
A Game Theoretic Approach toward Multi-Party
Privacy-Preserving Distributed Data Mining

Hillol Kargupta
�
, Kamalika Das, Kun Liu�

hillol,kdas1,kunliu1 � @cs.umbc.edu

Department of Computer Science and Electrical Engineering
University of Maryland, Baltimore County

Baltimore, MD-21250, USA

Abstract. Analysis of privacy-sensitive data in a multi-party environment of-
ten assumes that the parties are well-behaved and they abide by the protocols.
Parties compute whatever is needed, communicate correctly following the rules,
and do not collude with other parties for exposing third party sensitive data.
This paper argues that most of these assumptions fall apart in real-life appli-
cations of privacy-preserving distributed data mining (PPDM). The paper offers
a more realistic formulation of the PPDM problem as a multi-party game where
each party tries to maximize its own objectives. It offers a game-theoretic frame-
work for developing and analyzing new robust PPDM algorithms. It also presents
equilibrium-analysis of such PPDM-games and outlines a game-theoretic solu-
tion based on the concept of “cheap-talk” borrowed from the economics and the
game theory literature.

1 Introduction

Advanced analysis of multi-party privacy-sensitive data plays an important role in many
cross-domain applications that require large-scale information integration. Privacy pre-
serving data mining algorithms attempt to analyze multi-party data for detecting under-
lying patterns without necessarily divulging the raw privacy-sensitive data to any of the
parties. However, many of these privacy-preserving distributed data mining (PPDM) al-
gorithms make strong assumptions about the behavior of the participating entities. For
example, they assume that the parties are semi-honest; that is they follow the proto-
col without deviation. For example, the US Department of Homeland Security funded
PURSUIT project1 involves privacy preserving distributed data integration and analysis
of network traffic data from different organizations. However, network traffic is usually
privacy sensitive and no organization would be willing to share their network traffic
with a third party. PPDM offers one possible solution which would allow comparing
and matching multi-party network traffic for detecting common attacks, stealth attacks
and computing various statistics for a group of organizations without necessarily shar-
ing the raw data. However, participating organization in a consortium like PURSUIT
may not all be ideal. Some may decide to behave like a “leach” exploiting the benefit

�
The author is also affiliated to Agnik, LLC, MD, USA

1 http://www.agnik.com/DHSSBIR.html

2

of the system without contributing much. Some may intentionally try to sabotage the
multi-party computation. Some may try to collude with other parties for exposing the
private data of a party.

This paper suggests an alternate perspective for relaxing some of the assumptions
of PPDM algorithms. It argues that large-scale multi-party PPDM can be thought of a
game where each participant tries to maximize their benefit or utility score by optimally
choosing the strategies during the entire PPDM process. The paper develops a game-
theoretic framework for analyzing the behavior of such multi-party PPDM algorithms
and offers a detailed analysis of the well known secure multi-party sum computation
algorithm as an example [2]. The paper also offers an equilibrium analysis of the al-
gorithm. The paper proposes a new version of secure sum algorithm that works based
on “cheap talk” [3], a well known concept from game theory and economics. It also
describes experiments on large scale distributed systems and illustrates the validity of
the formulations.

The remainder of this paper is organized as follows. Section 2 discusses the related
work. Section 3 describes multi-party PPDM from a game theoretic perspective. Section
4 illustrates the framework using multi-party secure sum computation as an example.
Section 5 gives the optimal solution using a distributed penalty function mechanism.
Section 6 presents the experimental results. Finally, Section 7 concludes this paper.

2 Related Work

Recent interest in the collection and monitoring of data using data mining technology
for the purpose of security and business-related applications has raised serious concerns
about privacy issues. There exists a growing body of literature on privacy preserving
data mining. Next we present a brief overview of the various techniques that have been
developed in this area.

Existing techniques for privacy preserving data mining include data hiding using
microaggregation, perturbation, or anonymization, rule hiding, secure multi-party com-
putation (SMC) and distributed data mining. A large body of cryptographic protocols
including circuit evaluation protocol, oblivious transfer, homomorphic encryption, com-
mutative encryption serve as the building blocks of SMC. A collection of SMC tools
useful for privacy preserving data mining (e.g., secure sum, set union, inner product)
are discussed in [2]. The distributed data mining (DDM) approach supports computa-
tion of data mining models and extraction of ”patterns” at a given node by exchanging
only the minimal necessary information among the participating nodes.

