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Abstract

Data mining is playing an increasingly important role
in sifting through large amount of data for homeland de-
fense applications. However, we must pay attention to the
privacy issues while mining the data. This has resulted in
the development of several privacy-preserving data mining
techniques. The random value distortion technique is one
among them. It attempts to hide the sensitive data by ran-
domly modifying the values. This paper questions the utility
of the random value distortion technique. The paper devel-
ops a random matrix-based spectral filtering technique to
retrieve original data from the dataset distorted by adding
random values. The proposed method works by comparing
the spectrum generated from the observed data with that of
random matrices. The paper presents the theoretical foun-
dation and extensive experimental results to demonstrate
that the random value distortion technique may not preserve
any data privacy after all.

Keywords: Privacy preserving data mining, value pertur-
bation, random matrices, eigenanalysis.

1 Introduction

Many homeland defense applications require mining het-
erogeneous data for creating profiles, constructing social
network models, detecting terrorist communications among
others. Usually the data is very sensitive to privacy is-
sues. Financial transactions, healthcare records, and net-
work communication traffic are a few examples. Data min-
ing in such privacy-sensitive domains is facing growing
concerns. Therefore, we need to develop data mining tech-
niques that are sensitive to the privacy issue. This has fos-
tered the development of a class of data mining algorithms
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[4, 13] that try to protect the data privacy with varying de-
grees of success. Most of these algorithms try to extract
the data patterns without directly accessing the original data
and guarantees that the mining process does not get suffi-
cient information to reconstruct the original data.

This paper explores the random value perturbation-based
approach [4], a well-known technique for masking the data
using random noise. The idea is to preserve data privacy
by adding random noise, while making sure that the ran-
dom noise still preserves the signal from the data so that
the patterns can be closely estimated. This paper ques-
tions the privacy-preserving capability of the random value
perturbation-based approach and shows that the original
data can be accurately estimated from the perturbed data us-
ing a spectral filter that exploits some theoretical properties
of random matrices. It presents the theoretical foundation
and provides experimental results to support this claim.

Section 2 offers an overview of the related literature in
privacy preserving data mining. Section 3 describes the ran-
dom data perturbation method proposed in [4]. Section 4
discusses the theoretical foundation of our approach that re-
lies on known properties of random matrices. Section 5 de-
scribes the random matrix-based eigen analysis methods to
extract the original dataset. Section 6 applies the proposed
technique and reports its performance for various data sets.
Finally, Section 7 concludes this paper and outlines future
research directions.

2 Related Work

Privacy is related to an individual or groups of individu-
als sharing some common features in a given context. Pre-
serving privacy of the data is important in data mining ap-
plications dealing with sensitive data. Internet marketing
firms, that have access to sensitive financial data, retain their
ability to analyze the data with a considerable emphasis on
privacy preservation [2]. A “privacy policy” is almost a rec-
ognized standard for operating with private information for
such companies. There are different techniques for this. For
example, if the privacy is associated with the identity of an
individual then sometimes removing the identification in-



formation from the data solves the problem. However, there
exist many applications where such simple solutions do not
work. The data set may still reveal certain information that
violates the privacy of different entities associated with the
data. Therefore, data mining techniques are necessary that
can work without directly accessing the raw data.

There exists a growing body of literature on this topic.
Cryptographic tools are suggested in [21] in order to secure
data transmission, along with communication between local
sites as opposed to one centralized site. A privacy preserv-
ing technique to construct decision trees [17] is reported in
[14]. The approach depends on a completely reliable inter-
mediary party, in order to regulate the privacy preservation.
Kantarcioglu and Clifton [13] investigate an association rule
mining from homogeneous data using a commutative en-
cryption tool.

Two very general procedures are frequently executed in
privacy preserving tasks are query restriction limitation, and
data perturbation. Query restriction limits the amount of
information released based on the amount of information
available. On the other hand, data perturbation is conducted
in a manner to add noise to the original data so that its actual
information cannot be extracted. A value distortion based
technique fro data perturbation is suggested in [4]. Adding
noise to the values of a database is reported in [20].

