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Abstract This paper considers the problem of monitoring vehicle data streams
in a resource-constrained environment. It particularly focuses on a monitoring task
that requires frequent computation of correlation matrices using lightweight on-
board computing devices. It motivates this problem in the context of the Mine-
Fleet Real-Time system and offers a randomized algorithm for fast monitoring of
correlation (FMC), inner product, and Euclidean distance matrices among others.
Unlike the existing approaches that compute all the entries of these matrices from
a data set, the proposed technique works using a divide-and-conquer approach.
This paper presents a probabilistic test for quickly detecting whether or not a sub-
set of coefficients contains a significant one with a magnitude greater than a user
given threshold. This test is used for quickly identifying the portions of the space
that contain significant coefficients. The proposed algorithm is particularly suit-
able for monitoring correlation and related matrices computed from continuous
data streams.

1 Introduction

Many on-board real-time data stream monitoring applications require frequent
computation of statistical aggregates such as correlation, inner product, and dis-
tance matrices. Sensor networks [18], on-board scientific payloads [6] [19] and
on-board vehicle mining systems [14] are some examples. This paper describes
one such application where computation of such aggregates plays a critical role.

This paper presents a brief review of the MineFleet system and focuses on a
particular aspect of this system that requires continuous monitoring of correlation
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Fig. 1 A conceptual depiction of the MineFleet system.

and other related matrices for analyzing the statistical properties of the underlying
system. MineFleet Real-Time is designed for monitoring and mining vehicle data
streams in real-time. It monitors vehicle performance using on-board PDA/cell-
phone or similar “light-weight” hardware-based data stream mining system and
other remote desktop-based monitoring modules connected through wireless net-
works. MineFleet’s on-board module monitors the vehicle-health and driving char-
acteristics. This involves computing various empirical properties of the data dis-
tribution such as correlation, inner-product, and Euclidean distance matrices in a
resource-constrained environment. This paper notes the need for computing these
statistical aggregate matrices from continuous data streams observed on-board
the MineFleet Real-Time system. It describes the Fast Monitoring of Correlation
(FMC) matrix algorithm, a novel randomized technique for detecting changes in
the correlation and other related matrices. FMC can also be used for approximately
identifying the portions of these matrices that contain significantly changed coef-
ficients.

Section 2 presents a brief overview of the MineFleet Real-Time system for
motivating the need of correlation matrix monitoring problem in a real-life ap-
plication. Section 3 relates the correlation computation problem to the MineFleet
system. Section 4 formulates the problem correlation matrix computation from
data streams. Section 5 discusses the related work. Sections 6 and 7 discuss the
proposed technique. Section 8 presents the experimental results. Finally, Section 9
presents the conclusions and the future work.

2 MineFleet: A Vehicle Data Stream Mining and Monitoring System

MineFleet Real-Time is a mobile data stream mining environment where the resource-
constrained ”small” computing devices need to perform various non-trivial data
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management and mining tasks on-board a vehicle in real-time. MineFleet ana-
lyzes the data produced by the various sensors present in most modern vehicles.
It continuously monitors data streams generated by a moving vehicle using an on-
board computing device, identifies the emerging patterns, and if necessary reports
these patterns to a remote control center over a low-bandwidth wireless network
connection. This section presents a brief overview of the architecture of the system
and the functionalities of its different modules.

The current implementation of MineFleet Real-Time analyzes and monitors
only the data generated by the vehicle’s on-board diagnostic system and the Global
Positioning System (GPS). It is currently implemented for embedded computers
and mobile devices like Personal Digital Assistants, cell-phones, and hand-held
computers. The overall conceptual-process-diagram of the system is shown in Fig-
ure 1. It shows multiple vehicles installed with the MineFleet software which can
be concurrently monitored by a central site. The vehicles can have different types
of computing devices ranging from PDA’s to special-purpose tablet PCs moni-
toring, collecting, and analyzing the data generated by the vehicle. Any standard
commercial data network can be used for the wireless communication. The Mine-
Fleet Real-Time system is comprised of four important components:

1. On-board hardware module: Hardware interface for the on-board diagnostic
(OBD-II) data bus that couples with the MineFleet onboard software running
on a PDA. A GPS device can also be connected with this module. It also offers
several types of communication channels.

2. On-board data stream management and mining module: This module offers a
run-time environment for performing on-board data analysis and management.
The on-board module monitors, manages the data stream, and triggers actions
when unusual activities are observed. The on-board module connects to the
desk-top-based remote MineFleet Control Center through a wireless network.
The system allows the fleet managers to monitor and model vehicle behavior
remotely without necessarily down-loading all the data to the remote central
monitoring station over the expensive wireless connection. However, if nec-
essary, MineFleet supports analyzing data at the central control station after
down-loading the data for any given period.

3. Remote control center module: The remote desktop-based control station for
fleet managers. The MineFleet Control Center supports the following main
operations: (i) interacting with the on-board module for remote management,
monitoring, and mining of vehicle data streams; (ii) interactive statistical data
analysis of the down-loaded data (if desired); (iii) interactive online vehicle
health regime monitoring using different projection techniques (e.g. principal
component analysis [13]); (iv) fuel consumption analysis; (v) visualization of
the driving characteristics generated by various time series data analysis tech-
niques. It also offers a whole range of fleet-management related services that
are not directly related to the main focus of this paper.

4. Privacy management module: This module plays an important role in the im-
plementation of the privacy policies. For example, drivers of a commercial fleet
may have a quite justifiable objection against continuous monitoring of their
driving behavior. However, they may be willing to allow the management to
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analyze the data for detecting drunk drivers as long as the privacy of the sober
drivers is not compromised.

