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Abstract

This paper offers a scalable and robust distributed algoritor decision tree induction in large
Peer-to-Peer (P2P) environments. Computing a decisianitresuch large distributed systems using
standard centralized algorithms can be very communicatiqgensive and impractical because of the
synchronization requirements. The problem becomes ever giwllenging in the distributed stream
monitoring scenario where the decision tree needs to beteghda response to changes in the data
distribution. This paper presents an alternate soluti@h works in a completely asynchronous manner
in distributed environments and suffers low communicatwarhead, a necessity for scalability. It also
seamlessly handles changes in data and node failures. Plee paesents extensive experimental results

to corroborate the theoretical claims.
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. INTRODUCTION

Decision tree [1][2] induction is a powerful statisticaldamachine learning tool widely used
for data classification, predictive modeling and more. Gigeset of learning examples (attribute
values and corresponding class labels) at a single logdhiere exist several well-known methods
to build a decision tree such as ID3 [1] and C4.5 [3]. Howetlegre can be several situations
in which the data is distributed over a large, dynamic nekwemntaining no special server or
client nodes such as Peer-to-Peer (P2P) networks. Perfgraaita mining tasks such as building
decision trees is very challenging in a P2P network becatigedarge number of data sources,
the asynchronous nature of the P2P networks, and dynamicenat the data. A scheme which
centralizes the network data is unscalable because angehanst be reported to the central
node, since it might very well alter the result.

To deal with this, we propose a P2P decision tree inductigoradhm in which every peer
learns and maintains the correct decision tree comparedctémiaalized scenario. Our algorithm
is highly scalable, completely decentralized and asynmabuwe and adapts to changes in the data
and the network. The efficiency of the algorithm guarantéed &s long as the decision tree
represents the data, the communication overhead is low wberpared to a broadcast-based

algorithm. As a result, the algorithm is highly scalable. &vtthe data distribution changes, the
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decision tree is updated automatically. Our work is the @fsts kind in the sense that it induces
decision trees in large P2P systems in a communicationesffiecnanner without the need for
global synchronization and the tree is the same that woulé baen induced given all the data
to all the peers.

The rest of the paper is organized as follows. In the nexi@e¢Bection Il) we present several
scenarios in which decision tree induction in large P2P agktwiis important for decision making.
Following in Section Ill, we discuss the work related to thiea of research. In Section IV
we present the distributed computation assumptions anc dmokground material necessary
to understand the P2P decision tree algorithm presentecedatio® V. We demonstrate the
performance of the algorithm through extensive experisi@mtSection VI. We conclude the

paper in Section VII.

II. MOTIVATION

P2P networks are quickly emerging as huge information syst& hrough networks such as
Kazaa, e-Mule, BitTorrents and more consumers can shateawasunts of data. While initial
consumer interest in P2P networks was focused on the valtieeadata, more recent research
such as P2P web community formation argues that the consumikigreatly benefit from the
knowledge locked in the data [4] [5].

For instance, music recommendations and sharing are todayiving industry [6][7] - a
sure sign of the value consumers have put on this applicatiowever, all existing systems
require that users submit their listening habits, eitheplieitly or implicitly, to centralized
processing. Such centralized processing can be problernatiause the service provider may
close down the service, or it can result in severe performdmattleneck. In 2003, Wolff et
al. [8] showed that centralized processing may not be a s#gdsy describing an algorithm
which computes association rules (and hence, recommendain-network; processing the data
in-network means that it is extremely difficult to shut theveee down. Later, Gilburd et al. [9]
showed that it is relatively easy, given an in-network kremge discovery algorithm, to produce
a similar algorithm which preserves the privacy of users imedl defined sense.

Another application which offers high value to the conswsmeffailure determination [10][11].
In failure determination, computer-log data which may hialation to the failure of software and

this data is later analyzed in effort to determine the redspthe failure. Data collection systems
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are today integral to both the Windows and Linux operatingfeays. Analysis is performed off-

line on a central site and often uses knowledge discoverfiadst Still, home users often choose
not to cooperate with current data collection systems lscthey fear for privacy and currently
there is no immediate benefit to the user for participatinghiea system. Collaborative data
mining for failure determination can be very useful in suckrgrios.

In the next section we present some work related to this areasearch.

[1l. RELATED WORK

Distributed data mining (DDM) deals with the problem of datelysis in environments with
distributed data, computing nodes, and users. This aresdeaisconsiderable amount of research
during the last decade. For an introduction to the arearasted readers are referred to the books
by Kargupta et al. [12] and [13]. P2P data mining has very mdgeemerged as a subfield of
DDM, specifically focusing on algorithms which are asynetoos, scalable and satisfy certain
other properties. Datta et al. [14] presents an overviewi® tbpic.

The work described in this paper relates to two main bodieeséarch: classification algo-

rithms and computation in large distributed systems al$ermed to as P2P systems.

A. Distributed Classification Algorithms

Classification is one of the classic problems of the datamgisind machine learning fields.
Researchers have proposed several solutions to this preblBayesian models [15], ID3 and
C4.5 decision trees [1][3], and SVMs [16] being just a tinyestéon. The solutions differ in
three major aspects — (1) how the search domain is represasteg an objective function, (2)
which algorithm is chosen to optimize the objective funefiand (3) how the work is distributed
for efficient searching through the entire space. The lggtgameter has two typical modes —
in some algorithms the learning examples are only used gluha search for a function (e.qg.,
in decision trees and SVMs) while in other they are also usethg the classification of new
samples (notably, in Bayesian classifiers).

Meta classifiers are another interesting group of classidicaalgorithms. In a meta classifi-
cation algorithm such as bagging [17] or boosting [18], mealagsifiers (of any of the previous

mentioned kinds) are first built on either samples or parigiof the training data. Then, those
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“weak” classifiers are combined using a second level algoritvhich can be as simple as taking
the majority of their outcomes for any new sample.

Some classification algorithms are better suited for aidiged set up. For instance, Stolfo et
el. [19] learn a weak classifier on every partition of the datad then centralize the classifiers
and a sample of the data. This can be a lot cheaper than mangféthe entire raw data. Then
the meta-classifier is deduced centrally from these datathAm suggestion, by Bar-Or et al.
[20] was to execute ID3 in a hierarchical network by centialj, for every node of the tree
and at each level, only statistics regarding the most prioguiattributes. These statistics can, as
the authors show, provide a proof that the selected at&rilsuindeed the one having the highest
gain — or otherwise trigger the algorithm to request furttatistics.

