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Abstract

To address the problem of unsupervised outlier detec-
tion in wireless sensor networks, we develop an algorithm
that (1) is flexible with respect to the outlier definition, (2)
works in-network with communication load proportional to
the outcome, (3) reveals its outcome to all of sensors. We
examine the algorithm’s performance using simulator and
real sensor data streams. Our results demonstrate that the
algorithm introduces reasonable communication load and
power consumption.

1. Introduction

Outlier detection, an essential step preceding most any
data analysis, is used either to suppress or amplify outliers.
The first usage (also known as data cleansing) improves ro-
bustness of the data analysis. The second usage helps in
search for rare patterns in such domains as fraud analysis,
intrusion detection, and web purchase analysis (among oth-
ers).

Several factors make wireless sensor networks (WSNs)
especially prone to outliers. First, they collect their data
from the real world using imperfect sensing devices. Sec-
ond, they are battery powered and thus their performance
tends to deteriorate as power is exhausted. Third, since
these networks may include a large number of sensors, the
chance of error accumulates. Finally, in their usage for se-
curity and military purposes, sensors are especially exposed
to manipulation by adversaries. Hence, it is clear that outlier
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detection should be an inseparable part of any data process-
ing routine that takes place in WSNs.

Simply put, outliers are events with extremely small
probability of occurrence. Since the actual generating dis-
tribution of the data is usually unknown, direct computa-
tion of probabilities is difficult. Hence, outlier detection
methods are, by and large, heuristics. Because the problem
is fundamental, a huge variety of outlier detection meth-
ods have been developed. In this paper we focus on non-
parametric, unsupervised methods.

We develop a technique for the computation of outliers
in WSNs. The typical WSN environment poses several re-
strictions on computation: (1) it has to be done in-network
to reduce bandwidth and avoid battery depletion [18], (2)
it must be resilient to sensor failure, (3) it must accommo-
date streaming or dynamically updated data. In addition to
the above requirements, the algorithm presented here has
also the following properties: (1) it is generic – suitable for
many outliers detection heuristics; (2) it works in-network
with communication load proportional to the outcome; (3)
it is robust with respect to data and network change; (4) the
outcome is revealed to all of the sensors.

We exemplify the benefits of our our algorithm by im-
plementing it using two different outlier detection heuristics
and simulating 53 sensors using the SENSE sensor network
simulator [13] with real sensor data streams. Our results
show that the algorithm converges to an accurate result with
reasonable communication load and power consumption. In
most tested cases, our algorithm’s performance bests that of
a centralized approach.

2. Related work

2.1. Outlier detection

Outlier detection is a long studied problem in data anal-
ysis; hence, we provide only a brief sampling of the field.



Hodge and Austin [20] present a survey focusing on out-
lier detection methodologies based on machine learning and
data mining, including: distance and density-based unsu-
pervised methods, feed-forward neural networks and de-
cision tree-based supervised methods, and auto-associative
neural network and Hopfield network-based methods). Bar-
nett and Lewis [6] provide a survey of outlier detection
methodologies in the statistics community.

Our algorithm is flexible in that it accommodates a whole
class of unsupervised outlier detection techniques such as
(i) distance tokth nearest neighbor [26], (ii) average dis-
tance to thek nearest neighbors [4], (iii) the inverse of the
number of neighbors within a distanceα [23] (see Section
3 for details).

2.2. Wireless sensor networks

WSNs combine capability to sense, compute, and coor-
dinate their activities with the ability to communicate re-
sults to the outside world. They are revolutionizing data
collection in all kinds of environments. At the same time,
the design and deployment of these networks creates unique
research and engineering challenges due to their expected
massive size (up to thousands of sensor nodes), their of-
ten random and hazardous deployments, obstacles to their
communication, their limited power supply, and their high
failure rate.