Game theory has been used extensively in economics and finance and security or
defense related applications to come up with policies and governing rules. However,
applications of game theory in privacy analysis of data mining algorithms in distributed
scenarios is an area that is still in its nascent stage. Halpern and Teague [4] considered
the problem of secret sharing and multiparty computation among rational agents. Abra-
ham et al. [1] introduced the � -resilient Nash equilibrium (defined in Section 3) and of-
fered a synchronous � -resilient algorithm for solving Shamir’s secret sharing [8] prob-
lem. A proposal of using game-theoretic way for measuring the privacy of PPDM was
proposed elsewhere [10]. More recently, Kunreuther and Heal [7] and Kearns and Ortiz

3

[6] proposed a practical security problem called the Interdependent Security (IDS). The
model of IDS is closely related to privacy preserving data mining. Kearns and Ortiz
[6] deals with the computability of Nash equilibria of IDS games and presents several
algorithms for the same.

3 Multi-Party Privacy-Preserving Data Mining As Games

Let ��� �������	��
���
�
�
���� � be a collection of � different nodes where each node repre-
sents a party with some privacy-sensitive data. The goal is to compute certain functions
of this multi-party data using some PPDM algorithm. Most existing PPDM algorithms
assume that every party cooperates and behaves according to the protocol. For example,
consider a well-understood algorithm for computing sum based on the secure multi-
party computation framework (details to be described in Section 4). Upon receipt of
a message, a node performs some local computation, changes its states, and sends out
some messages to other nodes. Most privacy-preserving data mining algorithms for
multi-party distributed environments work in a similar fashion. During the execution of
such a PPDM algorithm, each node has certain responsibilities in terms of performing
their part of the computation, communicating correct values to other nodes and protect
the privacy of the data. Depending on the characteristics of these nodes and their ob-
jectives, they either perform their duties or do not. Sometimes they even collude with
other nodes to modify the protocol and reveal others’ data.

3.1 Strategies for Multi-Party Games

Consider a PPDM algorithm that requires the � -th node to perform a sequence of ���
computing tasks, ����� ��� �����
���
�
�
 ����� "! . Also the algorithm requires a node to both
send and receive messages. Let us assume that the � -th node sends out #�� messages
($%��� � , $%���
 ,
�
�
 $&��� '(!) to other nodes and receives a total of)�� messages (*+��� � , *,���
 ,
�
�
*-��� ./!). The different computational strategies the �1032 node might node adopt include
performing the required computation or not. Similarly, a node can decide either to send
or receive messages to and from other nodes or not. Let 45��� 6 be the corresponding in-
dicator variable which takes a value of 1 if at the 0(032 step the �1032 node chooses the
strategy defined by the protocol or takes 0 otherwise. The decision to choose a particu-
lar strategy is either deterministic or probabilistic. Let 4 798;:� be the overall sequence of

indicator variables 4���� ��� 4����
���
�
�
 4���� <! for computations for the �=032 node. Similarly 4 7?>%:�
and 4 79@�:� are indicator variables for receiving and sending of messages. Let A ;B � ��� 63C
be the utility of performing the operation � ��� 6 (similarly we can define utility for com-
munication).

Collusion is nothing but a privacy attack launched on a third party’s private data,
only involving other nodes in the process. At any given step node � may come to an
agreement with any subset (denoted by D) of � nodes (denoted by �) and decide to
collude with them for exposing the privacy-sensitive data of another node. Let 4 7?EF:��� G be
the corresponding indicator variable which takes a value of 1 if party � decides to collude
with party H or 0 otherwise. We shall use the symbol 4 7?EI: to denote the entire matrix

4

where the B � � H C -th entry is 4 7?EI:��� G . Let � ��� G be the benefit that node � may get by colluding
with node H . For the sake of simplicity let us assume that collusions are permanent.
Once a pair decides to collude, they stay faithful to each other. If every member of the
set D agrees to collude with every other member in D then the total benefit that a node
��� D receives is � G�� E�� G	�
 � � ��� G .
3.2 Overall Game