Caragea et al. [21] presented a decision tree inductiorriligofor both distributed homoge-
nous and heterogenous environments. Noting that the craxyflecision tree algorithm is the
use of an effective splitting criteria, the authors propaseethod by which this criteria can be
evaluated in a distributed fashion. More specifically thegrashows that by only centralizing
summary statistics from each site e.g., counts of instathassatisfy specific constraints on the
values of the attributes to one location, there can be hugegsin terms of communication
when compared to brute force centralization. Moreover,dis&ibuted decision tree induced is
the same compared to a centralized scenario. Their systavailble as part of the INDUS
system.

A different approach was taken by Giannella et al. [22] ande@I[23]. They used Gini
information gain as the impurity measure and showed thai Gétween two attributes can
be formulated as a dot product between two binary vectorscutodown the communication
complexity, the authors evaluated the dot product aftefjepting the vectors in a random
subspace. Instead of sending either the raw data or the krgey vectors, the distributed
sites communicate only these projected low-dimensionatovs. The paper shows that using
only 20% of the communication cost necessary to centrafieedata, they can build trees which
are at least 80% accurate compared to the trees producecdhtralzation.

A closely related topic is Multivariate Regression (MR) wiéhe output is real-valued instead
of categorical. Hershberger et al. [24] considered the |prolof computing a global MR in a
vertically partitioned data distribution scenario. Thehaus proposed a wavelet transform of the

data such that, after the transformation, the effect of tbescterms can be dealt with easily. The
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local MR models are then transported to the central site amcbmed to form the global MR
model. Several other techniques have been proposed fog disstributed MR using distributed
kernel regression such as by Guestrin et al. [25] and Preddl §26].

When the scale of the system grows to millions of partitiorzs-+ most modern P2P systems
— the algorithms above cease to function. Mostly this is bsedor such large scale systems,
no centralization of data, statistics, or models, is pcatt@ny longer. By the time such statistics
can be gathered, it is reasonable that both the data and stenshave changed to the point that
the model needs to be calculated again. Thus, classificatiB2P networks requires a different
breed of algorithms — ones that are fully decentralizednessonous and can cope well with

dynamically changing data.

B. Data Mining in Large Scale Distributed Systems

Previous work on data mining in P2P networks span three nypestof algorithms: best effort
heuristics, gossip and flooding based computations, andlsddocal algorithms. In a typical
best effort heuristic [27][28][5], peers sample data (gssome variations of graph random walk
as proposed in [29]) from their own partition and that of sal/aeighbors and then build a model
assuming that this data is representative of that of theeesét of peers. All these algorithms
can be classified as probabilistic approximate algorithimsesthe results of these algorithms are
correct only on average. On the contrary, deterministic@pmate algorithms for large scale
networks return the same result every time they are run. Riesrare the variational techniques
developed by Jaakkola and Jordan [30][31]. It poses the@naligproblem as an optimization
problem and aims to solve it. The search space is usuallyogppated to make the search
feasible. This makes it an approximate technique rather déimaexact one. Mukherjee et al. [32]
have developed a communication efficient algorithm for nefieing is sensor networks using
such a variational approximation technique. The paperidersheterogeneously data distributed
scenario where there is one node attribute per node and edehearns a probability distribution
of the hidden variables given the visible variables. It aitbssolve problems such as target
tracking, target classification etc. in wireless sensowagks.

Flooding algorithms, as their name hints, flood data (or cefiit statistics thereof) through
the entire network such that eventually every peer has thkee @& combined statistics) of the

entire network. Since flooding is too costly in the commonecastual algorithms usually use
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gossip — randomized flooding. In gossip, every peer sendstatsstics to a random peer. As

demonstrated by Kempe et al. [33] and Jelasity et al. [34]reetyaof aggregated statistics can

be computed in this way. Gossip algorithms provide prolgtitlguarantee for the accuracy of

their outcome. However, they can still be quite costly — reqg hundreds of messages per peer
for the computation of just one statistic.

Researchers have proposed several robust and efficiemitlatge for P2P systems commonly
termed as local algorithms in the literature such as assogiaule mining [8], facility location
[35], outlier detection [36], and meta-classification [8d¢scribed more thoroughly below). They
are data dependent distributed algorithms. However, istiblited setup data dependency means
that at certain conditions peer can cease to communicate omi¢ another and the algorithm
terminates with arexactresult (equal to that which would be computed given the erdata).
These conditions can occur after a peer collects the statist just few other peers. In such
cases, the overhead of every peer becomes independentzé¢hef the network (and generally
very low). Furthermore, these data dependent conditionsbearechecked every time the data,
or the system, changes. If the change is stationary (i.e.rébult of the computation remains
the same) then, very often, no communication needs to fotbange of data. This feature
makes local algorithms exceptionally suitable for P2P oetw (as well as for wireless sensor
networks). While the algorithms above assume the existeh@eecommunication tree to avoid
duplicate accounting of data (except in [36]) some work Hasavs that this assumption can
be dropped [38]. Lately, researchers have looked into treergsion of the local algorithm
complexity [39] and the description of generic local altfums which can be implemented for
a large family of functions [40].

The work most related to the one described in this paper iBisigibuted Plurality Algorithm
(DPV) by Ping et al. [37]. In that work, a meta classificatidgasithm is described in which
every peer computes a weak classifier on its own data. Thesk wlassifiers are merged into
a meta classifier by computing — per new sample — the majofithe outcomes of the weak
classifiers. The computation of weak classifiers requiresaromunication overhead at all, and
the majority is computed using an efficient local algorithm.

Our work is different from DPV in several ways: firstly, we cpuate an ID3-like decision tree
from the entire data (rather than many weak classifiers)aBse the entire data is used, smaller

sub-populations of the data stand a chance to gather galtisignificance and contribute to the
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model; therefore, we argue our algorithm can be, in generale accurate. Secondly, as proposed
in DPV, every peer needs to be aware of each new sample and@rtheir classification of

it. This mode of operation, which is somewhat reminiscenBayesian classification, requires
broadcasting new samples to all peers or limits the algoriih specific cases in which all peers
cooperate in classification of new samples (given to alletasn their private past experience.
In contrast, in our work, all peers jointly study the sameisiea tree. Then, when a peer is
given a new sample that sample can be classified with no comcation overhead at all. When
learning samples are few and new samples are in abundancalgawithm can be far more

efficient.