The software for sensor networks needs to be aware of
their limitations and features. The most important among
these are limited power, high communication cost, and lim-
ited direct communication range. In [17], Estrinet al. in-
troduce scalable coordination as an important component
of the needed software. A survey of the state of the art in
WSNs, including the current challenges, is given by Aky-
ildiz et al. in [3]. Another survey focuses on challenges
arising from specific applications such as military, health
care, ecology, and security [2]. In [19], Heinzelmanet al.
provides a detailed taxonomy of sensors networks.

Energy-efficiency is often achieved by minimizing com-
munication using topology-control algorithms that dictate
the active/sleep cycles of sensor nodes’ radios. Exam-
ples include Geographic Adaptive Fidelity (GAF) [31], AS-
CENT [11], Sparse Topology and Energy Management
(STEM) [27], and ESCORT [9]. While the focus of our
paper is on in-network outlier detection in WSNs, the chal-
lenge is the same as in the above mentioned work. Hence,
we aim to design an energy-efficient algorithm by minimiz-
ing the required communication overhead.

2.3. Data mining in large-scale dynamic
networks

Very recently, researchers have started to consider data
analysis in large-scale dynamic networks. The goal is to
develop techniques that are highly asynchronous, scalable,
and robust to network changes. Efficient data analysis algo-
rithms often rely on efficient primitives, so researchers have
developed several different approaches to computing basic
operations (e.g. average, sum, max, or random sampling)
on dynamic networks. Kempeet al. [22] and Boydet al.
[8] investigate gossip based randomized algorithms. Jela-
sity and Eiben [24] develop the ”newscast model” as part
of the DREAM project [28]. Both of the above approaches
use an epidemic model of computation. Bawaet al. [7] have
developed an approach in which similar primitives are eval-
uated to within an error margin. Wolffet al. [30] develop
a local algorithm for majority voting. Finally, some work
has gone into more complex data mining tasks: association
rule mining [30], facility location [25] (both based on lo-
cal majority voting), genetic algorithms [14], and k-means
clustering [5, 16, 29].

3. Preliminaries

In this section, we provide necessary background defini-
tions and notations.

A distributed system architecture is a system of peers,pi,
each holding a setSi composed ofmi ≥ n points fromD.
Each peer knowsA andR. Peers communicate by exchang-
ing messages over a connected graph. We assume the graph
is undirected, messages are reliable1, and each peerpi can
accurately maintain the list of its immediate neighbors,Ni,
in the graph.

An outlier detection algorithmA takes a finite set of
pointsP ⊆ D and an outlier ranking functionR : D×2D →
R+ and returns the topn outliers, denotedA[P ] (n is a user-
defined parameter).2 We make no assumptions aboutR ex-
cept that it satisfies the following two axioms. Givenx ∈ D,
for all finite P1 ⊆ P2 ⊆ D:

• (Anti-monotonicity)R(x, P1) ≥ R(x, P2);

• (Smoothness) ifR(x, P1) > R(x, P2), then there ex-
istsz ∈ P2 \P1, such thatR(x, P1) > R(x, P1∪{z}).

The first axiom is similar to theApriori rule in frequent
itemset mining [1]. The second axiom, intuitively, states
thatR changes gradually. As more points are added toP1,
the rating function changes gradually toR(x, P2). Some

1Our algorithm works so long as there exists, possibly unknown, a re-
liable path from each peer to every other peer.

2If n > |P |, thenA[P ] returnsP .



example outlier rating functions which satisfy these axioms
include: the distance to thekth nearest neighbor, the aver-
age distance to thek nearest neighbors, and the inverse of
the population of anα neighborhood ofx. However, some
previously proposed rating functions do not satisfy these ax-
iomse.g.LOF [10].

To break ties, we assume there exists a fixed but arbitrary
total ordering,≺, on D. HenceD is totally ordered with
respect toR andP as follows,x ≺R,P y if (i) R(x, P ) <
R(y, P ) or (ii) R(x, P ) = R(y, P ) andx ≺ y. Formally,
A, givenP , returns

A[P ] = {x1, . . . , xn ∈ P : ∀1 ≤ i ≤ n

andy ∈ P \ {x1, . . . , xn}, y ≺R,P xi}.