The strategies chosen by a party at any step change the local state of the party. The
entire play of the game by player � can therefore be viewed as a process of traversing
through a game tree where each tree-node represents the local state described by player� ’s initial state and messages communicated with other nodes. Each run) represents a
path through the tree ending at a leaf node. The leaf node for path (run)) is associated
with a utility function value �%� B) C . A strategy � � for player � prescribes the action for this
player at every node along a path in the game tree. In the current scenario, the strategy
prescribes the actions for computing, communication, and collusion with other parties.
A strategy � � for player � essentially generates the tuple B 4 798;:� � 4 7 >%:� � 4 7 @�:� � 4 7?EI:� C .

Let � � B � � � �
 ��
�
�
 � � C be the joint strategy for � players. Let � �3B � C be the utility
(also known as pay-off) when the joint strategy � is played. A joint strategy is a Nash
equilibrium if no player can gain any advantage by using a different strategy, given that
all other players do not change their strategies. However, Abraham et al. [1] remove
the fragility of Nash equilibrium by allowing coalitions whose behavior deviate from
the protocol. They define k-resilient equilibrium as a joint strategy � such that for all
coalitions C in the set of players D with
 ��
��-� � , ��� is the group best response for
C to ����� , where ��� is the set of strategies adopted by the members of the collusion,
����� is the set of strategies adopted by the players who do not belong to the collusion
and � � � � and � ��� � � . Best response for a collusion � � to a strategy � ��� implies
that the utility of the � � is at least as high as the utility of � ��� .

In order to formulate a PPDM process in a game theoretic framework, we need to
define the search space of the strategies for the players and construct the utility functions
for defining the pay-off that the players receive by playing a given strategy. Next section
considers an example and constructs PPDM-games based on that.

3.3 Utility Function Representing the Game

Utility functions assign a score to a strategy or a set of strategies. Note that the search
process in the strategy-space can either be deterministic or stochastic. In the determinis-
tic case players design their respective strategies and take deterministic actions in order
to maximize their utility scores. For games in PPDM the utility function will be a linear
or nonlinear function (�) of utilities obtained by the choice of strategies in the respective
dimensions of computation, communication, collusion and privacy attack. Mathemat-
ically we can write � �	B � C ��� B 4 7 8 :� � 4 7?>%:� � 4 7 @�:� � 4 7?EI:� C A utility function which is a
weighted linear combination of all of the above dimensions can therefore be expressed
in terms of the individual utilities as follows:

� ! 7 ��:
������ !	 "!	# � 798 ! � ! :%$ ��&'� !	 "!	# & 7?> ! � ! :%$ ��('� !) "!)# (7 @ ! � ! :%$ ��*+� !	 -,/.�021	! � ,

5

where � -� � � � .	� � � � ' � � and � 1 � � represent the weights for the corresponding utility fac-
tors. The overall utility function may also turn out to be constrained. For example, a
participant may require bounds on the computation and communication cost over a seg-
ment of the entire process. A constraint like this may be captured in the following form:

� ��� ! ��!���� # � 798 ! � ! :%$ � &'� ! ��!���� # & 7?> ! � ! : $ � (/� ! ��!��	� # (7 @ ! � ! :�

� !
In the next section we would illustrate our formalizations using one of the most

popular PPDM algorithms, the secure sum computation. We first derive closed form
expressions for each of the dimensions of PPDM with respect to secure sum and then
do a Nash equilibrium analysis of the algorithm. We then propose a modified secure
sum algorithm that gets rid of the semi honest requirement of the nodes and illustrate
the change in equilibrium for the new algorithm.

4 Illustration: Multi-Party Secure Sum Computation

Suppose there are � individual sites, each with a value ��G � H ��� ��� ������� � � . It is known
that the sum � � �

�
G
 � �5G (to be computed) takes an integer value in the range � � � ������� ,��� � . We want to compute this sum following the secure computation protocol de-

scribed in [2].

4.1 Computation, Communication and Collusion Utilities

The secure sum computation algorithm expects each party to perform some local com-
putation, receive data from its predecessor in the ring topology and send its own results
to the next node. The site may or may not choose to perform either the computation or
computation or both. This choice will define the strategy of that site.