V. BACKGROUND
A. Distributed Computation Assumptions

Let S denote a collection of data tuples with class labels thabrizbntally distributed over
a large (undirected) network of machines (peers) whereah geeer communicates only with
its immediate neighbors (one hop neighbors) in the netwdhe communication network can
be thought of as a graph with vertices (pedrs)For any given peek € V, let N, denote the
immediate neighbors of. Peerk will only communicate directly with peers iv,.

Our goal is to develop a distributed algorithm under whicbheaode computes the decision
tree overS (the same tree at each node). However, the network is dynanthe sense that the
network topology can change (peers may enter or leave atiar®) br the data held by each
peer can change (henég the union of all peers data, can be thought of as time-vgragmwell
as the set of neighbot¥, for each peek). Our distributed algorithm is designed to seamlessly
adapt to network and data change in a communication-efficremner.

We assume that communication among neighboring peers iableland ordered and that
when a peer is disconnected or reconnected its neighkomaie informed,i.e. N, is known
to k£ and is updated automatically. These assumptions can dasignforced using standard
numbering and retransmission (in which messages are nechberdered and retransmitted if
an acknowledgement does not arrive in time), ordering, aaftibeat mechanisms. Moreover,
these assumptions are not uncommon and have been madeesiséwthe distributed algorithms
literature [41]. Khilar and Mahapatra [42] discuss the usdeartbeat mechanisms for failure

diagnosis in mobile ad-hoc networks.
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Furthermore, for simplicity, we assume that the networlotogy forms a tree. This allows us
to use a relatively simple distributed algorithm as our ddsiilding block: distributed majority
voting (more details later). We could get around this asgiongn one of two ways. (1) Liss
et al. [38], have developed an extended version of the distribmtegbrity voting algorithm
which does not require the assumption that the network tmgyolorms a tree. We could replace
our use of simple majority voting as a basic building blockhwthe extended version of Liss
et al. (2) The underlying tree communication topology could benteaned independently of
our algorithm using standard techniques like [41] (for wineetworks) or [43] (for wireless

networks).

B. Distributed Majority Voting

Our algorithm utilizes, as a building block, a variation bétdistributed algorithm fomajority
voting developed by Wolff and Schuster [8]. Each péec V contains a real numbe¥ and
the objective is to determine whethar= %", | 6 > 0.

The following algorithm meets this objective. For pekrg € V, let 5** denote the most recent
message (a real number) pgesent tol. Peerk computesA® = §* + 37, 6%, which can
be thought of ag’s estimate ofA based on all the information available. Péealso computes
AR = §k¢ 1 5% for each neighbof € N,. When an event at peér occurs,k will decide,
for each neighbot, whether a message need be sent.tAn event atk consists of one of the
following three situations: (i} is initialized (enters the network or otherwise begins catapjon
of the algorithm); (ii) & experiences a local data change or a change of its neighimhrq;
(i) u receives a message from a neighbor

The crux of the algorithm is in determining whénmust send a message to a neighbor
in response tdk detecting an event. More precisely, the question is whenaamessage be
avoided, despite the fact that the local knowledge has @vhndpon detecting an event, peer
k would send a message to neighldawhen either of the following two situations occurs: ki)
is initialized; (i) (A% > 0 A A > AF) v (A% < 0 A AF < A*) evaluates true. Observe that
since all events are local, the algorithm requires no fornglobal synchronization.

When k detects an event and the conditions above indicate that aagesnust be sent to
neighbor/, k sendsaA* — §% and sets)* to aAF — §% (thereby makingA** = aA*) where

« is a fixed parameter between 0 and l.olfwere set close to one, then small subsequent
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variations inA* will trigger more messages fromincreasing the communication overhead. On
the other hand, itr were set close to zero, the convergence rate of the algoatiutd be made
unacceptable slow. In all our experiments, we @db 0.5. This mechanism replicates the one
used by Wolffet al. in [40].

To avoid a message explosion, we implemeldaky bucketmechanism such that the interval
between messages sent by a peer does not become arbitraailly $his mechanism was also
used by Wolffet al. in [40]. Each peer logs the time when the last message was \841@n
a peer decides that a message need to be sent (to any of itdoesy it does the following.

If L time units has passed since the time the last message wast samtds the new message
right away. Otherwise, it buffers the message and sets a timé units after the registered
time the last message was sent. Once the timer expires diluffiered messages are sent. For
the remainder of the paper, we leave the leaky bucket mesmaimplicit in our distributed

algorithm descriptions.

V. P2P DecCISION TREE INDUCTION ALGORITHM

This section presents a distributed and asynchronousitiigoP?DT which induces a decision
tree over a P2P network in which every peer has a set of lega@xamples.P?DT, which is
inspired by ID3 and C4.5, aims to select at every node — staftom the root — the attribute
which will maximize a gain function; thenP?DT aims to split the node, and the learning
examples associated with it, into two new leaf nodes andgembdo split them recursively. A
stopping rule directs”?DT to stop this recursion. In this section a simple depth litiitais
used. Other, more complex predicates are described in {endjx.

The main computational task @f°DT is choosing the attribute having the highest gain among
all attributes. Similar to other distributed data miningaithms, P>DT needs to coordinate the
decision among the multiple peers. The main exceptiod¥BIT are that it stresses the efficiency
of decision making and the lack of synchronization. Theséuies make it exceptionally scalable
and therefore suitable for networks spanning millions cérpe

P2DT deviates from the standard decision tree induction algmstin the choice of a simpler
gain function — the misclassification error — rather thanrtteee popular (and, arguably, better)
information-gain and gini-index functions. Misclassitica error offers less distinction between

attributes: a split can have the same misclassification arrihese two seemingly different cases
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— (1) the erroneous examples are divided equally betweetwthidéeaves it creates or (2) if one
of these leaves is 100% accurate. Comparatively, bothnrdton-gain and gini-index would
prefer the latter case to the former. Still, the misclassifon error can yield accurate decision
trees (see, e.g., [44]) and its relative simplicity makefaiteasier to compute in a distributed
set-up.

In the interest of clarity, we divide the discussion of thgaaithm into two subsections:
Section V-A below describes an algorithm for the selectibthe attribute offering the lowest
misclassification error from amongst a large set of possdsl Next, Section V-B describes

how a collection of such decisions can be efficiently usechtluce a decision tree.