In order to monitor the vehicle data streams using the on-board data manage-
ment and mining module we need continuous computation of several statistics. For
example, the MineFleet on-board system has a module that continuously monitors
the spectral signature of the data which requires computation of covariance and
correlation matrices on a regular basis. The on-board driving behavior character-
ization module requires frequent computation of similarity/distance matrices for
data clustering and monitoring the operating regimes. Since the data are usually
high dimensional, computation of the correlation matrices or distance (e.g. inner
product, Euclidean) matrices is difficult to perform using their conventional algo-
rithmic implementations. The incoming data sampling rate supported by the data
bus limits the amount of time we get for processing the observed data. This usually
means that we have only a few seconds to quickly analyze the data using the on-
board hardware (when the mining is done on-board). If our algorithms take more
time than what we have in hand, we cannot catch up with the incoming data rate.
In order to handle this situation, we need address the following issues:

1. We need fast ”light-weight” techniques for computing and continuously mon-
itoring various statistical aggregates. This paper particularly focuses on the
correlation, covariance, inner product, and distance matrices that are frequently
used in data stream mining applications. The relevance of these specific statis-
tical aggregates will be discussed later in this paper.

2. We also need anytime algorithms [21] that will do something useful when the
running time is constrained. In other words, we allow the data mining algo-
rithm to run for a fixed amount of time and expect it to return some mean-
ingful information. For example, we give the correlation matrix computation
algorithm 1 second of CPU time for identifying the coefficients with magnitude
greater than 0.7. If that time is not sufficient for computing all the correlation
coefficients in the matrix then the algorithm should at least identify the por-
tions of the matrix that may contain significant coefficients. The precision of
this identification is likely to depend on the amount of computing resources
allocated to the algorithm.

The following section presents a brief overview of a few of the MineFleet-
modules that require frequent computation of correlation matrices on-board the
vehicle using a resource-constrained environment.

3 Frequent Computation of Correlation Matrices and Operating Regime
Monitoring

Frequent computation of correlation, inner product, and distance matrices plays
an important role in the performance of the MineFleet Real-Time system. In this
section, we offer a brief exposure of some of the MineFleet modules that require
frequent computation of correlation matrices and monitoring changes in these ma-
trices. First, let us consider the on-board vehicle health monitoring module of
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Fig. 2 Vehicle sub-system operating regime monitoring and outlier detection module. The
polygons represent safe operating regimes of vehicle subsystem.

MineFleet. This module is responsible for tracking the operating characteristics
of the vehicle and detecting abnormal patterns from the vehicle health data.

Among other things, this module estimates the distribution of the data using
different incremental parametric and non-parametric techniques. In this section,
we discuss only one of them that makes use of an incremental operating regime
identification technique. It identifies the safe operating regime of the vehicle in the
low dimensional eigenspace of the covariance matrix by first clustering the data
and then capturing the clusters using techniques from computational geometry. We
assume that initially when the vehicle is certified to be in good health condition,
we can observe its behavior, gradually generate the clusters, and then use the stable
cluster descriptions to define the healthy operating regimes of the vehicle. Later,
during the monitoring phase, the module simply notes whether or not the observed
data point falls within the safe operating regime in the projected state space of the
vehicle. If it does not then the module raises a flag and reports unexpected behav-
ior. The actual implementation of this module of MineFleet is more complex and it
involves different statistical testing and confidence factor computation. However,
we do not discuss those here since the focus of this paper is something else.

The main steps of this performance regime monitoring process are as fol-
lows: (1) Principal Component Analysis(PCA)-based projection of the data; (2)
incremental clustering in the projected space; (3) construction of cluster descrip-
tions using techniques from computational geometry. Figure 2 shows the two-
dimensional state-space monitoring of the high dimensional feature space using
the above approach. It shows a collection of polygons which represents the un-
derlying typical operating regimes empirically constructed from the driving data.
A single dot in this space represents the state of the vehicle at any given time.
In this particular case, the outlier points were generated by vehicle engine cylin-
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der misfiring problems. Monitoring this state space of the vehicle works under
the assumption that the underlying basis set defined by the dominant eigenvec-
tors remain invariant. When the basis vectors change we need to quickly identify
that and compute the appropriate eigenvectors for representing the state space.
The eigenvectors change when the correlation/covariance matrix changes. There-
fore, the performance-regime learning and monitoring module must monitor the
changes in the correlation matrix and re-compute it, if necessary.

MineFleet also has a module for monitoring statistical dependency among dif-
ferent components of a vehicle system. Usually, the correlation matrix changes
when something changes in the underlying functional relationship among the at-
tributes. Such changes introduce non-stationary properties which are often an in-
dicator of something unusual happening in the vehicle systems.

The rest of this paper deals with this problem of resource-constrained data
mining specifically in the context of frequently computing sparse correlation ma-
trices and monitoring changes in the correlation matrices computed from different
windows of data streams. However, before discussing the proposed algorithms, let
us formally define the problem of computing the correlation and distance matrices
and review the related literature.

4 Problem Definition

The Pearson Product-Moment Correlation Coefficient or correlation coefficient for
short is a measure of the degree of linear relationship between two random vari-
ables: � and

�
. The correlation between � and

�
is commonly defined as follows:��������� �
	 ����
������������ ��������� , where

����!
� �
	 ��� is the covariance between � and
�
; " � and" � are the standard deviations of � and

�
respectively. The correlation coefficient

takes a value between -1 and +1. A correlation of +1 implies a perfect positive
linear relationship between the variables. On the other hand, a correlation of -1
implies a perfect negative linear relationship between the variables. A correlation
coefficient that is zero implies that the two variables vary independently. In this
paper, we call a correlation coefficient significant if its magnitude is greater than
or equal to a user-given threshold.

In data mining applications we often estimate the correlation coefficient of
a pair of features of a given data set. A data set comprised of features two #
and $ , that has % observations, has % pairs

�'&)( 	+* ( � where
&
(

and * ( are the , -th
observations of # and $ respectively. The following expression is commonly used
for computing the correlation coefficient:

��������� #-	.$ �/
 0 & ( * (214365�7�36897:; < 0 & �( 1 � 3 5�7 �'=: > < 0 * �( 1 � 3 8.7 �'=: >
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If the data vectors have been normalized to have 0 mean and unit length ( � �

norm), the resulting expression for the correlation coefficient is a lot simpler.