Let us assume that there are � B ��� � C sites acting together secretly to achieve a
fraudulent purpose. Let ��� be an honest site who is worried about his/her privacy. We
also use ��� to denote the value in that site. Let ��� � � be the immediate predecessor of ���
and � � $ � be the immediate successor of � � . The possible collusions that can arise are:

– If � � � � � , then the exact value of ��� will be disclosed.
– If ��� �

and the colluding sites include both ��� � � and ��� $ � , then the exact value of
��� will be disclosed.

– If � � ��� ��� �
and the colluding sites contain neither � � � � nor � � $ � , or only one

of them, then � � is disguised by � � � � � other sites’ values. As before, we shall
use the symbol � to represent the set of colluding sites.

The first two cases need no explanation. Now let us investigate the third case. With-
out loss of generality, we can arrange the sites in the an order such that � � �
 ����� � � �"! � �
are the honest sites, ��� is the site whose privacy is at stake and ��� $ �#����� ��� $! form the
colluding group. We have

$&%�'(%*)+
,,�)�- ,. /10 2

denoted by X

$
- !.3/1042

denoted by Y

 - �
!�5 '+
,6� !�5)7- ,. /10 2

denoted by C

�

6

where � is the total sum of the � values. Now, the colluding sites can compute the
posterior probability mass function (PMF) of ��� as follows:

����� (!�� & ! � & 7 - ! :
 ��� 7�	 :
�
 .
���
 	�� � (1)

where � � � ���
.
�

is a random variable and it is defined as
� � �

� � ! � �G
 � � G . �
is a constant and it is defined as � � � � � � $!G
 � $ � � G . � is known to all the colluding
sites. Because

�
is a discrete random variable, it is easy to prove that

��� 7�	�:
 ��� 7���: � (2)

where � � � ���
. To compute ��� B � C , we can make the following assumption about

the adversarial parties’ prior knowledge.

Assumption 1 Each � G B H � � ������� � � � � C is a discrete random variable indepen-
dent and uniformly taking non-negative integer values over the interval

� � � � ������� � � � .
Therefore,

�
is the sum of B � � � � � C independent and uniformly distributed discrete

random variables.

Note that using uniform distribution as the prior belief is a reasonable assumption
because it models the basic knowledge of the adversaries. This assumption was also
adopted by [9] where a Bayes intruder model was proposed to assess the security of
additive noise and multiplicative bias. Now let us compute ��� B � C .
Theorem 2. Let � be a discrete random variable uniformly taking non-negative inte-
ger values over the interval

� � � � ������� � � � . Let � be the sum of # independent � . The
probability mass function (PMF) of � is given by the following equations:

 .
�!
#" �

�

7 $ � : (
&+
,6��� 7 �

� : , � ,(�%$ & % ,'& $ � 5) & 5 !(5 $ & % ,'& $ � 5) & 5 ! %*) �
where (� � � � � ������� � � # � ,) �*) " $ �,+ , and 0 �-(�) " $ �.+ B �0/ � C .
Proof. Due to space constraints, we have not included the proof of this theorem here.
Interested readers can find a detailed proof of this theorem in [5].

According to Theorem 2, the probability mass function (PMF) of
�

is

� � 7��5:
1
 .
�!�
 �.�

�

7 $ � : $ $ %�' %*) &32&+
,,�	� 7 �

� : , � ,$ $&%�'(%*) & �4$
& % ,'& $ � 5) & 5 !$ $&%�'(%*) & 5 $ & % ,'& $ � 5) & 5 ! %*) � (3)

where � � � � � � ������� � � B � � � � � C � ,) �5) � $ � + , and 0 �6� �) � $ � + B �7/ � C .
Combining Eq. 1, 2 and 3, we get the posterior probability of ��� :

�8��� (!9� & ! � & 7 - ! :

�

7 $ � : $ $ %�' %*) &32&+
,,�	� 7 �

� : , � ,$ $&%�'(%*) & �4$
& % ,'& $ � 5) & 5 !$ (%�'(%*) & 5 $ & % ,'& $ � 5) & 5 ! %*) �

7

where � � � � ��� and � � � � � � ������� � � B � � � � � C � .)��) � $ �.+ , and 0 � � �
) � $ �.+ B � / � C . Note that here we assume ��� � � , otherwise �����	'16��/.	���3. B ��� C � � . This
posterior can be used to quantify the utility of collusion:

1 7 - ! :

 �	'(6��(.	���	. �
 .��	�	.
 ���
� (!9� & ! � & 7 - ! : �
�

 $ � (4)

We see here that the utility of collusion depends on the random variable � and the size
of the colluding group � . Rest of this paper will use this quantitative measure of utility
of collusion for defining the objective function.