A. Splitting attribute choosing using the misclassificatgain function

1) Notations:Let S be a set of learning examples — each a vectditin }” x {0,1} — where

the first d entries of each example denote the attributés,. .., A%, and the addltlonal one

7

. . Zz
denotes the class. The cross table of attributd’ and the class is¢’ = % o wherez},
Tl T
is the number of examples in the sefor which A’ = 0 andC' = 1. We also define the indicator
, . . . 4 . . _ 1 x>0
variabless), = sign (z{, — zf;) and s} = sign (', — z';), with sign (z) = :
-1 <0

Assumingz{, is larger thanc, and A’ is indeed selected as the splitting attribute the outcome
is thatz{,, examples would be misclassified in the leaf associated Wetattribute valued’ = 0.
Conveniently, the overall number of misclassificationsiltasg from a split according tol’ can

be written |m60_m61| + |m30;m31|; thus avoiding the need to specify which class has the ntgjiori

every new Ieaf According to the misclassification gain fiorg the best attribute to split is thus

APt = arg m1n| 602 b + |x102 ol _ = argmin |z, — 2}, | + |2}, — z,|. Note that if A" = Abest
i€[1,d] i€[1,d] _ _ . .
then for anyA’ # A* C% = |z}, — aly| + |2 — oy | — |afy — ady| — |10 — #1,] is either zero
or less.
%

o !

In a distributed setup$ is partitioned inton setsS; throughsS,. X; = ~ % “*° would
Thio T

therefore denote the cross table of attrihdteand the class in the example skt Note thatr), =

> xi,oo andC"’ = > ['x;c,OO - xi,m} + X [%,10 - xis,ll - ‘ > [xk,oo - xk,Ol] ‘ -
k=1...n k=1...n =1..n k=1...n
‘ >> [#]10 — 7.1, |- Also, notice thatC*/ is not, in general, equal to>" [} oo — 2 o, | +
k=1..n k=1..n
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) 21: |2 10 — That| — ) > %00 — Thot| — ) 21: |7, 10 — 7.11]- Still, using the indicatorsj
and s| defined above we can writ€/ = sgk 21: [2h00 — Tho1] + sik 21: [2h10 — Th11] —

sgk ; [].00 — @4 01] — s{k ; [].10 — @4.1,] Which can be rewritten as

CH = . 21: (36 [xi;,oo - xi;,m] + s [%,10 - xi,n} - Sé [xi:,oo - xi,m} - 3{ [%,10 - xi,nD;

This last expression, in turn, is simply a sum — across alrgpeeof a numbers;’ =
st [#ho0 = ko] + 51 [2h10 = Th11] = 50 [#.00 — Thot] — 1 [#4,10 — 24,11] Which can be com-
puted independently by each peer, assuming it knows thesalfithe indicators. Finally, denote
67 |abed the value ofd;” assumings = a, st = b, s) = ¢, ands] = d. Notice that, unlikey;”,
6,? labed can be computed independently by every peer, regardles® @fdtual values of), s¢,
s, ands].

It is therefore possible to comput&<s’ by concurrently running the following set of majority
votes: two per attributed’, with inputsz}, — =, andz!, — z!,, to compute the values of,
and si; and one for every per of attributes and every possible coation of s}, s/, s}, and
s]. Given the results fos, ands’, one could select the right combination and ignore the other
Then, given all of the selected votes, one could find thebaittei whose misclasification error
is lower than that of any other attribute. Below, we descabealgorithm which performs the
same computation far more efficiently.

2) P2P Misclassification MinimizationThe P2P Misclassification MinimizatioR?MM algo-
rithm, Algorithm 1, aims to solve two problems concurrenityvill decide which of the attributes
A' through A¢ is Abst while at the same time compute the true valueipaind si. The general
framework of theP?MM algorithm is that of pivoting: it assumes a certalihis A*** and follows
to validate the assumption. If the assumption is true theis reported. Otherwise, the revocation
of the assumption provides an evidence: one or more atbsthave lower misclassification error
than A’. The algorithm then follows by naming one of these attributé*s* and comparing it
to all other. To provide the input to those comparisons, gsedT computeé,i’j\abcd relying on
the current ad-hoc value af, s¢, s, ands]. The ad-hoc values peércomputes fors), and s’
will be denoteds; , and s} ,, respectively. To make sure those ad hoc results convergjeeto
correct value, two additional majority votes are carried @itribute concurrent to those of the

pivoting; in these, the inputs of peérare =, — =, andz}, — x%,, respectively.
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The P?MM algorithm works in streaming mode: Every péetakes two inputs — the set of its
neighborsN, and a setS, of learning examples. Those inputs may (and often do) change
time and the algorithm responds to every such change by tadju$s output and by possibly
sending messages. Similarly, messages stream in to theapéecan influence both the output
and the outgoing messages. The output of geirthe attribute it computes to be the one with
the smallest misclassification error. This output, by ratad-hoc and may change in response
to any of the events described above.

P2MM is based on a large number of instances of the distributedrityajoting algorithm
described earlier in Section IV-B. On initializatio??MM invokes two instances of majority
voting per attribute to determine the values s§fand s; M and M| denote these majority
votes. For each peék, its inputs to these votes (instances) a.o, = zj o — 7}, and
M{.0p = xj, 1 — .1, Additionally, for every pairi < j € [1...d] P*MM initializes sixteen
instances of majority voting — one for each possible contiwnaof values fors{, s¢, sg, ands].
Those instances are denoted b/}’ , with abed referring to the combination of values fef,

s}, s}, ands{. For each peek, its inputs to these instances a¥€;,,.5, = a [2} o — 7} 1] +
b [%,10 - xi,n} - [xi,oo - xi,m} —d [93?;,10 - xi,n}-

Following initialization, the algorithm is event based.cBapeerk is idle unless there is a
change inV, or S, or an incoming message changes fyeof one of the instances of majority
voting. On such event, the simple solution would be to chbekconditions for sending messages
in any of the majority votes. However, as shown by [45][37%]gting can be used to reduce the
number of condition checked fro (d?) to an expected)(d). Thus, P2MM chooses as pivot
the attribute with the largest/*.A, , — as suggested in [37] and tests the conditions for sending
messages in the context of any majority voting which conmgpéne pivot to other attributes. If
the test for anyM*/ fails, M*“/.A,, needs to be modified by sending a messagé t8°MM
does this by sending a message which will 38t7.A, , to aM™.A;, (o is set tol by default),
which is in line with the findings of [40].

Notice M’/ .6, = —M"_, .5 and thus half of the comparisons actually replicate the
other half and can be avoided. This optimization is avoidedhie pseudocode in order to
maintain conciseness. Also notice that while the peer dasogpdates in the context of any of
the majority votesM’/ . it will only respond with a message for the majority vat&/ — the

instance witha, b, ¢, andd equal tos;, , s}, ;, Si,o’ ands{:’l, respectively. The rest of the instances
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are, in effect, ‘suspended’ and cause no communicatiorheael.

