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Abstract. We examine the effectiveness of distance preserving trans-
formations in privacy preserving data mining. These techniques are po-
tentially very useful in that some important data mining algorithms can
be efficiently applied to the transformed data and produce exactly the

same results as if applied to the original data e.g. distance-based cluster-
ing, k-nearest neighbor classification. However, the issue of how well the
original data is hidden has, to our knowledge, not been carefully stud-
ied. We take a step in this direction by assuming the role of an attacker
armed with two types of prior information regarding the original data.
We examine how well the attacker can recover the original data from the
transformed data and prior information. Our results offer insight into
the vulnerabilities of distance preserving transformations.

1 Introduction

Recent interest in the collection and monitoring of data using data mining tech-
nology for the purpose of security and business-related applications has raised
serious concerns about privacy issues. For example, mining health-care data for
detection of bio-terrorism may require analyzing clinical records and pharmacy
transaction data of certain off-the-shelf drugs. However, combining such diverse
data sets belonging to different parties may violate privacy laws. Privacy Pre-
serving Data Mining (PPDM) strives to provide a solution to this dilemma. It
aims to allow useful data patterns to be extracted without compromising privacy.

Data perturbation represents one common approach in PPDM. Here, the
original dataset is perturbed and the result is released for data analysis. Per-
turbation approaches typically face a “privacy/accuracy” trade-off. On the one
hand, perturbation must not allow the original data records to be adequately
recovered. On the other, it must allow “patterns” in the original data to be re-
covered. In many cases, increased privacy comes at the cost of reduced accuracy
and vice versa. For example, Agrawal and Srikant [1] proposed adding randomly
generated i.i.d. noise to the dataset. They showed how the distribution from
which the original data arose can be estimated using only the perturbed data.
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However, Kargupta et al. [2] and Huang et al. [3] pointed out how, in many cases,
the noise can be filtered off leaving a reasonably good estimation of the original
data. These results point to the fact that unless the variance of the additive
noise is sufficiently large, original data records can be recovered unacceptably
well. However, this increase in variance reduces the accuracy with which the
original data distribution can be estimated. This privacy/accuracy trade-off is
not limited to additive noise, some other perturbation techniques suffer from a
similar problem e.g. k-anonymity [4].

Recently, distance preserving data perturbation [5, 6] has gained attention
since it mitigates the privacy/accuracy trade-off by guaranteeing perfect accu-
racy. Many important data mining algorithms can be efficiently applied to the
transformed data and produce exactly the same results as if applied to the orig-
inal data. e.g. distance-based clustering and k-nearest neighbor classification.
However, the issue of how well the original data is hidden has, to our knowledge,
not been carefully studied. In this paper, we address this issue by studying how
well an attacker can recover the original data from the transformed data and
prior information. We restrict our attention to the class of distance preserving
transformations that fix the origin and consider recovery of the original data
in the presence of two different classes of prior information (described later).
Our analysis explicitly illuminates scenarios where privacy can be breached. As
such, valuable information is gained into the effectiveness of distance preserving
transformation for privacy preserving data mining.

The remainder of this paper is organized as follows. Section 2 discusses some
basic mathematical properties of distance preserving transformations, the ap-
plication of these transformations to privacy-preserving data mining, and two
classes of attacker prior knowledge. Sections 3 and 4 examine in detail how
knowledge in each of these classes can be used to estimate the original data from
the transformed data. Section 5 discusses related work. Finally, section 6 con-
cludes the paper with a brief discussion of a suggested remedy for the attacker’s
approach in one of the classes of prior knowledge.