4.2 Overall Objective Function

Now we can put together the overall objective function for the game of multi-party
secure sum computation.

� ! 7 ��:
������ ! # ��
 7
� $�� &! :%$ ��&'� ! # &�
 7
� $�� &! � ! :%$ ��('� ! # (�
 7
� $�� &! :%$ ��*+� ! -,'.�� %�� 1 7 - , :

where A� �� B 4 7 8 :� C � � 6 A B ����� 6 C denotes the overall utility of performing a set of
computations ����� 6 , indicated by 4 8� (similar definitions apply for communications like
receive and send) and � -� � denotes the weight associated with computation.

For illustrating the equilibrium state of this utility function, let us consider the sim-
ple unconstrained version of it. In order to better understand the nature of the landscape
let us consider a special instance of the objective function where the node performs all
the communication and computation related activities as required by the protocol. This
results in an objective function

� ! 7 ��:
 � *+� !% ,'.�� %�� 1 7 - , :
where the utilities due to communication and computation are constant and hence can
be neglected for determining the nature of the function. Figure 1(a) shows a plot of the
overall utility of multi-party secure sum as a function of the distribution of the random
variable � and the size of the colluding group � . It shows that the utility is maximum for
a value of � that is greater than 1. Since the strategies opted by the nodes are dominant(
illustrated in the next section with an example), the optimal solution corresponds to
the Nash equilibrium. This implies that in a realistic scenario for multi-party secure
sum computation, parties will have a tendency to collude. Therefore the non-collusion
(� � �) assumption of the classical SMC-algorithm for secure sum is sub-optimal.

5 What is the Solution?

Our goal is to design a technique for multi-party secure sum computation that does
not rely on unrealistic assumptions about the characteristics of nodes in the network.
Therefore, we want an algorithm that creates a game where not colluding is an opti-
mal strategy for everyone. One possible approach is to penalize the parties sufficiently
enough so that the pay-off from collusion is counter-balanced by the penalty, if they

8

-1000

-500

0

500

1000

X
10

20

30

k

0

0.01

0.02

0.03

Utility

-1000

-500

0

500

1000

X

(a) Original Objective Func-

tion.

-1000
-500

0
500

1000

X
10

20

30

k

0.75

0.8

0.85

Utility Value

-1000
-500

0
500

1000

X

(b) Modified Objective Function.

Fig. 1. Plots of the overall objective functions for classical SMC (Figure 1(a)) and SMC with penalty (Figure 1(b)). The
optimal strategy takes a value of !�� � in the first case and !
 � in the second case.

are caught. This approach may not work if the parties perceive that the possibility of
getting caught is minimal. However, collusion requires consent from multiple parties.
So a party with intention of collusion might get caught while sending out collusion
invitations randomly in the network if those invitations reach some honest parties.

5.1 Penalty for Collusion

The possible options that we have for penalizing cheaters (colluding nodes) in a multi-
party secure sum game can be enumerated as follows:

1. Policy I: Remove the party from the multi-party privacy-preserving data mining ap-
plication environment because of protocol violation. Although it may work in some
cases, the penalty may be too harsh since usually the goal of a PPDM application
is to have everyone participate in the process and faithfully contribute to the data
mining process.

2. Policy II: An alternate possibility is to penalize by increasing the cost of compu-
tation and communication. For example, if a party suspects a colluding group of
size �

�
(an estimate of �) then it may split the every number used in a secure sum

among �
�

different parts and demand � rounds of secure sum computation one for
each of these �

�
parts. This increases the computation and communication cost by

�
�
-fold. This linear increase in cost with respect to �

�
, the suspected size of collud-

ing group, may be used to counteract any possible benefit that one may receive by
joining a team of colluders. The modified objective function is given below. The
last term in the equation accounts for the penalty due to excess computation and
communication as a result of collusion.