Algorithm 1 P2P Misclassification MinimizationF¢MM)

Input variables of peer k: the set of neighbors &/, the set of examples Sy
Output variables of peer k: the attributeAr®e!

Initialization:

. For everyA’in A' ... A% initialize two instances of LSD-Majority with inputs;, o, — =} o,
andzj, ,, — j,,,. Denote these instancéd; and M| respectively, and let and let/;. A,
and M(Ay.,, and M;.A, and MjA,, be their knowledge and agreement.

. For everya,b,c,d € {—1,1} and everyA’ A’ € [Al...Ad} initialize an instance of
LSD-Majority with input &;7|abcd. Denote these instanced’/ , and let M’ .A, and
Mé’bjchW be the knowledge and agreement of thé’ instance, respectively. Specifically
denote)M™7. A, and M* A, the instance withs, b, ¢, andd equal tos, ,, s, 7o, and
s,.1, respectively.

On any event:

. ForAi e {A'... A"} and everyl € N,

—If Mé-Ak,Z < MéAk <0or Mé-Ak,Z > MéAk > 0 call Send (Mé,g)
— |If Mf.Ak’g < M{Ak < 0or M{-.Ak’g > M{Ak > 0 call Send (Mf,g)
« Do

— Let pivot = M7 Ay, —M5™ A
PLvO argién[ﬁi:ﬂ {22%}: { ket ke}}

— For A" € {A' ... Apot=1} and everyl € N,
« If not MuPvot Ay < MUPOt Ay, < 0 and notM Pet Ay > MEPot Ay, > 0 call
Send (M"Pvot ¢)
— For A" € {Arvortl A%l and everyl € N,
« If not MPwett Ay < MPPoLt Ay, < 0 and notMPobt Ay > MPokt Ay, > 0 call
Send (MP™et ¢)
« While pivot changes
On messag€(id, §) from ¢:

« Let M be a majority voting instance with/.id = id
. SetM.(Sg,k to o

Procedure SendM, /):
o M.bpp=aM.Ay+ M.y
« Send tol (M.id, M.oy)

a) Proof Sketch:To see whyP?MM convergence is guaranteed, first notice that eventual
correctness of each of the majority votg#& and M| is guaranteed because the condition for
sending messages is checked for every one of them each texdath changes or a message is
received. Next, consider two neighbor peers who chooserdift pivots, peek which selects

i and peer/ which selects;. Since bothk and ¢ will check the condition ofA/%/, and since
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M" A, = M™.A,y at least one of them would have to change its pivot. Thus,spext
continue to change their pivot until they all agree on the esgivot. To see that peers will
converge to the decision that the pivot is the attribute Wit minimal misclassification error
(denote itA™), assume they converge on another pivot. Since the condifiz’otes comparing
the Ariv°! to any other attribute is checked whenever the data chaitgissguarantee that if
m < pivot then M™?P°t A , will eventually be larger than zero for all and ¢ € N, and if
pivot < m then M™Pwot A, , > 0 for all k£ and?¢ € N,. Thus, the algorithm will replace the
pivot with eitherm or another attribute, but would not be able to converge orctimeent pivot.
This completes the proof of the correct convergence of RARIM algorithm. |
b) Complexity: The P2MM algorithm compares the attributes in an asynchronousdashi

and outputs the best attribute. Consider the case of congpanly two attributes. The worst
case communication complexity of th@*?MM algorithm is Ogize of the netwodk This can
happen when the misclassification gains of the two attrébate very close. Since our algorithm
is eventually correct, the data will need to be propagateduthh the entire network i.e. all
the peers will need to communicate to find the correct ansiers the overall communication
complexity of theP?MM algorithm, in the worst case, is €i¢e of the netwoik Similarly, the
worst case running time of th®2MM algorithm is O¢liameter of the netwojk Now if the
misclassification gains of the two attributes are not veogel(which is often the case for most
datasets), the algorithm is not global; rather fffdIM algorithm can prune many messages as
shown by our extensive experimental results. Finally fdating the complexity of such data
dependent algorithms in terms of the complexity of the da@big open research issue even for
simple primitives such as majority voting protocol [8], Veaaside the compleR?MM algorithm
presented in this paper.

Figure 1 demonstrates how two attributésand A; are compared by two peer3, and F.
At time t,, the peers initialize all the sixteen vota$’; = along with the votes for the indicator
variables. At time, the values of the indicator variables dre 1,1, —1} for P,. Hence it only
sends messages corresponding to the vdté . All the rest fifteen votes are in a suspended
state. Similarly the figure shows the suspended voteg’fat timet,. Finally it depicts that at
time ¢4, the peers converge to the same vote which is not suspendedi/{i,, ;.

Figure 2 shows the pivot selection process for three atetod,, A, and A; for peer P,

having two neighborg’ and P,,. Snapshot 1 shows the knowledgg,j and agreements a?,
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Time tg: Initialization

Vote  Sio  Ska Sk Ska
M7, 1 1 1 1
MY, 11 1 -1
MY, 1 1 -1 1
My ,, 1 1 -1 -

— Ad-hoc output of:
{8k,00 Sh1> Si,m Si,l}:{lrl'lvj}
—» Ad-hoc vote not suspended?|},, i.e.
[z(i)o - 161] + [110 - 111] - [z{m - 1%1] - [IJIO - zjn] >0

— \otes suspended: all the other 15 votes

Time t1: Event
— Ad-hoc output of:
{S?c,()v S?c,lv Si,ov Si,l}:{lrlvlv']}
—> Ad-hoc vote not suspendedf|{, | ie.
[z(i)o - 161] + [110 - 111] - [z{m - 1%1] + [“"”]10 - “"”]11] >0

— \otes suspended: all the other 15 votes

Time t4: Event
— Ad-hoc output of:
{5?@,01 5?@,11 Si,m Sf;’l}={l,l,—l,—1}
— Ad-hoc vote not suspendeds;{ | | i.e.
[zéo - 161] + [zio - 111] + [z{)o - z{n] + [zjlo - “"”]11] >0

— \lotes suspended: all the other 15 votes

Time tg: Initialization

Vote  sjo  Spy Sp0 S
My, 1 1 1 1
MY, 1 1 1 -1
MY, 1 1 -1 1
My, , 1 1 -1 -1

— Ad-hoc output of:
{st,07 56,15 Sz,ov Si,l}:{l"lrl']}
—» Ad-hoc vote not suspended?i/, | ie.
[f”(i)o - 161] - [Z?Lo - 111] - [z{m - z{n] - [“"”]10 - zjn] >0

