necessary to achieve uniformity using P2P-Sampling. From
Equation 4, a lower bound of spectral gap can be derived
as (1 − |λ2|) ≥ (2 − ∑n

i=1
1

1+ρi
). Now, if ρi is above a

speci�ed threshold value, ρ̂, for all the peers in the network
(1 ≤ i ≤ n), then the entire sum,

∑n
i=1 1/(1 + ρi) is upper

bounded by the term n/(1 + ρ̂). That gives the following
bound:

1
1− |λ2| ≤

1
2− n/(1 + ρ̂)

(5)
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Equation 5 can be used to decide about the length of the
random walk in P2P Sampling. Since it is known that the
length of the walk is O(log(|X|)/(1 − |λ2|)), the random
walk with length Lwalk = O(log(|X|)) will select a data
tuple uniformly randomly upon termination provided for all
peers ρ̂ = O(n).

Effect on Communication Topology: This above con-
dition implies that the neighborhood datasize for each peer
has to be at least O(n) times the local datasize. Thus, to
achieve uniformity by a random walk of length c.log(|X|)
(c is a small integer constant), each peer Ni where the ran-
dom walk lands, needs to discover neighbors until ρi =
O(n). This is how the `communication topology' of each
peer is formed. Then the peer decides about the the next
step of the random walk based on our proposed algorithm.

In a real world P2P network, the data distribution of-
ten follows power law distribution[13], with very few peers
sharing most of the data, and most of the peers sharing very
little data. In such a network, peers sharing very few data
can achieve the O(n) ratio easily by forming communica-
tion link with few of the peers sharing most of the data. In
that case, the communication topology of the P2P network
takes the form of a central hub consisting of few peers shar-
ing most of the data, and rest of the peers sharing few data
are directly connected to this hub. A random walk in such
network is likely to enter the `data hub' quickly as most of
the virtual nodes are either directly connected to the hub, or
belong to the hub. Once in, the walk also stays inside the
hub longer as larger the local datasize, more the probability
of picking up another data tuple from the same peer.

For a power law data distribution, the peers forming the
`hub' will have dif�culty achieving the O(n) bound for data
ratio threshold though, since their own datasize (the denom-
inator of the ratio ρi) is large. As a solution to this prob-
lem, we suggest to divide each peer holding large amount
of data into a number of virtual peers fully connected with
each other, each holding smaller amount of data, so that the
O(n) ratio threshold can be achieved by each virtual peer.
Note that this just creates some extra virtual links and a walk
through these links does not incur any real communication.

Although total datasize (|X|) may not be known to the
node running the sampling a priori, it does not pose a big
challenge in estimating Lwalk. An overestimate of total
datasize works just �ne as the effect of it is logarithmic
on the entire walklength. For example, an overestimate
of 1G data for a network holding 1M data just affects the
walklength by 3.c extra steps for a random walklength of
Lwalk = c.log(|X|) where |X| is an estimated upper bound
of total datasize. An underestimate is not a big problem ei-
ther, as long as it is not too small (< 0.1% of the actual
datasize).

3.4. Analysis of Communication Cost

The communication complexity of the sampling proce-
dure has two components (1) communication cost to dis-
cover the data tuple by random walk and (2) communica-
tion cost to transport the data tuple sampled to the node
operating the sampling procedure. We assume that the sec-
ond part happens by direct point-to-point connection when
source node id and destination node id are known and is
taken care of by network protocol. Here we just analyze the
communication cost for discovering the sample data tuples.

In our formal analysis of communication, we do not take
in to account communication due to sender and receiver id
contained in every message as that is assumed to be taken
care of at the network protocol adapted for communication.
We assume during sample discovery, the random walk just
contains source node id (integer, 4 bytes) and current walk-
length counter (again integer, 4 bytes).

During the initialization phase of P2P Sampling, each
node exchanges its local datasize with all its immediate
neighbors, which accounts for 2 integers exchanged per
edge (for datasizes of two nodes at two ends of the edge).
Total communication is thus (2× |E| × 4) bytes, where |E|
denotes total number of edges in the entire network.

After the source node launches the random walk with
length Lwalk, and the walk lands on a new node Nk on its
`-th step, it needs to receive the datasizes of dk immediate
neighbor nodes to decide about the transition probability of
the next step (dk is the degree of connectivity of node Nk),
which involves (dk×4) bytes communication. Based on the
transition probabilities, if the random walk lands in a new
node in the next step, it carries 8 bytes (2 integers) with it
to a new node. The random walk actually takes α × Lwalk

real steps (0 ≤ α ≤ 1), where α represents average prob-
ability of taking an actual (external) link in one step of the
random walk. So, total communication necessary to dis-
cover a uniformly sampled data tuple from the P2P network
is (α× c.log(|X|)× (d + 2)× 4) bytes, where d is average
degree of the nodes in the network. Average degree of even
a power law graph is usually constant[12], which lets us as-
sume d is a constant. Thus, P2P sampling discovery of one
data tuple from the P2P network requires O(log(|X|) bytes
of communication over the entire network.

4. Experimental Results

We experimented P2P-Sampling in a simulated P2P en-
vironment using P2P network topology created by network
simulator BRITE. As pointed out by [13], most of the real
world P2P systems follow a power-law topology where de-
grees of connectivity of the peers follow a power-law distri-
bution. That is why we used Router-Barabasi-Albert model
in BRITE to generate the network topology. Default set-
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Figure 1. Probability of selection of data tuple
in a 1000-node P2P network with 40,000 data,
distributed following power law. Theoretical
uniform probability of selection is 2.5× 10−5.

ting (Refer to BRITE documentation for details available at
www.cs.bu.edu/brite) is used with BA model in BRITE to
generate a P2P network topology with 1, 000 (= n) peers
altogether. One node is selected arbitrarily as source node
that launches the random walks to collect uniform sample
of data.