A useful technical fact follows (proofs of lemmas and
theorems are omitted from this version due to the space lim-
itation).

Lemma 3.1. For any finiteP ⊆ Q ⊆ D where |P | ≥
n, if A[P ] 6= A[Q], then there existsx ∈ A[P ] such that
R(x, P ) > R(x, Q).

GivenR, a setP0 ⊆ P is called asupport set ofx ∈ D
over P if R(x, P ) = R(x, P0). Note, a unique smallest
support set need not exist. To break ties, we use≺ to de-
fine a total ordering on the finite subsets ofD as follows.
GivenP1, P2 finite subsets ofD, we defineP1 ≺fin P2 if
(i) |P1| < |P2| or (ii) |P1| = |P2| andP1 is strictly lex-
icographically smaller thanP2 with respect to≺ (denoted
P1 ≺ P2). SinceP is finite, then there exists a unique≺fin-
smallest support set ofx overP – let [P |x] denote this set.

Finally, givenQ ⊆ P , we write[P |Q] to denote
⋃

x∈Q

[P |x].

Another useful technical fact is as follows which we
make use of later.

Lemma 3.2. For any finiteP ⊆ D, any x ∈ A[P ], and
any z ∈ P , it follows thatR(x, P ) = R(x, [P |A[P ]]) =
R(x, [P |A[P ]] ∪ {z}).

Comment: The proofs of Lemmas 3.1 and 3.2 do not
use the smoothness axiom. Hence, these lemmas hold for
any anti-monotonicR.

4. Distributed outlier detection

In this section, we describe a distributed algorithm by

which peers computeA

[

⋃

i

Si

]

. The algorithm finds out-

liers over the global dataset (the union of all peers’ local
datasets).
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Figure 1. Two peer dataset, p1 holds the cir-
cles and p2 the squares and each data item
defines Cartesian coordinate of the center of
the object.

4.1 The algorithm

The peers will communicate by sending messages which
include a set of data points describing sensor samplings.
Each peerpi will maintain for every neighborpj ∈ Ni the
set of points it has sent topj , Si,j , and the set of points it
received frompj, Sj,i. We define theknowledgeof pi as

S̄i = Si ∪
⋃

pj∈Ni

Sj,i. The algorithm is event based and em-

ploys the same logic once upon initialization and then again
wheneverS̄i changes as a result of receiving a message, of
a change toSi, or of changes inNi.

Whenever the algorithm is called,pi invokesA and com-
putesA = A

[

S̄i

]

, SA = [S̄i|A[S̄i]]. Now, for each neigh-
borpj ∈ Ni, pi must check if it has new information thatpj

may not have but need. First of all, anypi’s current outliers
and their supports (A, SA) may be needed bypj since they
could causepj to update its own outliers. If, for any of these
pointsx, pi cannot be certain thatpj hasx (i.e. x /∈ Sj,i),
thenx must be added toSi,j .

Second,pi may have points which would effect outliers
previously sent bypj , but these may not be accounted for in
the first part (i.e. may not be inA or SA). It suffices forpi

to send the support of all of the outliers inSi,j ∪ Sj,i. Any
of these points not inSj,i must be added toSi,j . Therefore
Si,j must be a minimal fixed-point of the following equation
with S initially containing(A ∪ SA ∪ Si,j) \ Sj,i:

S = S ∪ ([S̄i|A[S ∪ Sj,i]] \ Sj,i). (1)

If the fixed-point is not contained inSi,j (i.e. there are
potentially pointspj has not yet seen), then these extra
points are sent topj via broadcast.