— \otes suspended: all the other 15 votes

Time to: Event
— Ad-hoc output of:
{527,01 52,11 Sz,ov Si,l}:{lr'lrlv'-‘]}
— Ad-hoc vote not suspended?i7,, | ie.
[z(j;o - z{n] + [“"”]10 - “"”]11] >0

— \otes suspended: all the other 15 votes

[100 - 101] - [110 - 111] -

Time t4: Event
— Ad-hoc output of:
{5201 5211 Sz,ov Si,l}:{l'lfl"J}
— Ad-hoc vote not suspended?(y | | ie.
[f”(i)o - 1(1)1] + [zio - 111] + [1%0 - 1%1] + [“"”]10 - zjn] >0

— \otes suspended: all the other 15 votes

10

Fig. 1. Comparison of two attributed; and A; for two peersP;, and P,. The figure also shows some example values of the
indicator variables and the suspended/not suspended woesch case.

(Ax, and Ay ,,,) for the three attributes. Since pivot is the highest agerem,, is selected as
the pivot. Now there is a disagreement betwegnand Ay, for A;,. This results in a message
and subsequent reevaluationdf , (to be set equal td\;). In the next snapshot}; is selected
as the pivot and sincé&;, < A, no message needs to be sent.
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Plvot PIVOt

After message sent A A
to Pg

AV AV Ak Ayt

T_T t ¢

Message condition violated Message condition not violated
betweenPy, and P, since betweenPy, and P,
Ape > 0N AR e > Ay

Snapshot 1 Snapshot 2

Fig. 2. The pivot selection process and how the best aterilsuselected. The blue rectangles represent the pivot htreaad.
The yellow one is the best attribute.

Comment: The P?2MM algorithm above utilizes the assumption the the data at edrp
in boolean (attributes and class labels). The boolearbatés assumption can be relaxed to
arbitrary categorial data at the expense of increased ityajmting instances per attribute pair
(the number of instances increases exponentially with tiraber of distinct attribute values).
Another approach to relaxing the boolean attributes assampould be to treat each attribute
distinct value as its own boolean attribute. As a resultheztegorical attribute withr distinct
values is treated as boolean attributes. Here, the number of majority votindanses per pair
of attributes increases only linearly with the number oftidit attribute values. However, the
issue of deciding which attribute has lower misclassifaragrror on the basis of the associated

boolean attributes is not entirely clear and is the subjédtitoire work.

B. Speculative decision tree induction

P2MM can be used to decide which attribute would best divide angset of learning
examples. It is well known that decision trees can be indbgedcursively and greedily dividing
a set of learning examples — starting from the root and paingeonwards with every node of

the tree (e.g., ID3 and C4.5 algorithms [1][3]). In a P2Pwgethe progression of the algorithm
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needs to be coordinated among all peers, or they might endeuplaping different trees. In
smaller scale distributed systems, occasional synchatarz usually addresses coordination.
However, since a peer to peer system is too large to syncapwie prefer speculation [46].

The starting point of tree development — the root — is knowaltgeers. Thus, they can all
initialize P2MM to find out which attribute best splits the example set of tha.rHowever, the
peers are only guaranteed to converge to the same attriblgetion eventually and may well
choose different attributes intermediately. Several toes thus arise: How and when should
the algorithm commit resources to a specific split of a nodeatvehould be done if such split
appears to be wrong after resources were committed and Wwbalkdsbe done about incoherence
between neighboring peers?

The P2P Decision Tree Inductiof’{DT]I, see Alg. 2) algorithm has two main functionalities.
Firstly, it manages the ad hoc solution which is a decisi@e tcomposed o#ctive nodes.
The root is always active and so is any node whose parent isegatovided that the node
corresponds with one of the values of the attribute which bglits its parent’s examples —i.e.,
the ad hoc solution of”?MM as computed by the parent. The rest of the nodesnacive A
node (or a whole subtree) can become inactive because #éatpar fore-parent) have changed
its preference for splitting attribute. Inactive nodes ao¢ discarded; a peer may well accept
messages intended to inactive nodes — either because doeminsiders then active or because
the message was delayed by the network. Such message widulghgate the majority voting
to which it is intended. However, peers never send messagesting from an inactive node.
Instead, they check, whenever a peer becomes active, whhtre are pending messages (i.e.,
majority votes whose test require sending messages) amdtifey send the message.

Another activity which occurs in active nodes is further elepment of the tree. Each time a
leaf it is generated it is inserted into a queue. Once evetiyne units, the peer takes the first
active leaf in the queue and develops it according to the adrésult of P2MM for that leaf.
Inactive leaves which precede this leaf in the queue araeseried at the end of the queue.

Last, it may happen that a peer receives a message in thextohta node it had note yet
developed. Such messages are stored inti@f-contextjueue. Whenever a new leaf is created,
the out-of-context queue is searched and messages pegtamthe new leaf are accepted.

A high level overview of the speculative decision tree ingut process is shown in Figure

3. Filled rectangles represent newly created nodes. Thesfiegoshot shows the creation of the
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Algorithm 2 P2P Decision Tree InductionP¢DTI)

Input: S — a set of learning examples,— mitigation delay
Initialization:

Create a root leaf and levot.S < S. Setnodes < {root}. Pushroot to queue
Send BRANCH message to self with delay
On BRANCH message:

Send BRANCH message to self with delay

For @ < 0, ¢ < null; i < queue.length and not activgl); i++)
Pop head of queue into
If not activg?)

enqueue’
If active(/)
Let A’ be the ad-hoc solution aP>?MM for ¢
call Branch(?, j)
On data messagen, data):
If n & nodes

store (n, data) in out — of — context
Else

Transfer thedata to the P2MM instance ofn
If active(n) then
Processn)
Procedure Active(n):
If n = null or n = root
return true
Let A7 be the ad-hoc solution faP?MM for n.parent

If n & n.parent.sons [j]
return false

Return Activén.parent)
Procedure Proces&):
Perform tests required b#?MM for n and send any resulting messages
Let A’ be the ad-hoc solution faP?MM for n
If n.sons|[j] is not empty
for eachm € n.sons [j]
call Procesgn)
Else
pushn to the tail of the queue
Procedure Branch(/, , j):
Create two new leave and/;
Setly.parent «— ¢, {1.parent «— /¢