2 Distance Preserving Transformations

Throughout this paper (unless otherwise stated), all matrices and vectors dis-
cussed are assumed to have real entries. All vectors are assumed to be column
vectors and M ′ denotes the transpose of any matrix M . An m× n matrix M is
said to be orthogonal if M ′M = In, the n × n identity matrix.1 Let On denote
the set of all n×n, orthogonal matrices. A function T : Rn → Rn is distance pre-
serving if for all x, y ∈ Rn, ||x− y|| = ||T (x)−T (y)||, where ||.|| denotes l2-norm
of a vector. Here T is also called a rigid motion. It has been shown that any
distance preserving transformation is equivalent to an orthogonal transforma-
tion followed by a translation [7, pg. 128]. In other words, there exists MT ∈ On

and vT ∈ Rn such that T equals x ∈ Rn 7→ MT x + vT . If T fixes the origin,

1 If M is square, it is orthogonal if and only if M ′ = M−1 [7, pg. 17].



T (0) = 0, then vT = 0, hence, T is an orthogonal transformation. Henceforth
we assume T is a distance preserving transformation which fixes the origin – an
orthogonal transformation. Next we describe the privacy application scenarios
where orthogonal transformation can be used to hide the data while allowing
important patterns to be discovered without error.

2.1 Privacy Application Scenarios

We consider two privacy application scenarios as follows.
Census scenario: An organization has a private dataset X (each column is
a data record) and wishes to make it publicly available for data analysis while
keeping the original data records private. To accomplish this, Y = MT X is re-
leased to the public. The distance preserving nature of T allows a public entity
to easily recovery many useful patterns from Y . For example, the cluster mem-
bership produced by a Euclidean distance-based K-means clustering on Y will
be exactly the same as that produced on X . This model is widely studied in the
field of security control for statistical databases. We refer the reader to [8] for a
nice overview on this topic.
Storage outsourcing scenario: An organization continuously generates pri-
vate data records, but does not wish to invest in the infrastructure (both per-
sonnel and hardware) needed to manage the storage. Outsourcing this job can
be an attractive alternative i.e. the data records are handed over to an outside
agency who manages their storage. However, the original data records are sensi-
tive and the organization would rather avoid releasing them in the plain to the
outsourcing agency. To accomplish this, the owner applies T to each data record
and releases the results to the outsourcing agency. Whenever the owner wishes
to retrieve records from the outsourced database, she transforms her query by
the same T and sends it to the outsourcing agency who carries out similarity
comparison on the data and, in turn, sends the results back to the owner. This
scenario is closely related to work on secure database outsourcing, e.g. [17].

2.2 Prior Knowledge

Let the n×m matrix X denote a private dataset, with each column of X being
a record and each row an attribute. We assume that the attacker knows that T

is an orthogonal transformation and knows the perturbed data Y = MT X . In
most realistic scenarios, the attacker has some additional prior knowledge which
can potentially be used effectively for breaching privacy. We consider two types
of prior knowledge.
Known input-output: The attacker knows some collection of linearly inde-
pendent private data records. In other words, the attacker has a set of linearly
independent input-output pairs.
Known sample: The attacker knows that the original dataset arose as inde-
pendent samples of some n-dimensional random vector V with unknown p.d.f.
Also the attacker has another collection of independent samples from V . For



technical reasons, we make a mild additional assumption: the covariance matrix
of V has distinct eigenvalues.

In the next two sections, we describe and analyze an attack technique for
each type of prior knowledge listed above.

3 Known Input-Output Attack

Let Xk denote the first k columns of X and Xm−k the remainder (likewise for Y ).
We assume that columns of Xk are all linearly independent and Xk is known to
the attacker (Y is, of course, also known). The goal of the attacker is to recover
some columns in Xm−k with at most ǫ ≥ 0 error (described later). If k = n, then
the attacker can recover Xm−k perfectly as it equals (YkX−1

k )′Ym−k. Thus, we
assume k < n. Based on known information, the attacker can narrow down the
space of possibilities for MT to M(Xk, Yk) = {M ∈ On : MXk = Yk}. Since the
attacker has no additional information, any of these matrices is equally likely to
have been MT . The attacker chooses M̂ uniformly from M(Xk, Yk) and chooses
index 1 ≤ î ≤ m − k using some criterion (described later), then produces
x̂ = M̂ ′yî = M̂ ′MT xî as an estimate of xî, where xî is the îth column of Xm−k.
We say that an ǫ-privacy breach occurs if ||x̂ − xî|| ≤ ||xî||ǫ. We define ρ(xî, ǫ)
as the probability that an ǫ-privacy breach occurs. This serves as the criterion
for choosing î.