Example: AssumeR(x, S) is defined as the distance
to x′s nearest neighbor inS (k = 1) andA[S] is the top
rated outlier inS (n = 1). Consider the two peer datasets
in Figure 1 (p1 has circles,p2 has boxes). Observe that
the global outlier is(5, 0) since the distance to its nearest



neighbor is larger than that of every other point. In this
example, we assume the peers carry out the algorithm in
alternating order (of course, in real use, the peers operate
asynchronously). InitiallyS1,2 andS2,1 are empty.

p1 will compute A = A[S̄1] = {(0, 0)} and SA =
[S̄1|A] = {(0, 2)}. Then it computes the fixed-point.S is
set toA ∪ SA. Observe that[S̄1|A[S ∪ S2,1]] = [S̄1|A[S]]
= [S̄1|(0, 0)] = {(0, 2)}. Since this is already inS, then the
fixed-point computation is complete,S = {(0, 0), (0, 2)}.
S1,2 is set toS \ S2,1 = S and sent top2.

Observe, at this point,p1 mistakenly assumes the global
outlier to beA = {(0, 0)}.

p2 receives S1,2, thus, S̄2={(0,0),(0,1.1),(0,2),(5,0),
(5,1.5),(5,2)}. It computes A=A[S̄2]={(5,0)} and
SA=[S̄2|A]={(5, 1.5)}. Note, if p2 were to send only
these points,p1 would not change its mistaken belief that
the global outlier is(0, 0). The fixed-point computation is
needed.

So,S is set to(A ∪ SA) \ S1,2 = {(5, 0), (5, 1.5)}. Ob-
serve that[S̄2|A[S∪S1,2]] = [S̄2|(0, 0)] = {(0, 1.1)}. Thus,
S becomes{(0, 1.1), (5, 0), (5, 1.5)}. It can be seen that
this is the fixed-point, so,S2,1 is set toS \ S1,2 = S which
is sent top1.

p1 receives S2,1, thus S̄1 becomes
{(0,0),(0,1.1),(0,2),(0,3),(5,0),(5,1.5)}. Now p1 will
change its global outlier belief (because of the presence
of point (0, 1.1)) to A = {(5, 0)}. It can be seen that the
fixed-point will be contained inS1,2, so,p1 sends nothing
to p2.

Both p1 and p2 have the same (correct) global outlier
belief,(5, 0). This example illustrates the role of both types
of information described above.

�

It is easy to modify the algorithm to work in a streaming
setting: when a new point is sampled,Si, and consequently,
S̄i change. This requires that the same calculation is made
as in the case of a change in̄Si due to receiving a message.
If the algorithm needs to only consider points which were
sampled recently (i.e. employ a sliding window), this can be
implemented by adding a time-stamp to each point when it
is sampled. Under the assumption that the clocks of differ-
ent nodes are synchronized to a degree satisfying the needs
of the application, each node can retire old points regardless
of where they were sampled and at no communication cost
at all.

The pseudo-code of the algorithm is given in Alg. 1 – the
“do-until” loop is responsible for computing the fixed-point
of Equation (1). The algorithm assumes a sliding window
mode of work. The algorithm also assumes that the addition
of sensors during system operation is possible. However, if
sensors are removed (e.g. when their battery is depleted)
then their contribution to the computation is not explicitly
annulled until those points are retired with time. It is easy

to bypass the sliding window mechanism by settingτ to
infinity. Yet, in that case, it is reasonable to dictate that
points contributed by nodes which were removed should be
explicitly removed, at a messaging cost.

Algorithm 1 Global Outliers Detection
Input of pi: Si, Ni,A, τ
Output of pi: A

[

S̄i

]

and
[

S̄i|A
[

S̄i

]]

Upon receiving ADD M such that M =
{(k1, Qk1

) , . . .} from pj:
if somekℓ = i setSj,i ← Sj,i ∪Qkℓ

Upon addition of pj to Ni:
setSi,j andSj,i to ∅
Upon any change in S̄i, Ni:
retire points older thanτ from S̄i andSi,j andSj,i for all
pj ∈ Ni

setA← A
[

S̄i

]

andSA←
[

S̄i|A
[

S̄i

]]

let M be an empty message.
for all pj ∈ Ni

– setS ← (A ∪ SA ∪ Si,j) \ Sj,i

– do
– – setS ← S ∪

([

S̄i|A [S ∪ Sj,i]
]