��������� #�� 	.$�� � 
 :� (��
�

& ( * ( (1)

In the rest of this paper, we assume that the data sets have been normalized first.
Therefore, if � is the %	��
 data matrix with the % rows corresponding to dif-
ferent observations and the 
 columns corresponding to different attributes, the
correlation matrix is an 
���
 matrix ��
�� . This paper also occasionally uses
the term correlation-difference matrix in the context of continuous data streams. If����������� #-	+$ � and

�����������
�
� #-	+$ � are the correlation coefficients computed from

the data blocks observed at time � and ����� respectively then the correlation-
difference coefficient is defined as � ������� � � # 	+$ � 1 ������� ���

�
� #-	+$ � � . When there

are more than two data columns corresponding to different attributes, we have a
set of such coefficients that can be represented in the form of a matrix. This matrix
will be called the correlation-difference matrix.

Also note that the problem of computing the Euclidean distance matrix is
closely related to the correlation matrix and inner product computation problem.
The Euclidean distance between the data vectors corresponding to # and $ ,:� (��

�

� & ( 1 * ( � � 
 :� (��
�

� & �( � * �( 1�� & ( * ( �

 :� (��

�

& �( � :� (��
�

* �( 1�� :� (��
�

& ( * (��
The correlation coefficient computation is also very similar to the problem of

computing the inner product [9] [20]. Therefore, in rest of this paper we present
the proposed algorithm only in the context of the correlation computation problem.
The following section discusses the related work.

5 Related Work

An efficient technique for computing the correlation matrix is equally applicable
to the inner product and Euclidean distance computation problem. These statistical
computing primitives are directly useful for clustering, principal component anal-
ysis, and many other related statistical and data mining applications. Therefore,
although the rest of the paper considers only the correlation matrix monitoring
problem, the results have direct implications on solving many other related prob-
lems.

Efficient computation of the correlation matrix has been addressed in the liter-
ature. Zhu and Shasha exploited [22] an interpretation of the correlation coefficient
as a measure of Euclidean distance between two data vectors in the Fourier rep-
resentation. Computation of correlation coefficients in the Fourier domain is also
frequently used in the signal processing literature. They developed the StatStream
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system which has been applied to compute correlation matrices from continu-
ous data streams. Their results show scalable improved performance compared to
the naive way to compute the correlation coefficients. This technique is designed
for desktop applications and the overhead makes it unsuitable for the resource-
constrained environments where monitoring of the correlation matrix is the pri-
mary objective. Alqallaf et al. [5] considered the problem of robust estimation of
the covariance matrix for data mining applications. These techniques are designed
for desktop applications and the overhead is by far not appropriate for a PDA-like
resource constrained device onboard the vehicle. There also exist a body of related
literature on computing and monitoring aggregates (e.g. dominance norms) [7,8]
from data streams.

The following section offers a novel algorithm to address this problem. Unlike
the traditional correlation matrix computation approach, the algorithm presented
in the following sections of this paper offer the following capabilities:

1. Quickly check whether or not the correlation matrix has changed using a prob-
abilistic test.

2. Apply this test and a divide-and-conquer strategy to quickly identify the por-
tions of the correlation matrix that contain the significantly changed coeffi-
cients.

6 Computing Sparse Correlation Matrices Efficiently

The main objective of this section is to develop the algorithmic foundation of the
technique for Fast Monitoring of Correlation (FMC) matrix. However, the first
step will be to develop an algorithm for computing sparse correlation matrices.
This technique will be directly used later for the monitoring application.

Given an % � 
 data matrix � with % observations and 
 features, the correla-
tion matrix is computed by � 
 � assuming that the columns of � are normalized
to have zero mean and unit length. We are particularly interested in sparse corre-
lation matrices because of the monitoring application we have in mind. However,
such correlation matrices are also widely prevalant since in most real-life high di-
mensional applications features are not highly correlated with every other feature.
Instead only a small group of features are usually highly correlated with each other.
This results in a sparse correlation matrix. In most stream applications, including
vehicle data stream monitoring, the difference in the consecutive correlation ma-
trices generated from two subsequent sets of observations is usually small, thereby
making the difference matrix a very sparse one.

A straight-forward approach to compute the correlation matrix using matrix
multiplication takes

� � % 
 � �
number of multiplications. The objective of this sec-

tion is to present FMC, a more efficient technique for computing and monitoring
sparse correlation matrices. In order to achieve this, we first demonstrate how we
can estimate the sum of squared values of the elements in the correlation matrix
that are above the diagonal. We define this sum as

� 
 0 ����������� = �
	 ������� � ���
� 	 � �

�
,

where
������� �
�

� 	 � �
� 
 0 :(��

���
( � ��� � ( � � = represents the correlation coefficient be-

tween the feature corresponding to the
�

� –th and
�

� –th columns of the data matrix
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� . In the remainder of this section, we estimate
�

using an approach that is similar
in spirit to that of [4].

Theorem 1 Consider an % ��
 data matrix � and an 
 -dimensional random
vector " 
�� " � 	+" � 	������2	+" 	�� 
 , where each " ���
	 1 � 	 ��� is independently and
identically distributed. Let

! (
be a random projection of the , -th row of the data

matrix � using this random vector " , i.e.

! ( 
 	�
� � �

�
( � � " �

Define a random variable 
 
 � 0 :(��
�
! �( 1 
 ��� � and # 
 
 �

. Then,� � # � 
 �
� � ������� = ��	

������� � ��� ( 	 � �
�/
 �

(2)

and � � � � # ��� � � � �
where

� � # � and

� � � � # � represent the expectation and the variance of the random
variable # , respectively.