Next, for any vector x ∈ R
n, we develop a closed form expression for ρ(x, ǫ),

the probability that ||M̂ ′MT x − x|| ≤ ||x||ǫ. This is the ǫ-privacy breach proba-
bility for x. Due to space limitations, all proofs are omitted.

3.1 Probability of Privacy Breach

Let Col(Xk) denote the column space of Xk and Col⊥(Xk) denote its orthogonal
complement, i.e. {z ∈ Rn : z′w = 0, ∀w ∈ Col(Xk)}. Since the columns of Xk

are linearly independent, then there exists orthogonal matrices Uk (n × k) and
Un−k (n × (n − k)) such that Col(Xk) = Col(Uk) and Col⊥(Xk) = Col(Un−k).
It can be proved that

M(Xk, Yk) = {MT UkU ′

k + MT Un−kPU ′

n−k : P ∈ On−k}.

Hence, linear map L : M ∈ M(Xk, Yk) 7→ (MT Un−k)′MUn−k ∈ On−k is a
bijection. It can be further shown that

||M̂ ′MT x − x|| = ||L(M̂)′U ′

n−kx − U ′

n−kx||.

Thus, ρ(x, ǫ) equals the probability that a matrix P̂ drawn uniformly from On−k

satisfies

||P̂ ′U ′

n−kx − U ′

n−kx|| ≤ ||x||ǫ. (1)

Now let Sn−k(U ′

n−kx) be the hypersphere in Rn−k centered at the origin with

radius ||U ′

n−kx||. Vector P̂ ′U ′

n−kx and U ′

n−kx from inequality (1) are points on



the surface of Sn−k(U ′

n−kx). Let Sn−k(U ′

n−kx, ||x||ǫ) be the portion of Sn−k

whose distance from U ′

n−kx is no larger than ||x||ǫ, i.e. Sn−k(U ′

n−kx, ||xǫ||) =
{z ∈ Sn−k(U ′

n−kx) : ||z − U ′

n−kx|| ≤ ||x||ǫ}. From inequality (1), it follows that

ρ(x, ǫ) is the probability that a randomly chosen P̂ ∈ On−k satisfies P̂ ′U ′

n−kx

∈ Sn−k(U ′

n−kx, ||x||ǫ). Therefore, this probability equals the ratio of the surface
area of Sn−k(U ′

n−kx, ||x||ǫ) to the surface area of Sn−k(U ′

n−kx). Then, it can be
shown:

ρ(x, ǫ) = (
1

π
)2arcsin(

||x||ǫ

2||U ′

n−kx||
) if ||x||ǫ < 2||U ′

n−kx||; 1 otherwise.

An alternate characterization of ||U ′

n−kx|| yields a more intuitive form of the
second right-hand side. Consider UkU ′

kx the projection of x into Col(Xk). The
distance, d(x, Xk), of x from Col(Xk) is ||x − UkU ′

kx||. It can be shown that
||U ′

n−kx|| = d(x, Xk). Therefore,

ρ(x, ǫ) = (
1

π
)2arcsin(

||x||ǫ

2d(x, Xk)
) if ||x||ǫ < 2d(x, Xk); 1 otherwise. (2)

This formula allows us to observe the behavior of the ǫ-privacy breach proba-
bility for x in terms of ||x||ǫ and the distance of x from Col(Xk). Indeed the prob-
ability is approximately inversely proportional to d(x, Xk) for d(x, Xk) >> ||x||ǫ.
2 On the other hand, as ||x||ǫ → 2d(x, Xk), the breach probability goes to one.
In the extreme case where x ∈ Col(Xk), a breach occurs with probability 1 for
any ǫ.