� ! 7 ��:
�� ��� ! # �
 7
� $�� &! : $ � *+� ! -,'.�� % 0 1 7 - , : � � ��� !��
Figure 1(b) shows a plot of the modified objective function for secure sum with policy
II. It shows that the globally optimal strategies are all for � � � . The strategies that

9

adopt collusion always offer a sub-optimal solutions which would lead to moving the
global optimum to the case where � � � .

5.2 Nash Equilibrium Illustration for 3-node Network

Consider a game with a mediator where each party first contacts the mediator and de-
clares its intention to be a good node (follow protocol) or bad party (willing to collude).
Table 1 shows the pay-offs for different penalty policies. When there is no penalty,
all the scenarios with two bad parties and one good party offer the highest pay-off for
the colluding bad parties. Therefore, colluding with other nodes always becomes the
highest paying strategy for any node in the network (this is called the dominant strategy
[4]). Also we observe that the payoff for bad nodes always decreases if it becomes good,
assuming the status of all other nodes remain unchanged. So the Nash equilibrium in
the classical secure sum computation is the scenario where the participating nodes are
likely to collude. Note that, the three-party collusion is not very relevant in secure sum
computation since there are all together three parties and there is always a good node
(the initiator) who wants to only know the sum.

A B C Pay-Off Pay-Off Pay-Off
(No Penalty) (Policy I) (Policy II)

G G G (3, 3, 3) (3, 3, 3) (3, 3, 3)
G G B (3, 3, 3) (2, 2, 0) (2, 2, 2)
G B G (3, 3, 3) (2, 0, 2) (2, 2, 2)
G B B (3, 4, 4) (0, 0, 0) (2, 2, 2)
B G G (3, 3, 3) (0, 2, 2) (2, 2, 2)
B G B (4, 3, 4) (0, 0, 0) (2, 2, 2)
B B G (4, 4, 3) (0, 0, 0) (2, 2, 2)
B B B (0, 0, 0) (0, 0, 0) (0, 0, 0)

Table 1. Pay-Off table for three-party secure sum computation.

However, in both the cases with penalty, the Nash equilibrium corresponds to the
strategy where none of the parties collude. In fact the Nash equilibrium in secure sum
with policy II for penalization is strongly resilient, that is, it corresponds to a

�
-resilient

equilibrium for a 3-party game. In this case, if any node deviates from being good,
the communication and computation cost increase �

�
(

� B � C) fold due to the data being
broken into shares. The penalty incurred due to this extra resource usage is not compen-
sated by the benefit gained out of the collusion. Therefore the payoff is the highest when
they don’t collude. This is, in fact a strongly dominated strategy for this game. Since
each player has a strictly dominated strategy, there is a unique Nash equilibrium which
is the case in which none of the nodes collude. According to the definition of Nash
equilibrium, in this case no player can gain anything more by deviating from good to
bad when all others remain good. It also follows from the discussion that Policy II is
strongly resilient since it can tolerate collusions of size up to � -1 (the payoff is highest
when none colludes, even when compared to the case where � � � (n=3) collude).

10

Algorithm 1 Secure Sum with Penalty (SSP)
Input of node
 ! : Neighbor
 , , - ! , ! � estimated from prior cheap talk
Output of node
 ! : Correct secure sum
Data structure for
 ! : NODETYPE (0 stands for good, 1 stands for bad, and 2 stands for initiator), colluding group
(colludeList), random shares of - ! (randSharesList)
Initialization:
IF NODETYPE==0

Initialize colludeList
Exchange sum of elements in colludeList

ELSE IF NODETYPE==1
Split the local data - ! into at least (!��) random shares
Initialize randSharesList

ELSE IF NODETYPE==2
Send its data - ! after adding a random number and performing a modulo
operation

ENDIF
ENDIF

ENDIF
On receiving a message:
IF NODETYPE==2

IF randSharesList==NULL (for every node)
End Simulation
Send sum to all nodes

ELSE
Start another round of secure sum

ENDIF
ELSE IF randSharesList!=NULL

Select next data share from randSharesList
Forward received data and new share to next neighbor

ENDIF
ENDIF

5.3 Implementing the Protocol with Penalty

We observed in the last section that an appropriate amount of penalty for violation of
the policy may reshape the objective function in such a way that the optimal strategies
correspond to the prescribed policy. If we use centralized control, then there is a central
authority who is always in charge of implementing the penalty policy. If a good node
receives a proposal from a bad node then it reports to the central authority which in
turn penalizes the perpetrator. However, it requires global synchronization which might
create a bottleneck and limit the scalability of a distributed system.