Proof:

First note that, ! ( 
 	�
� � �

�
( � � " �

! �( 
 	�
� � �

�
�( � � � � �

� � ��� ��� = ��	 �
( � � � � ( � � = " � � " � = �

Because, the columns of � have been normalized to have unit norm,:� (��
�

! �( 
 :� (��
�

	�
� � �

�
�( � � � � :� (��

�

�
� � � � ��� = ��	 �

( � ��� � ( � � = " ��� " � =

 	�

� � �

:� (��
�

�
�( � � � � �

����� � ��� = �
	 " ��� " � =
:� (��

�

�
( � ��� � ( � � =


 
 � � �
����� � � � = ��	 " � � " � =

���������
� ( 	 � �
� �

Now we can write,

# 
 
 � 
 �� �
� � � � ��� = ��	 " ��� " � =

������� �
� ( 	 � �
���� �


 �
����� � ��� = �
	

������� � ��� ( 	 � �
� � � �

����� ��� � = ������! � �  = ���� ��� � � = ��"� �$# � � # = �
" ��� " � = " # � " # = ������� �
� ( 	 � �

� ������� �&% ( 	 % �
�
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First note that since " � � 	 � � 	 1 ��� , we have
� � " � � 
 �

for all
�
. Further,

from the basics of random variables we have: if � � and � � are independent ran-
dom variables, then

� � � � � � � 
 � � � � � � � � � � . Therefore having " � ’s that are
independent and from identical distribution (i.i.d), we have the following proper-
ties:

� � " � � " � = � 
 � � " � � � � � " � = � 
 �
for all

�
��� �

� and
� � " � � " � = " # � " # = � 
 �

for
at least two of

�
� 	 � � 	 % � 	 % � are distinct. Then the expected value of # is� � # � 
 �

� � ������� = ��	
������� � ��� ( 	 � �

�/
 �
(3)

Similarly
� � " ��� 	+" � = 	������ 	+" ��� � 
 �

as long as at least two of the
�
’s are distinct.

Thus the variance of # is� � � � # � 
 ��� � # 1 � � # � � �
	

�� �

����� ��� � = ������! � �  = ���� ��� � � = � "� �$# � � # = �
������� � �
�

� 	 � �
� ������� � �&%

� 	 % �
�

� � � � �


We have considered " to be a vector of � � ’s all of which are independently

chosen from a uniform random distribution. This means that all the elements of" are fully independent. The notion of � –wise independence (as well as almost
� –wise independence) in randomized algorithms is becoming very important [16,
1–3]. By � –wise independence, we mean that when we pick any � positions (out
of 
 ) in the vector " these are independently chosen with respect to each other. � –
wise independent distributions have the advantage that they can be generated using
very little space. 4-wise independent distributions were used in [4] for estimating
the second frequency moment. The property that

� � " � � " � = � 
 �
for all

�
� � �

� can
be achieved by having " � ’s that are pair–wise independent. Similarly, the property
that

� � " ��� " � = " # � " # = � 
 �
for all distinct

�
� 	 � � 	 % � 	 % � can be achieved by having" � ’s that are 4–wise independent. Note that the proof holds as long as " � ’s are

8-wise independent.
Lemma 1 provides results that lay the foundation of a probabilistic technique

to estimate 0 ����� � ��� = �
	 ������� � ��� ( 	 � �
�

which will be used later for testing the
existence of a significant correlation coefficient. The following discussion further
analyzes this approach and describes the algorithm in details.

Consider a set of � 
 � � � � random " vectors that are from i.i.d. or � –wise
independent. Corresponding to each of the " vectors, we maintain random vari-
ables # ( � � using the data matrix. Let $ � 	.$ � 	������2	+$�� = be such that $ ( is the mean
of # ( � ��� � � � � � � . Let $ be the median of the $ ( ’s. We output the median $ as
the estimate for

�
.

The idea behind doing this is the following. By considering $ ( that is a mean
of � � random variables # ( � � � ��� � � , we reduce the variance of $ by a factor of � � ,
so that

� � � � $ � 
 � � � � # � � � � . Then we make use of Chebyshev’s inequality to
bound the probabilty that $ ( deviates from the expected value by too much. By
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using the median of � � we ensure using the Chernoff bound that the probability
that more than half of the $ ( ’s exceed � � is arbitrarily small. Such an approach
is very common in randomized algorithms ( see for example [4,10,11]). Motwani
and Raghavan [17] provides several techniques for randomized algorithms.

Chebyshev’s inquality for a random variable � with a standard deviation� ��� � � � is stated as,� � � � � � � 1 � � � � ����� � ��� � � � � 
 � ��� ��� � � 1 � � � � � � ��� �

� � � � � � � � � � � � �
Let � �


 �
	 � � �

. Then, for each fixed � , � � � � � �� ��� ��� � $
� 1 � ����� � � 
 � � � � � � $
� 1 � � � ��� � � � �
 � � � � � � $
� 1 � � � � � � � � � � � � � � $
� � � � � � � $
� � �� � � � � $�� �� � � �


 � � � � # �
� � � � � �

� � � �

� � � � � �


 �
�
�

Let � (
be an indicator variable that is � when $ ( deviates from

�
by more than� � , i.e. when � $ ( 1 � ����� � . Then

� � � ( � � � � � . Let � 
 0 � =(��
� � (

. Then� � � � � � �
� � � ( � 
 � �

� � . Chernoff bound is given by

� � � � � ��� � � ��� � � � � � � � � ���� ����� � � �
� � ������� �! �

Let � �

 �#"%$ � � �'& � . Then, the probability that the median of $ ( ’s deviates from

�
by more than � � ,

� � � � � ��� � �
� � � � � �)( � � � � � � is at most� � �� � �)( � � �

�
� � � ��� �! � � � �� � �)( � � �

�
� � �+* , � �.-0/ � - � � �1� �

� � ��* , � �.-2/ � - � 
3&
Therefore we have the following theorem.

Theorem 2 The probability that the median of 	 $ � 	.$ � 	������ 	+$ � = � where each $ (
is the mean of 	 # ( � � 	�# ( � � 	������2	+# ( � � � � , deviates from

�
by more than � � is at

most
&
, when � �


 ��	 � � �

and � �

 �#"%$ � � �'& � .

Next, we describe how this approach can be used to identify the significant co-
efficients of the correlation matrix. Given a set 4 
 	 � � 	 � � 	������2	 ��5 � of k–columns
from the data matrix � , let ��6 be the data matrix with only data column vectors
from the set 4 , i.e. ��6 
 �

� � � 	 � � = 	������ � �87 � , in order to detect if any of these
columns are strongly correlated we first estimate

�
for �96 using the above ap-

proach. Let
� 6 be the true value of

�
over this pruned dataset and $ 6 be the

estimated value. If any of the correlation coefficients has a magnitude greater than:
then the true value of

� 6 must be a value greater than or equal to
: �

. We use this
test to determine whether or not there are any significant correlations among the
data columns in � 6 . If the estimated value $ 6 is less than

: �

, we declare that the
columns 4 
 	 � � 	 � � 	������2	 � 5 � are not significantly correlated.