3.2 Attack Technique

Using equation (2), ρ(xî, ǫ) can be computed from ||xî||, ǫ, and d(xî, Xk). Since
the attacker knows Y , she can compute ||yî|| = ||MT xî|| = ||xî|| and Vk an
n × k, orthogonal matrix such that Col(Vk) = Col(Yk). It can be shown that
d(xî, Xk) = d(yî, Yk) = ||MT xî − V V ′MT xî||. Therefore, the attacker chooses î

to maximize ρ(xî, ǫ). If the data owner knows that Xk is in the attacker’s prior
knowledge, then the owner can protect against this attack by simply not releasing
MT xi for any xi where d(xi, Xk) is unacceptably small. On the other hand, if
the owner does not know Xk is prior knowledge, then this attack technique can
be quite damaging.

4 Known Sample Attack

In this scenario, we assume that each data record arose as an independent sam-
ple from a random vector V with unknown p.d.f. We also make the following

2 For small z, arcsin(z) is approximately linear.



mild technical assumption: the population covariance matrix ΣV of V has all
distinct eigenvalues. We make this assumption because it holds in most practical
situations [9, pg. 27]. Furthermore, we assume that the attacker has a collection
of p samples that arose independently from V – these are denoted as the columns
of matrix S. In this section we design a Principal Component Analysis (PCA)-
based attack technique by which the attacker produces X̂, an estimate of X ,
from Y = MT X and S. Unlike Section 3, we do not attempt a rigorous analy-
sis of the attacker’s success probability. Instead, we analyze the recovery error
through experiments.

4.1 PCA Preliminaries

Let ΣV denote the population covariance matrix of V . Since ΣV is an n × n,
symmetric matrix (and we assume it has all distinct eigenvalues), it has n real
eigenvalues λ1 > . . . > λn [10, pg. 295]. Associated with each eigenvalue λi is its
eigenspace, {z ∈ Rn : ΣV z = zλi}. It can be shown that since ΣV has distinct
eigenvalues, the eigenspaces are pair-wise orthogonal and each has dimension one
[10, pg. 295]. As is standard practice, we restrict our attention to only a small
number of eigenvectors. Let Z(V )i denote the set of all eigenvectors z ∈ Rn such
that ΣV z = zλi and ||z|| = 1. Now consider random vector T (V ) = MT V and
let ΣMT V denote its covariance matrix. The eigenspaces of ΣV are related in a
natural way to those of ΣMT V , as shown by the following theorem (all proofs
are omitted due to space constraints).

Theorem 1 The eigenvalues of ΣV and ΣMT V are the same and MTZ(V )i =
Z(MT V )i where MTZ(V )i equals {MT w : w ∈ Z(V )i}.

Since all the eigenspaces of ΣV have dimension one, it can be shown that
Z(V )i contains only two eigenvectors zi,−zi, i.e. Z(V )i = {zi,−zi}. Let zi be
the lexicographically larger vector among zi,−zi, and let Z be the n×n matrix
whose ith column is zi. Since the eigenspaces of ΣV are pairwise orthogonal
and ||zi|| = 1, Z is orthogonal. Similarly, we have that Z(MT V )i = {wi,−wi}
(wi is the lexicographically larger among wi,−wi) and W is the matrix with
ith column wi (W is orthogonal). The following result forms the basis of the
attacker’s attack algorithm.

Corollary 1 Let In be the space of all n×n, matrices with each diagonal entry
±1 and each off-diagonal entry 0 (2n matrices in total). There exists D0 ∈ In

such that MT = WD0Z
′.