For a total asynchronous distributed control we borrow the concept of A�2������ 0���� �
from game theory and economics [3] in order to develop a distributed mechanism for
penalizing policy violations. Cheap talk is a pre-play communication which carries no
cost. Before the game starts, each player engages in a discourse with each other in order
to influence the outcome of the game and form an opinion about the other players in the
game. We would like to use cheap talk to communicate the threat of penalty. Cheap talk
works when the parties depend on each other, their preferences are not opposite to each
other, and the threat is real. Algorithm 1 (Secure Sum with Penalty (SSP)) describes
a variant of the secure sum computation technique that offers a distributed mechanism
for penalizing protocol violations (using Policy II) using a cheap talk-like mechanism.

Consider a network of � nodes where a node can either be good(honest) or bad
(colluding). Before the secure sum protocol starts, the good nodes set their estimate
of bad nodes in the network (�

�
) to 0 and bad nodes send invitations for collusions

11

randomly to nodes in the network. Every time a good node receives such an invitation,
it increments its estimate of �

�
. Bad nodes respond to such collusion invitations and

form collusions. If a bad node does not receive any response, it behaves as a good node.
To penalize nodes that collude, good nodes split their local data into �

�
random shares.

This initial phase of communication is cheap talk in our algorithm. The secure sum
phase consists of �

�
(O(Max(k’)) rounds of communication for every complete sum

computation. In every round each honest node adds one of it �
�

shares to the sum and
forwards the result. The following Lemma (Lemma 1) shows that the SSP algorithm
converges to the correct result.

Lemma 1. Correctness and Convergence: SSP algorithm converges to the correct re-
sult in

� B � � C time. Here � is the total number of nodes in the network, and � is the
maximum size of the colluding groups .

Proof. (SKETCH) The basic idea behind this proof is that sum computation is decom-
posable, and the order of addition of individual shares does not change the total. In the
SSP algorithm, each party � � splits its number into ��� B ��� � � C shares and demands ���
rounds of secure sum computation. In each round, whenever a party receives a message,
it adds one of its � � shares. If all its shares have been added in, this party simply inputs a
zero. Let � ������� � �

� � � , after � rounds of computation, all the parties have added their
numbers and the total sum is obtained. In the traditional secure sum computation, the
message is passed to each node on the network sequentially. The convergence time is
bounded by

� B � C . In the SSP algorithm, the total rounds of computation is � , therefore
the overall time required is bounded by

� B � � C . ��

6 Experimental Results

We set up a simulation environment comprised of a network of � nodes where nodes
are randomly good or bad. We have experimented with ring topologies of 500 and 1000
nodes using the use the Distributed Data Mining Toolkit (DDMT) 2. To demonstrate
how the SSP algorithm forces the bad nodes in the network to adopt a no collusion
strategy, each node in the network performs a series of secure sums on each of the �
values in its data vector of size � (=13 for our experiments). Each secure sum computa-
tion consists of several rounds of communication since every integer is broken into �

�

random shares. After every round of secure sum computation (that is after each of the
� sum computations), we measure three quantities: messages sent, units of computation
performed and the benefit achieved by colluding (Section 4.1). The utility function used
for the experiments is the one described in Section 4.2. The penalty in this case is the
excess amount of communication and computation needed.

6.1 Results

We perform two experiments to verify our claim that the SSP algorithm leads to an
equilibrium state where there is no collusion. In the first experiment we demonstrate

2 DDMT - http://www.umbc.edu/ddm/wiki/software/DDMT/

12

for different sizes of the network that the utility is maximum when the collusion is
minimum. We have experimented for 500-node and 1000-node networks for different
percentages of bad nodes. We see in Figure 2(a) that when the percentage of bad nodes
is very high(more than 99%), then the utility is minimum for all the nodes. The utility
increases as this percentage decreases. The maximum utility for each network size is
shown as the horizontal lines in the graph, which correspond to the classical secure sum
computation algorithm. We observe that the maximum utility for the SSP algorithm
corresponds to the case when there is no collusion.