To evaluate uniformity of P2P-Sampling algorithm, we
measure the KL-distance between theoretical uniform dis-
tribution (theoretical probability of selection of each data
tuple is qi = 1/40, 000∀i) and actual distribution observed
by our sampling experiments1. We run our algorithm on
the 1, 000-node network topology described earlier with
40, 000 data distributed over all the nodes following power
law distribution with a power law coef�cient value of 0.9.
Random walk length is set at Lwalk = 25, with an es-
timated datasize of 100K (|X| = 100, 000,c = 5 and
Lwalk = c.log(|X|)). To get the experimental distribution ,
we count frequency of selection of each data tuple for mul-
tiple sampling run over the entire data and converted that
to average probability of selection of each data tuple. Fig-
ure 1 shows the experimental selection probability of each
data tuple with these conditions. The KL-distance between
this distribution and theoretical distribution comes out to be
0.0071 bits, which shows that experimental distribution is
very close to theoretical uniform distribution.

To verify experimentally whether uniformity is guaran-
teed irrespective of nature of the underlying distribution of
data in the network, we run P2P-Sampling with different
types of underlying data distribution in a 1000-node P2P
network with total 40, 000 data. For each type of distribu-
tion, we distribute data once with correlation to the degree

1If pi denotes the experimental probability of selection of i-th data
tuple and qi denotes the theoretical probability for a distribution with n
points, then KL(p, q) =

Pn
i=1 pi.log2(pi/qi) bits

of the nodes (nodes with highest degree gets maximum data
and so on) , and once without any correlation (data gets dis-
tributed randomly irrespective of the degree of the nodes).
We experimented with power law distribution with coef�-
cients 0.9(heavy-skew)and 0.5 (lighter skew), exponential
distribution with parameter 0.008 (so that each of the 1000
nodes gets some data), normal distribution with mean 500
and standard deviation 166 and random distribution (total
data is randomly distributed amongst 1000 nodes). KL-
distance is shown for different distributions in Figure2 as
a measure of uniformity as before. It is clear that irre-
spective of distribution of data, P2P-Sampling achieve very
good uniformity, and it is not affected by any correlation
between degree of nodes and its datasize.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

Power Law:Zp=0.9

Power Law:Zp=0.5

Exponential:Ep=0.008

Normal:mean= 500

Random Distribution

KL Distance for Different Distributions

−−−KL Distance in bits−−−> 

Without Degree Correlation
With Degree Correlation

Figure 2. KL distance between theoretical
uniform distribution and experimental distri-
bution for different underlying distribution of
data with and without any correlation to de-
gree of the nodes.

Finally, we report the average number of real commu-
nication steps taken by random walk in our experiments
to discover a random sample with different types of data
distribution. The data distributions used are the same as
mentioned in last paragraph. Random walk length is set at
Lwalk = 25 as before, and the actual number of commu-
nication steps (when the walk goes from one real node to
another real node, that is considered as one real communi-
cation step) taken by the walk on an average is expressed
as a percentage of the speci�ed walk-length and reported
in Figure3. It is observed that for all the data distributions,
that the random walk takes less than 50% of pre-speci�ed
steps(Lwalk) on an average to discover a random sample, ir-
respective of the data distribution. For highly skewed distri-
bution like power law and exponential, if the nodes having
higher degree gets more data (data distributed with degree
correlation), the average number of steps required is more
in comparison to random data distribution. We believe this
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is due to the fact that if the random walk lands up in a node
with small amount of data and small degree of connectivity,
it is almost certainly going to a different node in its next
step, causing real communication.

0 10 20 30 40 50 60 70 80 90 100

Power Law:Zp=0.9

Power Law:Zp=0.5
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Normal:mean=500

Random Distribution

−−Avg Percentage of Communication(%)−−>

Average Percentage of Communication for P2P−Sampling

Without Degree Correlation
With Degree Correlation

Figure 3. Average number of real commu-
nication steps taken by random walk ex-
pressed as a percentage of pre-speci�ed
length of random walk (Lwalk) for different
types of underlying data distribution.

5. Conclusion

In this paper, we have addressed the problem of uniform
data sampling in a P2P network where data is distributed ho-
mogeneously and non-uniformly amongst different peers.
Our sampling-technique is a random-walk based approach
where a random walk is launched by a node to collect a
data tuple uniformly randomly from the entire network. The
non-uniform datasizes and varying degrees of connectivity
for different peers in a P2P network causes a biased sam-
ple if standard random walk is used for sampling. That is
why we propose our sampling algorithm `P2P-Sampling',
which can take care of the bias due to varying datasizes
and degrees of different peers at each transition step of ran-
dom walk and pick up a data tuple uniformly within a �nite
walklength. We also provide a bound on the spectral gap
of the transition probability matrix and use that to provide
necessary connectivity condition for each peer in a P2P net-
work. Experimental results show that our proposed sam-
pling method achieves uniformity within acceptable toler-
ance. Given the sample data discovery process takes com-
munication of the order of logarithm of total data contained
in the entire network, we believe P2P-Sampling provides a
very handy tool for analyzing data distributed in a P2P net-
work.
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