4.2 PCA Attack Algorithm

First assume the attacker knows the population covariance ΣV and ΣMT V . Thus,
the attacker can compute W and Z ′. By Corollary 1, the attacker knows that
MT equals WD0Z

′ for some D0 ∈ In, and therefore, the original data would
be recovered by M ′

T Y = ZD0W
′Y . The problem is how to choose the right D0



from all the possible 2n elements in In. To do so, the attacker must utilize S

and Y , in particular, the fact that these arose as independent samples from V

and MT V , respectively. For each D ∈ In, each column of WDZ ′S arose as an
independent sample from WDZ ′V . If D = D0, then WDZ ′ = MT , so, WDZ ′S

and Y should come from the same p.d.f. The attacker will choose D ∈ In such
that WDZ ′S is most likely to have arisen from the same p.d.f. as Y . To make
this choice, a similarity function G(WDZ ′S, Y ) is introduced, and the D that
maximizes G is chosen. There might be many ways to define this function. In this
paper, we use a multivariate two-sample hypothesis test for equal distributions
[11]. The two-sample problem assumes that there are two sets of independent
samples x1, x2, . . . , xm1 and y1, y2, . . . , ym2 of independent random vectors with
distributions F1 and F2, respectively. The goal of two-sample problem is to test
H0 : F1 = F2, versus the composite alternative H1 : F1 6= F2. For each D ∈ In,
we compute the p-value of the test on WDZ ′S and Y , denoted by ρ(D). Here
the p-value is defined as the smallest level of significance at which H0 would be
rejected on a given data set. Small p-values suggest that the null hypothesis is
unlikely to be true. The smaller it is, the more convincing is the rejection of the
null hypothesis. Therefore the value of function G is nothing but the p-value,
and the D matrix that is associated with the highest p-value is chosen.

In practice, the population covariance ΣV and ΣMT V are unknown, and will
be replaced by the sample covariance ΣS and ΣY from S and Y (independent
samples arising from V and MT V ). Algorithm 4.2.1 shows the complete PCA-
based attack procedure.

Algorithm 4.2.1 PCA-based Attack Technique

Inputs: S, an n × p matrix where each column arose as an independent sample from
V (a random vector with unknown p.d.f). Y = MT X where MT is an unknown,
n× n, orthogonal matrix; and X is an n ×m unknown matrix where each column
arose as an independent sample from V .

Outputs: X̂ , an estimation of X.
Assumptions: ΣV has all distinct eigenvalues.
1: Compute sample covariance matrix Σ̂S from S and sample covariance matrix Σ̂Y

from Y . [O(n2m + n2p)]
2: Compute the eigenvector matrix Ẑ of Σ̂S and Ŵ of Σ̂Y . Each eigenvector has unit

length and is sorted in the matrix by the corresponding eigenvalue. [O(n3)]
3: Choose D0 = argmax{G(ŴDẐ′S, Y ) : D ∈ In}. [O(2nB)]
4: Compute X̂ = ẐD0Ŵ

′Y . [O(n3 + n2m)]

The computation cost of Algorithm 4.2.1 is O(n2(m+p)+n3+2nB) assuming
G(., .) requires O(B) computation. For the two-sample test, B = (m + p)2, so,
the total computation of the algorithm is O(2n(m + p)2).



4.3 Effectiveness

The effectiveness of the PCA Attack algorithm depends on two correlated as-
pects: 1) the p.d.f., f , of V ; and 2) the quality of covariance estimation.
PDF of V: First, suppose for some D1 6= D0 ∈ In, f is invariant over D1 in
the sense that fD1

= fD0
where fDi

is the p.d.f. x ∈ Rn 7→ f(WDiZ
′x). Then,

WD0Z
′S, WD1Z

′S and Y all arose from the same p.d.f., so ρ(D0) may not be
larger than ρ(D1), and the attack algorithm will fail. An example of such an
f is the n-variate Gaussian with mean vector zero and covariance matrix In.
This distribution is invariant to orthogonal transformation. Second, suppose the
eigenvalues of ΣV are nearly identical. For example, suppose f has a diagonal
covariance matrix whose diagonal entries (from top-left to bottom-right) are
d, d − ǫ, d − 2ǫ, . . ., d − nǫ where d − nǫ > 0 and 0 < ǫ < 1. Small errors
in estimating ΣV from S can produce a different ordering of the eigenvectors,
hence, large errors in the attacker’s recovery.
Quality of Covariance Estimation: A great deal of work has been conducted
in the statistics community on estimating the covariance matrix of a random vec-
tor based on an independent sample [9, Chapter 10.4]. Any estimation technique
can be used in our technique. In experiments we use the simple, standard sample
covariance estimator.