Several related works concerning mining association
rules also have similar privacy preserving aims. The idea of
sensitive rules, as well as privatized patterns are introduced
in [1, 23, 3, 7]. Furthermore a group of related literature
exists, which, focus not on preserving the original data, but
rather the underlying patterns in the data such as in [11, 6].
Such works consider original data to be non-sensitive in-
formation, however the holders of this data does not want
clients to infer certain patterns, holding the patterns, not the
original data as the sensitive issue. [3] attempts to distort
the original information, by removing certain item sets such
that particular patterns cannot be detected, with minimal ef-
fect on the overall database and alternate item sets.

3 Random Value Perturbation Technique: A
Brief Review

For the sake of completeness, we now briefly review the
random data perturbation method suggested in [4]. We also
discuss the procedure for reconstructing the original data
distribution, as suggested in [4].

3.1 Perturbing the Data

The random value perturbation method attempts to pre-
serve privacy of the data by modifying values of the sensi-
tive attributes using a randomized process [4]. The authors
explore two possible approaches - Value-Class Membership

and Value Distortion - and emphasize the Value Distortion
approach. In this approach, the owner of a dataset returns
a value �� � �, where �� is the original data, and � is a
random value drawn from a certain distribution. Most com-
monly used distributions are the uniform distribution over
an interval ���� �� and Gaussian distribution with mean
� � � and standard deviation �. The � original data val-
ues ��� ��� � � � � �� are viewed as realizations of � indepen-
dent and identically distributed (i.i.d.) random variables	 �,

 � �� �� � � � � �, each with the same distribution as that of a
random variable 	 . In order to perturb the data, � indepen-
dent samples ��� ��� � � � � ��, are drawn from a distribution
�. The owner of the data provides the perturbed values
�� � ��� �� � ��� � � � � �� � �� and the cumulative distribu-
tion function ����	 of �. The reconstruction problem is to
estimate the distribution �� ��	 of the original data, from
the perturbed data.

3.2 Estimation of Distribution Function from the
Perturbed Dataset

The authors [4] suggest the following method to estimate
the distribution �� ��	 of 	 , given � independent samples
� � �� � ��, 
 � �� �� � � � � � and ����	. Using Bayes’
rule, the posterior distribution function � �

� ��	 of 	 , given
that 	 �� � , can be written as

� �� ��	 �

� �
�� �� � � �	����	����
�� �� � � �	����	��

�

which upon differentiation with respect to � yields the den-
sity function

� ����	 �
�� � � �	����	��

�� �� � � �	����	��
�

If we have � independent samples �� � �� � �, 
 �
�� �� � � � � �, the corresponding posterior distribution can be
obtained by averaging:

� ����	 �
�

�

��
���

�� �� � �	�� ��	��
�� �� �� � �	����	��

� (1)

For sufficiently large number of samples �, we expect the
above density function to be close to the real density func-
tion ����	. In practice, since the true density ����	 is un-
known, we need to modify the right-hand side of equation
(1). The authors suggest an iterative procedure where at
each step � � �� �� � � � � the posterior density � ���� ��	 esti-
mated at step ��� is used in the right-hand side of equation
(1). The uniform density is used to initialize the iterations.
The iterations are carried out until the difference between
successive estimates becomes small. In order to speed up
computations, the authors also discuss approximations to
the above procedure using partitioning of the domain of data
values.



4 Theory of Random Matrices

In this section, we discuss the general theory of random
matrices that is used to filter the noise from the perturbed
dataset to obtain an estimate of the actual dataset. Our fil-
tering approach is based on the observation that the distri-
bution of eigenvalues of random matrices [16] exhibit some
well known characteristics.