This way, the above technique can be used to design a tree-based divide and
conquer strategy that first checks the possible existence of any significant corre-
lation coefficient among a set of data columns before actually checking out every
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Fig. 3 A graphical representation of the divide-and-conquer-strategy-based algorithm for
computing the significant correlation coefficients.

pair-wise coefficient. If the test turns out to be negative then we discard the cor-
responding correlation coefficients for further consideration. Figure 3 shows the
intuitive idea behind this Fast Monitoring of Correlation matrix (FMC) algorithm.
The algorithm performs a tree-search in the space of all correlation coefficients.
Every leaf-node of this tree is associated with a unique coefficient; every internal
node � is associated with the set of all coefficients corresponding to the leaf-nodes
in the subtree rooted at node � . The algorithm tests to see if the estimated

� � � : �

at every node starting from the root of the tree. If the test determines that the
subtree is not expected to contain any significant coefficient then the correspond-
ing sub-tree is discarded. Search proceeds in that sub-tree otherwise. Algorithms
6.0.1–6.0.3 present the pseudo-code of FMC.

Next, we analyze the running time of the FMC algorithm. Given the motivation
for energy efficient algorithms for energy constrained mobile devices, it may be
important to consider the number of additions, multiplications and comparisions
seperately. Therefore, we consider them seperately where ever possible.

At a node with 4 features the test-of-significance involves computation of
! (

’s
for , 
 � 	������)	+% . Because our random vectors contain only 	 � � 	 1 ��� , computing
each

! (
involves only � 4 � additions or subtractions. Therefore the time to com-

pute each of the 
 ’s, is the time for
� � � 4 � % �

additions and
� � % �

multiplications.
There are � � � � of them. Given the 
 ’s, the time to compute estimate of

� 6 is
the time for

� � � � % �
additions and multiplications and

� � � �
"�� $ � �

�
comparisons.

Therefore the time to perform a test at a node with � 4 � attributes is the time taken
for

� � � � � 4 � % �
additions,

� � � � % �
multiplications and

� � � �
"�� $ � �

�
comparisions.

Note that this is much faster than the naive approach that requires
� � % � 4 � � �

addi-
tions and multiplications.

Consider a correlation matrix with
� ��� �

number of significant coefficients. In
that case, there must be exactly

� ��� �
number of leaf nodes in the corresponding

tree representation, discussed earlier in this section. The depth of each of these leaf
nodes is

� � "�� $ 
 � . There are
� � "�� $ 
 � nodes along the path to each of the leaves at
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Algorithm 6.0.1 The main Compute-Corr(L, Coeffs,
:
) function that in turn calls

Compute-Corr(L1, L2, Coeffs,
:
) and Contains-Sig-Coeffs(L,

:
) for comuting the

significant correlation coefficients.

COMPUTE-CORR(L, Coeffs,
�
)�

L is a list of features and Coeffs is a list of�
correlation coefficients whose absolute value is�
greater than

�
.

if L contains only two elements � and �
then �����
	��
�
��� ����� 	
��� �������

if � � ��� �
then Append(Coeffs,

�
)

elseif Contains-Sig-Coeffs(L,
�
)==true

then
L1 = first-half(L)
L2 = second-half(L)

if Contains-Sig-Coeffs(L1,
�
)==true

then Compute-Corr(L1, Coeffs,
�
)

if Contains-Sig-Coeffs(L2,
�
)==true

then Compute-Corr(L2, Coeffs,
�
)

if Contains-Sig-Coeffs(L1, L2,
�
)==true

then Compute-Corr(L1 , L2, Coeffs,
�
)

return

which the test-of-significance is performed. Therefore there are
� � � "�� $ 
 � nodes

where the test is performed. Further, the number of features at a node that is at a
depth

�
(root), � 	 � 	������)	 "�� $ 
 is 
 	 
 � � 	������
	 � respectively. The cost of multipli-

cations depends only on the number of nodes at which the test is carried out and
not the number of features at the node. Therefore the cost of the FMC algorithm
in terms of multiplications is

� ��� "�� $ 
 � � � � � % � 
 � � � �
� % "�� $ 
 � . However, the

number of additions carried out at a node depends on the number features at that
node. In fact this is

� � � � %�� 4 � � additions at a node with � 4 � features. Therefore
nodes closer to the root have more number of features and hence costs more num-
ber of additions. However nodes with large number of features are few in number,
thus balancing out the number of additions across nodes along a path to the signif-
icant coefficient. More precisely, the number of additions that the FMC algorithm
performs is

� � � � � 
2% �
. The FMC algorithm has a space requirement of

� ��� "�� $ 
 �
to store the significance-test results at each of the nodes where the tests are per-
formed. In addition we should also consider the storage requirement for storing the
seeds and generating the random " ’s for each of the � � � � 
 ’s at any node. Note that
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Algorithm 6.0.2 The Compute-Corr(L1, L2, Coeffs,
:
) function.

COMPUTE-CORR(L1, L2, Coeffs,
�
)

L = L1 � L2
if L contains only two elements � and �

then �����
	��
�
��� ����� 	
��� �������
if � � ��� �

then Append (Coeffs,
�
)

else
L11 = first-half(L1); L12 = second-half(L1)
L21 = first-half(L2); L22 = second-half(L2)

if (Contains-Sig-Coeffs(L11, L21,
�
)==true)

then Compute-Corr(L11, L21, Coeffs,
�
)

if (Contains-Sig-Coeffs(L11, L22,
�
)==true)

then Compute-Corr(L11, L22, Coeffs,
�
)

if (Contains-Sig-Coeffs(L12, L21,
�
)==true)

then Compute-Corr(L12, L21, Coeffs,
�
)

if (Contains-Sig-Coeffs(L12, L22,
�
)==true)

then Compute-Corr(L12, L22, Coeffs,
�
)

return

Algorithm 6.0.3 The Contains-Sig-Coeffs(L,
:
) function.