4.4 Experiments

To validate the PCA-based attack algorithm, we conducted experiments on both
synthetic and real world data. One such synthetic dataset contains 1000 data
points, which are generated from a two-dimensional Gaussian distribution with

mean (−10, 10) and covariance
(

1 1.5
1.5 3

)

. The attacker has 50 sample data points

(5% of the size of original data) chosen from the same distribution. Figure 1
shows the results of perturbation and recovery. It can be seen that although
the perturbed data is very different from the original one, the recovered data
almost overlaps with the original data.3 To further examine how sample size
affects the quality of the attack, we fixed the orthogonal perturbation matrix,
and variated the number of samples from 1% of the original data to 20%. For
each sample ratio, 20 independent trials were conducted. We computed 95%
confidence interval of the results. Figure 2 shows that as the sample size increases,
the average relative distance between the columns of X and X̂ decreases.4

For real world data, we chose the Adult Database from the UCI machine
learning repository. This data set contains 32, 561 records, and it is extracted
from the census bureau database. For the purpose of visualization, we only se-
lected three continuous attributes: age, education-num and hours-per-week, for
the experiment. We first randomly separated the dataset into two disjoint sets.

3 Note that the shape of the perturbed data does not appear very similar to the shape
of the original data because the axes scales are not even.

4 The average relative distance between the columns is defined as

P
numCols

i

||Xi−X̂i||

||Xi||

numCols
.
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Fig. 2. Performance (average of 20 inde-
pendent trials) w.r.t. sample size. Error
bars show 95% confidence intervals.

One set is viewed as the original data, and the other one is the attacker’s sam-
ple data, which accounts for 5% of the original data. The left column of Figure
3 shows the difference between the original data and the perturbed data; the
right column of Figure 3 depicts the results of PCA-based attack. It can be seen
that the recovered data approximates the original data very well. To examine
the influence of sample size, we fixed the orthogonal perturbation matrix, and
variated the number of samples from 2% of the original data to 20%. For each
sample ratio, 20 independent trials were conducted. Figure 4 gives the result.

To evaluate the complexity of the PCA attack algorithm, we generated mul-
tivariate Gaussian data with dimensionality ranging from 2 to 12. Each data
set contains 5250 records, 250 records of which are used as samples. The energy
test proposed in [11] was used to quantify similarity (G(., .)), The experiment
was conducted in Matlab on a dual-processor workstation with 3.00GHz and
2.99GHz Xeon CPUs and 3.00GB RAM. We observed that for 2-dimensional
data, it took 143.1090 seconds, and for 12-dimensional data, it took 1.2442×105

seconds. Although the running time goes up rapidly as the dimension increases,
this algorithm is still computationally feasible for relatively high dimensional
data.

5 Related Work

This section presents a brief overview of the literature on data perturbation
for PPDM. There is another class of PPDM technique using secure multi-party
computation (SMC) protocols for implementing common data mining algorithms
across distributed datasets. We refer interested readers to [12] for more details.

Additive perturbation: Agrawal and Srikant [1] proposed the addition of
i.i.d., white noise for privacy protection. They describe a technique by which the
original data distribution can be estimated from the perturbed data. Kargupta
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Fig. 4. Performance (average of 20 inde-
pendent trials) of PCA-based attack w.r.t.
sample size for Adult data. Error bars
show 95% confidence intervals.

et al. [2] questioned the use of additive, white noise by showing how, in some
cases, the noise can be effectively filtered off revealing a good approximation of
the original data. This technique was further investigated by Huang et al. [3].
To our knowledge, these techniques are not applicable to this paper since it is
concerned with non-additive perturbation.