A random matrix is a matrix whose elements are random
variables with given probability laws. The theory of random
matrices deals with the statistical properties of the eigenval-
ues of such matrices. Eigenvalues of random matrices offer
many interesting properties. For example, Wigner’s semi-
circle law, which says if 	 is an �� � matrix and has i.i.d.
entries with zero mean and unit variance, the distribution
of eigenvalues of ����

�
�
��

has a probability density function
given by

���	 �

�
�
� ���� ��	�	�� ��� � ���

�� otherwise�

In this paper, we are mainly concerned about distribution of
eigenvalues of the sample covariance matrix obtained from
a random matrix. Let 	 be a random �� � matrix whose
entries are 	�� , 
 � �� � � � ��, � � �� � � � � �, are i.i.d. ran-
dom variables with zero mean and variance � �. The covari-
ance matrix of 	 is given by � � �


	
�	. Clearly, � is an

�� � matrix. Let �� � �� � � � � � �� be the eigenvalues
of � . Let

����	 �
�

�

��
���

���� ��	�

be the empirical cumulative distribution function (c.d.f.) of
the eigenvalues ��, �� � 
 � �	, where

���	 �

�
� � � �

� � � �

is the unit step function. In order to consider the asymp-
totic properties of the c.d.f. ����	, we will consider the di-
mensions � � ���	 and � � ���	 of matrix 	 to be
functions of a variable � . We will consider asymptotics
such that in the limit as � � 	, we have ���	 � 	,
���	 � 	, and 
���

���� � �, where � � �. Under these
assumptions, it can be shown that [12] the empirical c.d.f.
����	 converges in probability to a continuous distribution
function����	 for every �, whose probability density func-
tion (p.d.f.) is given by

����	 �

�
�
�
��������������

����� ���	 � � � ��
�

� otherwise�
(2)

Figure 1. Flowchart of spectral filtering tech-
nique.

where ���	 � ���� � ��
�
�	� and ��
� � ���� �

��
�
�	�. Further refinements of this result and other dis-

cussions can be found in [19, 9, 15, 5, 8, 22, 18].

5 Random Matrix-Based Data Filtering

Suppose actual data � is perturbed by a noise random
variable � to produce � � � � �. Let � � �� � ��,

 � �� �� � � � ��, be � (perturbed) data points, each being
a vector of � features. Thus the perturbed dataset, can be
considered to be an � � � random matrix � , having �
features and � instances. Our proposed filtering technique
first calculates the covariance matrix of the perturbed data
� . Using the distribution of eigenvalues of the covariance
matrix, and the theory of random matrices, the covariance
matrix of � is decomposed into a noise part and an actual
data part. The eigenvectors corresponding to actual data are
then used to reconstruct the actual data.

In the following section, we discuss some details of the
filtering procedure. We first assume that the entire distri-
bution ����	 of the random noise � is known. Later, we
discuss how the noise variance can be estimated from the
eigenvalue distribution of the perturbed data.

5.1 Known Noise Variance

When the noise distribution ����	 of � is completely
known, the noise variance �� is first calculated. Equation
(2) is then used to calculate �
�� and �
��. They provide



the theoretical bounds of the eigenstates corresponding to
noise. From the perturbed data, we compute the eigenvalues
of its covariance matrix � , say �� � �� � � � � � ��. Then
we identify the noisy eigenstates �� � ���� � � � � � ��
such that �� � �
�� and �� � �
��. The remaining eigen-
states are the eigenstates corresponding to actual data. Let,
�� = diag (��� ����� � � � � �� ) be the diagonal matrix with all
noisy eigenvalues, and �� be the matrix whose columns are
eigenvectors corresponding to the eigenvalues in � �. Simi-
larly, let �� be the eigenvalue matrix for the actual data part
and �� be the corresponding eigenvector matrix which is a
�� � matrix (� � �). Based on these matrices, we decom-
pose the covariance matrix � into two parts, �� and �� with
� � �� � ��, where �� � �����

�
�, is the covariance ma-

trix corresponding to random noise part, and � � � �����
�
�,

is the covariance matrix corresponding to actual data part.
An estimate 
� of the actual data � is obtained by projecting
the data � on to the subspace spanned by the columns of
��. In other words, 
� �����

�
�.
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Figure 2. Estimation of original sinusoidal
data with known random noise variance.