Setly.S —{se€l.S:s[j]=0}and(,.5 — {se€l.S:s[j|=1}

Remove fromout — of — context messages intended féf and/; and deliver the data to the
respective instance dP?MM

Setl.sons [j| = {lo, {1}, add/y, ¢, to nodes and push, and/, to the tail of the queue
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root with A; as the best attribute. The root is split in the next snapdbtigwed by further
development of the left path. The fourth snapshot shows Hwvroot is changed to a new
attribute A, and the entire tree rooted a; is made inactive (yellow part). Finally as time
progresses, the tree rooted 4t is further developed. If it so happens th&t now becomes
better thanA,, the old inactive tree will now become active and the treetadaat A, will

become inactive.

e
Aav| || — [Al ] o/ \1
] -] \

[
= TN L N

[A3 J [A5 ] 1 RightChild
:

0
LeftChild RightChild
(2] [ »

LeftChild  RightChild

n e
A R A

As | As J Ay o As
LeftChild  RightChild
% K o/ |1 ol \1 % x 9
Ag Az Ag Az
LeftChild  RightChild LeftChild  RightChild

Inactive / Inactive

[Label=0] [Labei=1] [ Lavel=1] | Label=]

Fig. 3. Figure showing how the speculative decision treaiikllby a peer. Filled rectangles represent the newly cceateles.

In the first snapshot the root is just created with as the current best attribute. The root is split into twodrieih in the second
snapshot. The third snapshot shows further developmenteflty splitting the left child. In the fourth snapshot, tteepgets
convinced thatd, is the best attribute corresponding to the root. Earliex tsemade inactive and a new tree is developed with
split at A,. Fifth snapshot shows the leaf label assignments.
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VI. EXPERIMENTS

To validate the performance of our decision tree algorithwve, conducted experiments on
a simulated network of peers. In this section we discuss xiperenental setup, measurement

metric and the performance of the algorithm.

A. Experimental Setup

Our implementation makes use of the Distributed Data Minioglkit (DDMT) [47] which
is a JADE-LEAP based event simulator developed by the DIABd§earch lab at UMBC. The
topology is generated using BRITE [48] — an open softwaregfarerating network topologies.
We have used thBarabasi Albert (BA)Jmodel in BRITE since it is often considered a reason-
able model for the Internet. We use the edge delays definedAim®Bthe basis for our time

measuremenht On top of each network generated by BRITE, we overlayed arspg tree.

B. Data Generation

The input data of a peer is generated using the scheme ppysPomingos and Hulten
[49]. Each input data point is a vector {i), 1}d x {0,1}. The data generator is a random tree
built as follows. At each level of the tree, an attribute ikested randomly and made an internal
node of the tree with the only restriction that attributes aot repeated along the same path.
After the tree is built up to a depth of 3, a node is randomly enadeaf with a probability
of p along with a randomly generated label. We limit the depthhef tree to maximum 6, and
make all the non-leaf nodes a leaf (with random labels) diftexceeds that depth. Whenever a
peer needs an additional point, it generates a random viectbe d-dimensional space and then
passes it through the tree. The label it gets assigned tcsftrenclass label for that input vector.
This forms noise-free input vectors. In order to add noike, lits of the vectors (including the
class label) are flipped with a certain probability. Therefa% noise means that each bit of
the input vector is flipped witm% chance and the new value of that bit is chosen uniformly
from all the possibilities (including the original valuejhe data generator is changed every
5 x 10° simulator ticks, thereby creating an epoch. A typical eikpent consists of 10 equal

length epochs In addition, throughout the experiment wengbal0% data of each peer after

IWall time is meaningless when simulating thousands of cderplon a single PC.
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every 1000 clock ticks. Therefore, in all our experimentsréhare two levels of data change
— (1) stationary change when we sample from the same datébdigin every 1000 simulator
ticks, and (2) dynamic change when the data distributiomghsa after every x 10° simulator

ticks.

C. Measurement Metric

The two measurements of our algorithm are tfuelity of the result and theostincurred.

Given a test dataset to each peer, generated from the satributisn as the local dataset,
quality is measured in terms of the percentage of corredélysified tuples of this test set. We
report both thestationary accuracywhich refers to the accuracy measured during the last 80%
of the epochs and theverall accuracy Each quality graph in Figures 5, 6, 7, 8, 9 and 10 reports
two quantities — (1) the average quality over all peers, dlohs and 10 independent trials (the
center markers) and (2) the standard deviation over 10 gmtgnt trials (error bars).

For measuring the cost of the algorithm we report two quiastitnormalized messageent
and normalized bytegransferred. Our measurement metric for the normalizedsages is the
number of messages sent by each peer per unit of leaky buckEor an algorithm whose
communication model is broadcast, its normalized messag&sconsidering 2 neighbors on an
average per peer. We report both the overall messages amdaii¢oring messages; the latter
refers to the “wasted effort” of the algorithm. For a giveméi instance, if a peer needs to sénd
separate messages corresponding to different majorigsuot one particular peer, it is counted
as one message to that neighbor.

Similarly, to understand the actual communication ovedhefaour algorithm in terms of the
number of bytes sent, we report both ttxeerall and monitoring bytes transferred, per unit of
L. In every raw message the distributed algorithm sends 5 etsnbthe data of the vote, the id
of the vote, the id of the attributes which this vote correxjmoto, the path of the tree and the
maximum pivot. Considering the above example, the numbéytds sent i$ « & per neighbor.
As before, for a broadcast based algorithm, having an at&ibross-table with four entries (2
values and 2 classes), its bytes sent wouldnbeof attributesx4 x 2. The factor of two is
assuming 2 neighbors per peer. For example, with 10 ateéshihe number of bytes sent per
is 80. Similar to what we did for quality, we have plotted btk average cost and the standard

deviation of the result over 10 independent trials.
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There are three parameters of tRéDTI algorithm that we have explored — (1) the number
of local tuples or the size of the local datasgf], (2) the depth of the induced tree, and (3) the
size of the leaky buckef. The measurement points for the local data points per peeR%0,
500, 1000, 2000 and 4000. For the depth of tree, we used vafugs3, 4, 5 and 7 while we
varied L among 1000, 2000, 3000 and 4000. The valued @fre in simulator ticks where the
average edge delay is about 1100 time units.

The data generator had two parameters — (1) noise in the datd\between 0%, 5%, 10%
and 20%, and (2) number of attributes (10, 15, and 20).

Finally, as a system parameter we varied the number of pears 50 to 1500.