\ Sj,i

)

– until no change inS
– if S * Si,j

– – append(pj , S \ Si,j) to M
– – setSi,j ← Si,j ∪ S
if M is not empty broadcastADD M

4.2. Correctness

The correctness of the algorithm can be proven in the
following sense: if the data and network remain static,
then communication will eventually stop at which point all
peers’ outlier belief will equalA[

⋃

i Si] (the correct global
set of outliers). Note that the algorithm does not require
that the data be static. It can handle dynamic or streaming
data. Naturally, the correctness proof only holds if the data
remains static long enough for convergence to occur.

The proof proceeds in two steps. First, barring data or
network change, it can be shown that the algorithm does
terminate, and, at this point, all nodes have the same outlier
beliefs and support (Theorem 4.1). Next, it can be proven
that the consistent outlier belief shared by all peers is indeed
the correct one (Theorem 4.2).

Theorem 4.1. If for all sitespi, Si andNi do not change,
then the algorithm will terminate and all sites will agree on
their outliers and supports in the sense that: for allpi, pj ,
A[S̄i] = A[S̄j ] and[S̄i|A[S̄i]] = [S̄j |A[S̄j ]].

The proof, omitted here for lack of space, first shows that
A[S̄i] = A[Si,j ∪ Sj,i] = A[S̄j ]. Then, it demonstrates that
[S̄i|A[S̄i]] = [S̄j |A[S̄j ]] from which the theorem follows.



Theorem 4.2. If for all sitespi, Si andNi does not change,
then the algorithm will terminate and all sites will pro-
duce the globally correct outliersi.e. for all pi, A[S̄i] =
A[

⋃

k Sk].

The proof, again omitted for the lack of space, shows by
contradiction thatA[S̄1] = A[

⋃

k Sk].
Comments: (1) The proof of Theorem 4.1 does not use

the smoothness axiom (recall Lemma 3.1 did not use the ax-
iom). Hence, for any anti-monotonicR, Theorem 4.1 holds,
i.e. the algorithm will converge and, at that point, all peers
will agree on their outlier belief and their support. How-
ever, without the smoothness axiom, Theorem 4.2 does not
hold, i.e. the consistent outlier belief might not be the cor-
rect one. There are counter-examples which show how an
anti-monotonic, but not smoothR cause the algorithm to
terminate with all peers agreeing upon an incorrect set of
outliers.

(2) In general, it is not clear how to efficiently compute
the minimum support set of a pointx over a setP . We do
not address the issue in this paper. However, efficient com-
putation is straight-forward for the following rating func-
tions that we consider in experiments,distance to nearest
neighborandaverage distance to thekth nearest neighbor.

5. Evaluation

5.1 Experimentation Setup

We collected sets of performance resultsper nodeaver-
aged over the entire duration of the simulation trials. The
data that was collected along with their respective measure-
ment consists of averages of: (i) total energy consumed per
node (J), (ii) total energy consumed per node for transmis-
sion and receiving network packets (J), (iii) total number of
data points transmitted per node by the application layer.3

We compared the algorithm’s results against two sepa-
rate performance baselines. One, we implemented a purely
centralized global outlier detection algorithm, in which all
nodes periodically sent their sliding window contents to a
designatedfusion node, which then calculated the global
outliers and flooded the results out to all nodes in the net-
work. This occurred at the same frequency at which the
distributed algorithm was executed. Two, we measured the
energy consumption of the network in a strictly idle state.
The comparisons (where applicable) are shown in the fol-
lowing graphs.