5.2 Unknown Noise Variance

When the noise variance �� is unknown, we first esti-
mate it using the perturbed data. The estimated noise vari-
ance is then used to filter the perturbed data. In order to
estimate the noise variance �� we first compute the eigen-
values of the covariance matrix � of the perturbed data � .
A histogram of the eigenvalue distribution is plotted and
compared to that of the theoretical noise eigenvalue density
function ����	 given in equation (2). Note that the den-
sity function ����	 depends on the variance ��. Typically,
the theoretical density function ����	 is a good fit to the
left portion of the histogram of the computed eigenvalues,
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Figure 3. Distribution of eigenvalues of actual
data , and estimated eigenvalues of random
noise and actual data.

corresponding to small eigenvalues. The larger eigenvalues
that do not fit this theoretical density function correspond
to the actual information part of the perturbed data. An it-
erative procedure is employed to obtain the value of � that
results in the best fit of ����	 to the observed histogram.

6 Experimental Results

Our proposed method is used on datasets of different
sizes which have some trend in their values. The actual
dataset is distorted by adding Gaussian noise (Normally dis-
tributed random numbers with zero mean and specific vari-
ance), and our proposed technique is applied to recover the
actual data from the perturbed data with the knowledge of
noise distribution (noise variance in particular). Experimen-
tal results show this method estimates the pattern and gives
close estimation of individual values of actual data. Figure
2 shows one such estimation of data when the actual data
has sinusoidal trend.

The distribution of eigenvalues shows (Figure 3) the
method accurately distinguishes between noisy eigen values
and eigenvalues corresponding to actual data. Note that the
estimated eigenvalues of actual data is very close to eigen-
values of actual data and almost overlap with them above
�
��. The eigenvalues of actual data below the �
�� are
of very small values and are negligible. Thus, even though
there are no estimations corresponding to them, the estima-
tion of actual data is fairly accurate.

We used a dataset of 300 instances and 20 features which
has definite trend in its features. We added a Gaussian ran-
dom variable with mean � and standard deviation � � ����
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Figure 4. Estimated dataset preserves the
’Plateau’ trend of original data.

to each data value of the actual dataset and applied our algo-
rithm to recover the actual data from the distorted data with
the known noise � � ����. Figure 4, Figure 5 show estima-
tion of dataset with different types of trends in their actual
values. The actual dataset has trends like plateau and trian-
gles. The estimated dataset preserves the trend and closely
estimates individual values.

Quality of recovery depends upon relative noise content
of the data. If the relative noise compared to actual dataset
increases very much, the recovery method performs poorly.
We define the term ‘Signal-to-Noise Ratio’ (SNR) to quan-
tify the relative amount of noise added to actual data to per-
turb it.

SNR �
Value of Actual Data

Value of Noise Added to the Data

As the noise added to the actual value increases, the SNR
decreases. Our experiments show that this method predicts
the actual data reasonably well up to a SNR value of 1.0
(i.e. ���� noise). The results shown in figures 2, 4, 5 are
the case of mean SNR value nearly 2, i.e. ��� noise. As
the SNR goes below 1, the estimation becomes too erro-
neous. Figure 6 shows the difference in estimation as the
SNR increases from 1. The upper figure shows the esti-
mation corresponding to 100% noise(mean SNR = 1), and
the lower figure shows estimation corresponding to ����
noise (mean SNR = 6).

In case of unknown noise distribution, the method esti-
mates the noise variance first. From the eigenvalues of co-
variance matrix of actual data, a histogram of the eigenvalue
distribution is obtained, and this is compared with best pos-
sible theoretical density function given by Equation 2. The
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Figure 5. Estimated dataset preserves the ’Tri-
angular’ trend of original data.

variance corresponding to the best fit gives the estimation
of the noise variance.