Multiplicative perturbation: Two basic forms of multiplicative noise have
been studied in the Statistics community [13]. One multiplies each data element
by a random number that has a truncated Gaussian distribution with mean
one and small variance. The other takes a logarithmic transformation of the
data first, adds multivariate Gaussian noise, then takes the exponential function
exp(.) of the noise-added data. Neither of these perturbations preserve distance
and are fundamentally different than the type we study, orthogonal transforma-
tions. To facilitate large scale data mining applications, Liu et al. [14] proposed
an approach where the data is multiplied by a randomly generated matrix – in
effect, the data is projected into a lower dimensional space. This technique pre-
serves distance on expectation. However, the privacy analysis there did not take
into account prior knowledge as we do. Oliveira and Zaiane [6], Chen and Liu
[5] discuss the use of random rotation for privacy-preserving clustering and clas-
sification. These authors observe that the distance preserving nature of random
rotation makes it useful in this setting, but do not analyze its privacy limitations.

Categorical data perturbation: Evfimievski et al. [15], Rizvi and Haritza
[16] consider the use of data categorical perturbation. They develop algorithms
from which association rules present in the original data can be estimated from
the perturbed data. Along a related line, Verykios [18] consider perturbation
techniques which allow the discovery of some association rules while hiding others
considered to be sensitive.



Data anonymization: Sweeney [4] developed the k-anonymity framework wherein
the original data is transformed so that the information for any individual cannot
be distinguished from k-1 others. Values from the original data are generalized
(replaced by a less specific value) to produce the anonymized data. This tech-
nique makes no accuracy guarantees for subsequent analysis of the transformed
data.

Data swapping: This technique transforms the database by switching a subset
of attributes between selected pairs of records so that the individual record
entries are unmatched, but the statistics are maintained across the individual
fields. A variety of refinements and applications of data swapping have been
addressed since its initial appearance. We refer readers to [19] for a thorough
treatment.

6 Conclusions

We considered the use of distance-preserving maps as a data perturbation tech-
nique for privacy-preserving data mining. On the one hand, this technique is
quite useful as it is computationally efficient, and it allows many interesting data
mining algorithms to be applied directly to the perturbed data and produce an
error-free result e.g. K-means clustering and k-nearest neighbor classification.
On the other hand, the privacy offered by distance preserving transformations
has, to our knowledge, not been well-studied. We take a step in this direction
by considering two types of prior knowledge an attacker may have and use to
design attack techniques to recover the original data. The first is based on basic
properties of linear algebra and the second on principal component analysis.

We conclude the paper by pointing out a potential remedy to the privacy
problems described earlier for the PCA attack. Recall that the attacker, with a
good estimate of the original and transformed covariance matrices, could gain
a lot of information about the orthogonal transformation T itself and, there-
fore, undo it quite well to recover the original data. We suggest, however, that
the data owner instead use a randomized transformation which is orthogonal
on expectation – namely, random projection. The owner generates R̂, a ℓ × n

matrix with each entry sampled independently from a distribution with mean
zero and variance one and releases Y = RX where R = ℓ−1/2R̂ (this type of
data perturbation for ℓ ≤ n was discussed in [14]). It can be shown that matrix
R is orthogonal on expectation and the probability of orthogonality approaches
one exponentially fast with ℓ. By increasing ℓ, the data owner can guarantee
that distances are preserved with arbitrarily high probability. However, it can
be shown that the randomness introduced by R kills the covariance in Y used
by the PCA based attack. Specifically, given random vector V , it can be shown
that, ΣRV (the covariance matrix of RV ) equals Inγ for some constant γ. Any
vector in Rn is an eigenvector of ΣRV , therefore, the PCA based attack will not
work. The exploration of this kind of randomized orthogonal transformation is
a good direction for future work.
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