For experimentation, we used real-world sensor data
streams available from [21], in which distributed data points

3We collected also data on the number of packets transmitted but did
not report that because the total number of data points is more descrip-
tive and more dominant factor than the number of packets since energy
consumption is largely defined by the number of points transmitted.

share spatial and temporal properties. The data was com-
prised of sensor readings (e.g.heat, light, temperature) from
54 sensors (of which we used 53) which were periodically
transmitted to a base station. Missing data points were filled
by the average values of the data points within a sliding win-
dow before the missing point as we believe that the major-
ity of these points resulted from packets dropped in transit
to the base station and not by faulty sensor components.
The data points include the following features: (i) ID of the
sensor that produced the point, (ii) epoch (sequential num-
ber denoting the data points position in the entire stream),
(iii) data value (temperature), (iv) location coordinatesof
the sensor.

We tested our algorithm using outliers defined by both
distance to nearest neighborandaverage distance to k near-
est neighborsusing the SENSE wireless sensor network
simulator [13]. We simulated a 53-node network with sen-
sor node placed according to specification in [21]. This re-
sulted in a network testbed size of about 50m by 50m. We
used the free-space signal propagation model and the fault-
tolerant Self-Selective Routing protocol [12] in the net-
working layer. The nodes were configured to have a trans-
mission radius of about 6m, to evaluate the algorithm in a
true distributed setting. However, the centralized version of
the algorithm, we used a larger transmission radius that en-
ables direct communication between all nodes. In that case,
multi-hop communication with a smaller radius resulted in
large number of collisions that prevented the centralized al-
gorithm from converging to the solution. The simulated
energy model was based on the Crossbow mote specifica-
tions [15] and used a transmit/receive/idle power setting of
.0159mW/.021mW/3e-6mW, respectively (assuming a 3V
power source).

All experiments were run for 1000 seconds of simulated
time. As shown in the following graphs, we collected per-
formance results for different algorithm parameter values
of (i) the length of the node’s sliding window,w, (ii) the
number of outliers to be reported,n, and (iii) the number of
neighbors used in the distance-based outlier detection rou-
tines,k. The labeling of data in figures is as follows: (i)
NN for results usingdistance to nearest neighboroutlier
detection with the distributed algorithm, (ii) KNN for re-
sults usingaverage distance to k nearest neighborsoutlier
detection with the distributed algorithm, (iii) Centralized for
results with the centralized algorithm, and (iv) Idling foren-
ergy use with the network idling.

Only one set of the centralized results is presented in
each graph, asdistance to nearest neighborand average
distance to k nearest neighborsoutlier detection yielded the
same results.

The energy consumption at reception was by far the
dominant term in energy use, so we did not include total en-
ergy graphs as they are nearly identical to receiving energy
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Figure 2. Transmitting and Receiving Energy
Consumed Per Node vs. w (n=4, k=4)

graphs. It should also be noted that the results generated
by our algorithm were highly accurate. Node’s reported the
correct outliers 99% of the time. We believe that packet
losses were the cause of any incorrect results.

5.2 Experimentation Results

Effects of the sliding window size
As Figure 2 shows, NN is the most energy efficient for

large window sizes. When the window size grows, the num-
ber of new outliers communicated from from round to round
decreases in NN because of larger number of redundant val-
ues amongst the data points. The opposite is true for KNN
because multiple supporting pointsper reported outlierare
transmitted by the algorithm. Under the centralized version
of the algorithm, asw grows, nodes must send the entire
contents of their sliding windows to a fusion node for out-
lier detection, so the energy use grows. Figure 2 reflect the
same performance trend for transmission energy.

The good performance of our algorithm for larger win-
dow sizes allows for flexibility in determining the confi-
dence of an outlier. Running the outlier detection with large
sliding window enables us to determine the level of ”outlier-
ness” of a data point within a varying scope of other data
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points. network. A centralized approach clearly does not
support such runs.

It is interesting to see in Figure 3 that the centralized ver-
sion performs better than the distributed versions in terms
of transmitted points, even though the distributed versions
conserve more energy. This is because the difference in
transmission radii between the two algorithms. With the
larger transmission radius required by the centralized ver-
sion, over-listening by each node to messages addressed to
other nodes also increased. We note also the receiving en-
ergy is directly proportional to the number of points sent by
each node (with different proportionality factor for each al-
gorithm), so we omit the graphs with the average number of
points per node from further discussion.