To get the best estimation of variance, the algorithm es-
timates noise variance from the best fit curve several times.
In each trial , the variance estimation algorithm starts with a
very small variance value near zero, create the theoretically
generated distribution and measures the mean square error
between it and histogram of eigenvalues of actual data. It
then increases variance by a small value, again computes the
mean square error and compares it with the previous error
to get the minimum error and corresponding variance. The
algorithm does the said operation up-to a threshold value of
variance, and stores of the variance corresponding to min-
imum mean square error between theoretically generated
density function curve and histogram of eigenvalues of ac-
tual data.That value of variance is treated as the estimated
value of noise variance for that particular trial.In our exper-
iment, we used 100 such trials for each variance estimation.
After the set of estimates are calculated from all trials, the
distribution of estimated variances is checked for outliers in
them. The mean �� and standard deviation �� of the es-
timates are calculated , and values lying outside the span
�� 
 ��� are discarded. During each trial, if the algorithm
does not get best fit within a predefined threshold value of
variance, it stores that threshold value of variance as the es-
timation. These values are also treated as outliers at the end
and are discarded.

After discarding the outlier estimations, an average of
the rest of the estimates are taken to get the actual esti-
mate of noise variance. We have noticed that discarding
the outliers and taking average of the remaining number of
estimate improves the estimation accuracy to a large extent.
Figure 7 shows the theoretical density curve and distribu-
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Figure 6. A higher noise content (low SNR
)leads to less accurate estimation.SNR in up-
per figure is 1, while that for lower figure is
6.

tion of actual eigenvalues.The average over 100 estimates
gives an estimated variance of 0.66432 where the actual
noise variance is 0.68. Although not all the estimates are
always so close, on average, the difference between the es-
timated and the true variances always remained within 10%
of the actual variance in all our experiments.

Once the noise variance is estimated, the same technique
is applied as before to estimate the original data. Figure
8 shows the estimation of actual data of a relatively small
dataset with high SNR when distribution of noise is not
known. Figure 9 displays the distribution of eigen values.
The estimation of signal eigenvalues almost overlap with
dominant eigenvalues of the actual dataset.

7 Conclusion and Future Work

Preserving privacy in data mining activities is a very im-
portant issue. This paper illustrates a noise filtering tech-
nique by which true data values can be estimated from the
perturbed values (by random noise). This raises questions
against the claim of preserving privacy by perturbing data
with random numbers and disclosing the perturbed dataset
as well as the probability distribution of the random number
generator. The proposed approach works by comparing the
empirically observed eigenvalue distribution of the given
data with that of the known distribution of random matrices.
The theoretically known values of upper and lower limits of
the spectrum (eigenvalues) are used to identify the boundary
between the eigen-states due to noise and that of the actual
data.
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actual distribution of eigenvalues.

This random matrix based approach to separating the in-
formation bearing and noisy eigen-states has potential com-
putational advantages. Indeed, since the upper bound ��
�

of the noisy eigenvalues is known a priori, one can eas-
ily use a suitable numerical technique (e.g., power method
[10]) to compute just the few largest eigenvalues. Once
these eigenvalues and corresponding eigenvectors are com-
puted, one can obtain the actual-data-part of the covariance
matrix, which can be subtracted off from the total covari-
ance to isolate the noise-part of the covariance. The pro-
posed approach is simple, and retrieves actual data with rea-
sonable precision. For the datasets considered in this paper,
our experimental results support this claim. So, the method
of perturbing data with random number to hide their origi-
nal value is not a very reliable method to preserve privacy.

This work leaves open the problem of coming up with
methods which can actually preserve privacy without de-
stroying statistical properties of the original dataset. Data
mining application has the potential to reveal important
trends in real-life data and use those trends to predict for the
future. However a huge amount of sensitive dataset cannot
be used just for the sake of preserving privacy. So a reli-
able data perturbation technique is necessary to use those
sensitive datasets for data mining applications.
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