CONTAINS-SIG-COEFFS(L,
�
)

if already-tested(L)
then return already-tested-result(L)

E = estimate-sum-of-Variance-square(L)
already-tested(L) = true

�
to avoid estimation in future

if � � � �

then already-tested-result(L) = true
�

store result
else already-tested-result(L) = false

�
store result

return already-tested-result(L)

the standard matrix-multiplication-based technique for computing the correlation
matrix requires

� � 
 � �
space and

� � % 
 � �
additions and

� � % 
 � �
multiplications.

The following section extends the FMC algorithm to the stream monitoring
scenario which is the main focus of the current application.
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7 Dealing with Data Streams

This section extends the sparse-correlation matrix computation technique to a
stream data environment for monitoring the correlation difference matrices, the
targetted application for the research reported here.

Consider a multi-attribute data stream scenario where each time stamp is as-
sociated with a window of observations from the stream data. More specifically,
let � � � � and � � ��� � �

be the consecutive data blocks at time � and ��� � respec-
tively. Let

����������� � � �
� 	 � � � ��

�
be the correlation coefficients between

�
� –th column

and
�

� –th column of � � � � and similarly let
���������
� � ��� � �

� 	 � � ��� � �
�

�
be the correlation

coefficients between
�

� –th column and
�

� –th column of � � ��� � �
. Along the same

lines, let 
 � � � and 
 � ��� � �
be the estimated values of 
 for the two data blocks at

time � and � � � respectively. Let # � � �
and # � ��� � �

be the corresponding estimated
values of # . Note that we use the same " ’s for computing # � � �

as well as # � ��� � �
.

Let us define,
� � ��� � � 
 
 � ��� � � 1 
 � � �

Now we can write,
� � ��� � � 
 �

����������� = �
	 " � � " � =
����������� � ��� � �( 	 � � ��� � �

�
� 1 �

� � ��� � � = ��	 " � � " � =
������� �
� � � �( 	 � � � ��

�

 �

� � � � ��� = ��	 " ��� " � =
< ���������
� � ��� � �( 	 � � ��� � �

�
� 1 ������� �
� � � �( 	 � � � ��

� >
Then we can find the expected value of � � � ��� � ��� �

in a manner similar to finding� � # � described earlier.� � < � � ��� � � > � � 
 �
� � ������� = ��	

< ����������� � ��� � �( 	 � � ��� � �
�

� 1 ����������� � � �( 	 � � � ��
� > �

This can be used to directly look for significant changes in the correlation
matrix. We should note that the difference correlation matrix (i.e. the changes in
the matrix) is usually very sparse since most of the time vehicle systems do not
perform unusually; rather they work following well understood principles of me-
chanical and electrical systems. The following section presents experimental re-
sults documenting the performance of the proposed algorithm in the context of the
MineFleet application.

8 Experimental Results

This section presents the experimental results documenting the performance of the
FMC algorithm using data streams from different vehicles. We primarily used a
data set collected from a 2003 Ford Taurus car. This data set has 64 features and
831 rows. Whenever, we used other data sets for the experiments, we report that
accordingly.
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Fig. 4 Number of multiplications and additions (with a scaling factor of the number-of-
data-rows) performed by the enumerative algorithm and FMC for correctly detecting no
changes in the correlation matrix.

First we consider the problem of monitoring the correlation matrices com-
puted from different data windows sampled from the data streams. Our objective
is to compare the performance of the naive enumerative algorithm and the FMC in
correctly detecting the following scenarios:

1. No changes in the correlation matrix over two consecutive data windows sam-
pled from the streams.

2. No significant changes in the correlation matrix. Note that this is different from
the previous scenario since in this case the correlation matrices do not stay in-
variant although the changes are insignificant with respect to a given threshold.

3. Detecting significant changes in the correlation matrix.

The following sections consider each of these scenarios.

8.1 Detecting No Changes

In this section our objective is to study the performance of the FMC algorithm
when the correlation matrix stays invariant. We performed several experiments
using data stream windows that produce the same correlation matrices. All of these
experiments made use of the � ( � � 	 � -dimensional Ford Taurus data set. FMC
works very well, as suggested by the analytical results. It always identifies no
change by performing the very first test at the root node of the tree. As a result
the running time is constant compared to the quadratic order running time for
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Number of Number of Number of
Additions Multiplications Nodes� � � � � � �

2 875.6 564.7 10.4 7.7 5.2 3.8
4 722.4 468.2 3.4 2.6 1.8 1.3
6 1692.6 1376.9 6 6.2 3 3.1
8 1025 0 2 0 1 0
10 1281 0 2 0 1 0

Table 1 Number of multiplications and additions (with a scaling factor of number-of-data-
rows) performed by FMC for correctly detecting no significant changes in the correlation
matrix. Threshold value is 0.6.

the naive enumerative approach. As Figure 4 shows, the performance of FMC is
significantly better than that of the naive approach.

8.2 Detecting No Significant Changes

This section considers the scenario where the correlation matrices are slightly dif-
ferent, resulting in a correlation-difference matrix that is not a null matrix but it
does not contain any significantly changed (with respect to the given threshold)
coefficients either. Table 1 shows the performance of the proposed algorithm for
overlapping windows from the stream with insignificant but non-zero changes. The
naive enumerative algorithm requires (2016 � number-of-data-rows) multiplica-
tions and additions. FMC detects no significant changes with approximately half
the number of additions and a very small fraction of multiplications. The FMC
algorithm clearly outperforms the enumerative algorithm on this ground.

8.3 Detecting Significant Changes

This section considers the problem of detecting significant changes when some of
the coefficients in the correlation matrix have changed beyond the given threshold.
In this situation, the algorithm has the two following goals:

1. Detect that something has indeed changed in the correlation matrix
2. Identify the portions of the matrix that are likely to contain the significantly

changed coefficients.

This section first reports the results of experiments with overlapping windows
of data where the difference-correlation matrix contains exactly 6 significant en-
tries and the magnitude of the difference is greater than 0.6.