10 20 50 60 80 100
0

500

1000

1500

2000

Percentage of Bad Nodes

U
til

ity
 V

al
ue

500 Node
1000 Node
Max Utility (500)
Max Utility (1000)

(a) Utility vs. Collusion-size Function.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

50
100
150
200
250
300
350
400
450
500

Rounds of secure sum (increasing time)

B
ad

 n
od

es
 a

fte
r

ea
ch

 r
ou

nd 50% Bad Nodes
More than 99% Bad Nodes

(b) Rate of decrease of bad nodes Func-

tion.

Fig. 2. Experimental Results

In Figure 2(b) we have shown the results of our second experiment which verifies
how the number of bad nodes decrease with successive rounds of secure sum computa-
tion. At the end of each round of secure sum, the bad nodes that are part of any colluding
group compute their utility values. Each bad node has a random utility threshold that is
assigned during setup. If the computed utility falls below a node’s threshold, the node
decides to change its strategy and becomes a good node for the subsequent rounds.
Once a node becomes good, it does not change its strategy again. We perform the sec-
ond experiment for a 500-node network with 50% and more than 99% bad nodes as the
two cases. We see that in subsequent rounds of secure sum the number of bad nodes
decrease till they reach zero. The time taken to have a no collusion scenario depends on
the initial number of bad nodes in the network.

7 Conclusions

This paper pointed out that many of the existing privacy-preserving data mining algo-
rithms often assume that the parties are well-behaved and they abide by the protocols as
expected. The contributions of this paper can be summarized as follows: (i)development
of a game-theoretic foundation of multi-party privacy-preserving distributed data min-
ing that attempts to relax many of the strong assumptions made by existing PPDM

13

algorithms; (ii)analysis and illustration of shifting equilibrium conditions in such al-
gorithms; (iii) game theoretic analysis of the multi-party secure sum computation al-
gorithm in terms of data privacy and resource usage and (iv) a “cheap-talk”-based
distributed variant of secure sum computation which offers a protocol that offers an
equilibrium solution for no collusion.

The paper opens up many new possibilities in PPDM. In future we plan to study
other popular PPDM algorithms for computing inner product, clustering, and associa-
tion rule learning using the game theoretic framework developed here.

References

1. I. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distributed computing meets game the-
ory: Robust mechanisms for rational secret sharing and multiparty computation. In ACM
Symposium on Principles of Distributed Computing, Denver, Colorado, USA, 2006.

2. C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Zhu. Tools for privacy preserving
distributed data mining. ACM SIGKDD Explorations, 4(2), 2003.

3. J. Farrell and M. Rabin. Cheap talk. The Journal of Economic Perspectives, 10(3):103–118,
1996.

4. J. Halpern and V. Teague. Rational secret sharing and multiparty computation: extended
abstract. In Proc. of ACM Symposium on Theory of Computing, pages 623 – 632, Chicago,
IL, USA, 2004.

5. H. Kargupta, K. Das, and K. Liu. A game theoretic approach toward multi-party privacy-
preserving distributed data mining. Technical Report TR-CS-0701, UMBC, April 2007.

6. M. Kearns and L. Ortiz. Algorithms for interdependent security games. Advances in Neural
Information Processing Systems, 2004.

7. H. Kunreuther and G. Heal. Interdependent security. Journal of Risk and Uncertainty, 26(2-
3):231–249, 2003.

8. Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
9. M. Trottini, S. E. Fienberg, U. E. Makov, and M. M. Meyer. Additive noise and multiplica-

tive bias as disclosure limitation, techniques for continuous microdata: A simulation study.
Journal of Computational Methods in Sciences and Engineering, 4:5–16, 2004.

10. N. Zhang, W. Zhao, and J. Chen. Performance measurements for privacy preserving data
mining. In Advances in Knowledge Discovery and Data Mining, pages 43–49, 2005.