Effects of the number of reported outliers
Network performance under our algorithm is largely af-

fected by the number of outliers to be reported. This is ex-
pected, as the number of points transmitted per node is a
function of the number of outliers to report. This phenom-
ena holds true for both NN and KNN. In studying Figure
5, both NN and KNN yield better results than the central-
ized algorithm up ton = 6, after which NN starts to drain
the most energy from the network. This represents a point
at which NN is no longer more efficient than the central-
ized algorithm because the effect of the degree of data point
transmissions is greater than that of over-listening.

What is interesting is that asn increases, KNN starts to
yield better network performance than NN. There are no
clear explanations for this particular behavior. One might
expect that since NN uses only one supporting point per out-
lier, while KNN uses four supporting points, NN should be
more efficient. However, we must remember that it is possi-
ble for NN and KNN to yield different sets of outliers. In the
examples illustrated in Figure 5, it is highly likely that KNN
calculated groups of outliers such that a significant number
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sumed Per Node (w=20, k=4)
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Figure 5. Transmission and Receiving Energy
Consumed Per Node vs. n (w=20, k=4)

of the supporting points for those outliers (within a given
round) overlapped. The effect of this behavior, regarding
data point transmission overhead, was probably much softer
than the behavior that occurred in NN, where a significant
number of redundant points were most likely not encoun-
tered.

From this test, we conclude that KNN yielded the most
efficient results for the given range ofn so the performance
may not strictly rely on the values of the algorithmic param-
eters, but on the nature of the data itself as well.

Effects of the number of nearest neighbors used for
outlier detection

Amongst all of the parameters discussed in these exper-
iments,k impacts the least the average node’s behavior (all
other parameters being equal). This is expected for NN and
centralized versions of the algorithm, sincek does not af-
fect the number of transmitted points for these versions. As
previously mentioned, for NN, only one supporting point
per outlier is used at all times and for the centralized algo-
rithm, supporting points are not transmitted at all. Hence,
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Consumed Per Node vs. k (w=20, n=4)

the network’s energy use is practically unefected by change
in k values for NN and centralized versions. Over-listening
in the centralized versions still results in the largest energy
use among all three versions, as shown in Figure 6. While
KNN is more efficient than the centralized versions of the
algorithm, it is falling behind NN ask grows.

To qualify these results further, using KNN can be bene-
ficial because it allows us the flexibility in determining the
confidence of an outlier by using more points to determine
an outlier. For the range ofk values shown in the graphs, our
algorithm bests the performance of the centralized version,
especially for higherk values. Depending on the applica-
tion and available hardware resources, the small reduction
in performance of KNN over using NN might be worth the
burden.

6 Conclusions

We addressed the problem of unsupervised outlier de-
tection in wireless sensor networks. We developed a so-
lution which (i) allows flexibility in the heuristic used to
define outliers; (ii) works in-network with communication
load proportional to the outcome; (iii) is robust with respect



to data and network change; (iv) reveals its output to all of
the sensors.

We evaluated the outlier detection algorithm’s behavior
on real-world sensor data using a simulated wireless sensor
network. These initial results show promise for our algo-
rithm in that it outperforms a strictly centralized approach
under some very important circumstances. Our algorithm is
well suited for applications in which the confidence of an
outlier rating may be calculated by either an adjustment of
sliding window size or the number of neighbors used in a
distance-based outlier detection technique. We assert that
these applications are critical for resource-constrainedsen-
sor networks for various reasons. One reason is that com-
munication is a costly activity motivating the need for only
the most accurate data to be transmitted to a client applica-
tion. Another reason is that emerging safety-critical appli-
cations that utilize wireless sensor networks will requirethe
most accurate data, including outliers. Our work is our con-
tribution towards enabling efficient data cleaning solutions
for these types of applications.
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