In all the experiments reported here, FMC returns the correct answer for the
first problem (1) listed above. Our experiments were carried out with finite re-
source constraints. Table 2 shows the number of multiplications and additions
when the algorithm is allowed to explore only 8 nodes in the tree. Even with this
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Number of Number of Number of
Significant Multiplications Additions
Coefficients
Detected� � � � � � �

2 4.8 1.09 12.8 4.3 1081.6 282.6
4 5.2 1.09 16 0 2456 250.4
8 4.8 1.09 14.4 3.5 4717.6 917.6
12 4.8 0.89 14.4 3.5 7072.8 1833.5
16 4.4 0.89 14.4 3.5 9428 1833.5
20 4.4 0.89 16 0 128008 0

Table 2 Number of multiplications and additions (with a scaling factor of number-of-data-
rows) performed by the naive algorithm and FMC for correctly detecting significant changes
in the correlation matrix and identifying the portions of the matrix with the significantly
changed coefficients.

restriction on computation, the algorithm could detect the regions of the correla-
tion matrix with most of the significantly changed coefficients. Figure 5 shows the	 � � 	 � dimensional correlation-difference matrix. Since the matrix is symmet-
ric, the matrix is divided into two different regions with different gray shadings.
The right-upper triangle shows four different regions (with different gray shades)
corresponding to the regimes defined by the nodes of the tree constructed by the
algorithm. Six bright dots in the right-upper triangle correspond to the significant
entries. The lighter-shaded lower-left traingle is correctly discarded by the algo-
rithm since it does not contain any significant entry. Note that all the six significant
coefficients are covered by the nodes selected by the FMC algorithm.

Next we examine the performance of the algorithm as the number of signifi-
cant changes in the correlation matrix varies. We consider vehicle data collected
from a 2003 Ford Taurus. This dataset contains 831 rows and we will use 64 of
its columns. We create two blocks of data, each containing the 831 rows of the
Ford Taurus data. We make the correlation matrices between the two blocks dif-
ferent by altering some of the columns in the first block. This is performed for
introducing a controlled amount of significant changes in the correlation matrices.
After each alteration we run our algorithm and record the average number of ad-
ditions and multiplications required as it searches for differences between the two
correlation matrices corresponding to the two blocks of data. In this experiment
we fix the number of random vectors to

� 
 � and consider a coefficient signifi-
cant if its magnitude is greater than 0.6. We perform these experiments using finite
resource constraints in order to quickly identify regions (subtrees of the overall
search tree used by FMC) of the correlation difference matrix that contain sig-
nificantly changed coefficients without performing an exhaustive search of these
regions for exactly identifying the changed coefficients.

Figure 6 and Figure 7 present the results of the experiment described above.
The traditional correlation matrix computation requires (

� � ��	 � number-of-rows)
additions and multiplications. The FMC algorithm requires a fairly large number
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Fig. 5 This figure shows the ��������� dimensional correlation-difference matrix. Six bright
dots represent the significant entries.

of additions, but it requires considerably fewer multiplications than the naive ap-
proach. Due to the finite resource constraints, the number of additions does not
increase drastically as the number of significant coefficients increases. The bounds
on the numbers of additions and multiplications is fixed a priori. The goal is to
identify the regimes (i.e. the sub-trees) of the significantly changed coefficients
as precisely as possible. Results clearly show that the algorithm is able to locate
these regions using fewer multiplications then required by the naive enumerative
approach and a modest, relatively fixed number of additions.

8.4 Computing Sparse Correlation Matrices

This section considers the problem of computing sparse correlation matrices. This
is relevant to the vehicle data stream mining application considered in this paper.
However, it is also equally relevant to any other application where large sparse
correlation matrices must be computed efficiently.

In order to study the performance of the algorithm in detecting significant co-
efficients from a sparse correlation matrix we first report some experiments where
the sparseness can be controlled. The first set of experiments reported here used
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Fig. 6 Average number of additions performed by the proposed algorithm (scaled by the
number of rows) vs. the number of significant changes in the correlation matrix.

a controlled data set generated using correlated stock market data1 and randomly
generated uncorrelated data. More specifically we considered the highs for each
day for a period of 1 year for each ticker. We used 50 randomly generated data
vectors and 6 stock market data vectors in order to obtain a data set with a total
of 56 attributes. In order to make a fair assessment, we shuffle the order of the
features randomly. Therefore the correlation matrix is a � 	 ��� 	 matrix in this case
and traditional method of computing the correlation coefficients that are significant
will require computing all the 
 � 
 1 � ��� � coefficients which is 1540 in this case.
We fix the threshold to be 0.49. In this case there were 10 significant coefficients.
We observe the results as we increase the number of random vectors,

�
used. For

each value of
�
, we ran our algorithm 25 times and observed the following:

1. The average number of significant coefficients that are found.
2. The number of times (out of the 25 trials) we obtain all the 10 significant

coefficients.
3. The number of times we obtain at least 8 out of the 10 significant coefficients.
4. The number of times we obtain at least 5 of the 10 significant coefficients.
5. The average size of the tree (or the total number of nodes in the computation

tree).

Next we report more detailed experimental results using a vehicle data stream
and offer some more data to quantify the computational characteristics of the pro-
posed approach. This data was collected from another 2003 Ford Taurus model.

1 Obtained from http://kumo.swcp.com/stocks/
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Fig. 7 Average number of multiplications performed by the proposed algorithm (scaled by
the number of rows) vs. the number of significant changes in the correlation matrix.

The particular data set used here has 48 features and 831 rows. We used a thresh-
old value of 0.85. This resulted in a correlation matrix with 30 significant coeffi-
cients among a total of 1128 unique entries. In other words, the matrix contains
� � � � 1 ( � 
 � ��� � insignificant coefficients. Computing all the

� 
 � � � � coeffi-
cients explicitly would require

� � % 
 � � � � � � ( � 
 � (�� 	0( 	 � multiplications
and the same number of additions. Tables 3a and 3b present these results, the no-
tation used in the tables is described below.

Let
�

be the significant number of coefficients found by the algorithm.
�

gives
a measure of accuracy;

� � be the number of exact coefficients computed at the
leaves of the tree constructed by the algorithm; � be the number of nodes in the
tree. Therefore, � 1 � � gives the number of nodes in the tree where the proposed
fast-estimate-test is performed. Let � and � be the total number of column ad-
ditions and multiplications. Parameters � and � give a measure of how fast the
method is compared to

�
, the number of correlation coefficients computed by the

standard way. Tables 3a and 3b document the trade-off between the accuracy and
the computation-cost necessary for running the FMC algorithm.

We also performed additional experiments using the vehicle data with artifi-
cially controlled feature-space and sparseness of the correlation matrix. We gener-
ated a data set using 50 random vectors and 10 real data features. The ordering of
the columns is randomly chosen each time. The results are reported over 10 trials.
The correlation matrix contains a total of 22 significant coefficients for a thresh-
old value of = 0.7. The matrix contains a total of C = 60(60-1)/2 = 1770 unique
coefficients. Tables 4a and 4b present the experimental results. These results also
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Fig. 8 Performance of the proposed algorithm in detecting the significant coefficients. Total
number of trials is 25 and the correlation matrix contains 10 significant coefficients.

S D C’� � � � � � �

4 11.4 4.00 304.4 90.44 131.8 45.74
8 14.6 5.46 423.3 170.15 208.0 89.65
12 17.4 6.30 478.2 133.79 244.9 71.60
16 20.2 4.40 580.2 166.53 302.1 91.21
20 21.6 5.04 629.6 171.86 333.6 89.70
24 22.9 4.41 744.6 170.85 400.5 101.09

Table 3a Performance of the proposed algorithm in detecting the significant coefficients
using the vehicle data.

clearly demonstrate that the FMC algorithm offers an approximate but relatively
cheap way to identify the sparsely distributed significant entries in a correlation
matrix.

Figure 9 shows the comparative running time of the proposed and the naive
algorithm on a Dell Axim PDA. The experiments are performed for increasing
number of features. The proposed algorithm detects no changes in the correlation
matrix at a very minimal cost saving several seconds of clock time. A few sec-
onds of saving in running time is a major achievement in a resource constrained
environment like what the on-board module of MineFleet uses.
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M A� � � � �

4 304.4 90.44 4712.0 1041.07
8 423.3 170.15 10582.5 3753.73
12 478.2 133.79 16691.4 4229.64
16 580.2 166.53 25871.4 6400.18
20 629.6 171.86 33793.6 8249.27
24 744.6 170.85 45739.8 8178.53

Table 3b Performance of the proposed algorithm in detecting the significant coefficients
using the vehicle data.

S D C’� � � � � � �

4 8.1 3.81 145.0 55.70 39.2 15.52
8 12.6 4.08 213.8 46.49 59.1 17.87
12 14.8 4.96 242.1 66.01 66.7 24.36
16 15.6 3.32 238.3 45.11 68.6 14.95
20 18.0 3.74 277.7 47.82 79.6 18.91
24 19.0 3.97 271.4 60.93 83.0 19.28
28 20.2 2.75 304.5 42.93 88.6 20.63

Table 4a Performance of the proposed algorithm in detecting the significant coefficients
using the vehicle data with artificially controlled sparseness of the correlation matrix.

M A� � � �

�������
�

�������
4 145.0 55.70 41.6 14.0
8 213.8 46.49 115.4 19.9
12 242.1 66.01 186.0 35.4
16 238.3 45.11 244.8 38.3
20 277.7 47.82 342.3 41.9
24 291.1 48.41 415.3 60.8
28 314.7 34.91 520.4 39.7

Table 4b Performance of the proposed algorithm in detecting the significant coefficients
using the vehicle data with artificially controlled sparseness of the correlation matrix.

9 Conclusions

This paper presented a brief overview of MineFleet Real-Time, a vehicle data
stream mining and monitoring system. MineFleet is one among the first data stream
mining systems that is designed for mobile applications. We believe that this tech-
nology will find many other applications in different domains where resource-
constrained monitoring of time-critical data streams is important and central col-
lection of data is an expensive proposition.
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Fig. 9 Comparison of the running time of the proposed and the naive algorithm for detect-
ing no changes in the correlation matrix.

The paper mainly focused on a particular aspect of the MineFleet system—
monitoring correlation and distance matrices. It offered a probabilisitc technique
for efficiently detecting changes in the correlation matrix and identifying portions
of the matrix that are likely to contain the significantly changed coefficients. Mine-
Fleet contains a proprietary version of this algorithm and it plays a critical role in
the real-time performance of the vehicle on-board module for data analysis.

The proposed technique adopts a divide-and-conquer strategy that makes use
of a test to check whether or not a subset of correlation coefficients contains any
significant coefficient. The test allows us to prune out those subsets of coefficients
that do not appear to contain any significant one. The technique is particularly suit-
able for efficiently monitoring changes in coefficient matrices and computing large
sparse correlation matrices. The proposed algorithm made a tangible difference in
the performance of the MineFleet system.

Our preliminary experimental results with controlled and real-life vehicle stream
data appear promising. However, there are several issues that need to be addressed
in order to make the performance of the proposed algorithm more attractive. As
we noted earlier, the accuracy of the algorithm depends on the value of

�
, i.e. num-

ber of different randomized trials. For relatively larger values of
�
, the accuracy

is usually excellent; however, the running time goes up accordingly. Therefore,
it will be nice if we can construct a deterministic version of the test that does
not require multiple trials at every node of the tree. The performance of the algo-
rithm also depends on the overhead necessary for maintaining and manipulating
the tree structure. Therefore, paying attention to the systems issues is important,
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particularly for the run-time performance on-board a PDA-like device. The current
implementation of the technique is primarily designed for monitoring changes in
the correlation matrix. Once we identify that the matrix has significantly changed
it is usually better to use the naive correlation coefficient computation technique
to generate the new matrix exactly. The algorithm also seems to work well when
the matrix is not significantly changing frequently. In general, if the application re-
quires continuous low-overhead monitoring of occasionally changing correlation
or distance matrices then FMC appears to be a quite appropriate choice.
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