Unless otherwise stated, we have used the following defalltes:|S;| = 500, depth of the
tree = 3, noise =10%, number of attributes = 10, number of peers = 1000, ane- 1000
(where the average edge delay is about 1100 time units). ithdee values, for a broadcast
algorithm, the number of normalized messages is 2 while thmeber of normalized bytes is
10 x 4 x 2 = &0.

In all our experiments we have observed the following phegrwon. As soon as the epoch
changes, the accuracy of the algorithm goes down and the oamoation increases since the
algorithm adapts to the new distribution. As soon as theidigion becomes stable, the message
overhead reduces and the accuracy improves. To take ndtespfve have plotted both the overall
and stationary behavior of the algorithm with respect todiferent parameters.

In the next section we first present the accuracy of RRBTI compared to a standard decision
tree algorithm. Following, we present the performance efRDTI algorithm on the different

parameters.

D. Performance Evaluation

1) Accuracy of P2DTI on Centralized DatasetThe proposed distributed decision tree algo-
rithm P2DTI deviates from the standard decision tree induction algariin two major ways:
(1) instead of using entropy or gini-index as the splittingecia, we have used misclassification
error, and (2) as a stopping rule, we have limited the deptlowftrees (which effects the
communication complexity of our distributed algorithm as show later).

In this section we report the results of the comparisoRdd T algorithm to that of an off-the-

shelf entropy-based pruned decision tree J48 implement®édeka [50] on a centralized dataset.
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(a) Depth of P2DTI = 3. (b) Depth of P?DTI = 5. (c) Depth of P2DTI = 7.

Fig. 4. Comparison of accuracy (using 10-fold cross vaiimBtof J48 weka tree ané#>DTI on centralized dataset. The three
graphs correspond to depths of 3, 5 and 7P3DTI.

There are 500 tuples and 10 attributes in the centralizedsdatgenerated using the scheme
discussed in Section VI-B. We have varied the noise in tha dahging from 0% to 20%.

For both the trees, the accuracy is measured using 10-folsk aralidation. Figure 4 presents
the comparative study. The red circles correspond to tharacg of J48 and the blue squares

correspond to the accuracy 6£DTI. These set of results point out some important facts:

1) In most case$2DTI results in a loss of accuracy over J48. This is not unexpestieco
the restrictive nature of the decision tree induction athaor employed. But the accuracy
loss is modest. Moreover, due to the heavy communicationsgndhronization cost of
centralizing and applying J48, this modest loss of accusm®ms quite reasonable.

2) The decrease in accuracy BfDTI when going to depth 7 at high noise levels is likely
due to over-fitting (for the reasons already discussed. Tssiple reason is overfitting —
for depth of 3 the average number of tuples per leaf is 56 coeapsp only 3 tuples per
leaf for depth of 7.

Since limiting the depth affects the communication comipyegf our distributed algorithm,
we will use depths of 3, as it produces quite accurate treealfmoise levels.

2) Scalability: Our first set of results demonstrate the scalability of f/DTI algorithm
as the number of peers is varied from 50 to 1500. The numbereefsphas no effect on
the performance as we see in Figure 5. In Figure 5(a), botltkeall and stationary accuracy
converges to a constant as the number of peers is increasadalzed messages and normalized
bytes transferred, as shown in Figures 5(b) and 5(c), clsangiey slowly and almost remains a

constant as the number of peers is increased. Since ouithlgaelies on some data dependent
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rules to prune messages, the total number of peers haselitdet on the quality or the cost.
Hence the algorithm is highly scalable. Note that for an algm which broadcasts sufficient
statistics to maintain the trees the normalized messagks@malized bytes transferred would

be 2 and 80 respectively. Our results show a significant ingrent.

80 » 11 18,
81.05 } }
RTINS S N I A0
> a m 16
2 20.95 %
s 76 > Stationary = 3 > Stationary/
3 - 0.9 N 15
874 ¢ Overall 9] % = ¢ Overall
< =085 % €14
[ £
£ os . st b b
72 50.75 >Stationary Z13
70 z '07 ¢ Overall 1
50 200 500 1000 1500 ""50 200 500 1000 1500 50 200 500 1000 1500
Number of peers Number of peers Number of peers

(a) Quality vs. number of peers. (b) Normalized messages vs. number(of Normalized bytes transferred vs. num-
peers. ber of peers.

Fig. 5. Dependence of the quality and cost of the decisiom atgorithm on the number of peers.

3) Data Tuples per Peerin this section we have experimented with the first algorithm
parameter — the number of tuples in the local dataSgt Figure 6 summarizes the results.
Stationary accuracy increases from 72% to 85%, stationassages decrease from 1.21 to 0.32
and stationary bytes reduce from 20.9 to 4.24 as the sizeeolottal dataset is increased from
250 tuples per peer to 4000 tuples per peer. This is true sifitteincreasing|S;|, the global
tree is induced on a larger dataset, leading to better acgukdoreover, with increasings;|,
the algorithm can capture more variability in the distribat(since the majority votes are run
on a larger dataset) leading to lower communication. Everife smallest dataset size of 250,
the normalized messages is 1.21 and the stationary byte®9s l2oth are far less than 2 and
80 respectively considering the broadcast algorithm.

4) Depth of Tree:As pointed out in Section VI-D.1, depth of the decision treduced by
the P2DTI algorithm affects the cost of the algorithm. In this sectiae validate this result.
The experimental results are shown in Figure 7. As shown effect of the depth is more
pronounced on the communication than on the quality of tilsellteAccuracy increases from
72% to 81% as the depth is increased from 2 to 5. However forpéhdef 7, the accuracy of
the P2DTI decreases by 2% compared to a depth of 5. The reason for thi®ifitting of the

domain. As the depth is increased, there is potentially niesefor every majority vote leading
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Fig. 6. Dependence of the quality and cost of the decisiom atgorithm on|.S;]|.

to a message explosion. As the depth is increased from 2 tee&tationary messages increase
from 0.71 to 1.56. The stationary bytes goes up to 58.71, fode@h of 7.

Although the induced tree of depth 5 is around 3% more aceutan the tree of depth 3,
we have used trees of depth 3 in all as a baseline. This is becauree of depth 3 has far
lower communication overhead than a tree of depth 5 (0.8tnhaliwed messages for depth of

3 compared to 1.19 normalized messages for depth of 5).
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(a) Quality vs. depth of the tree.

N

4 5
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3 4 5
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(b) Normalized messages vs. depth of {fe@ Normalized bytes transferred vs. depth

tree.

of the tree.

Fig. 7. Dependence of the quality and cost of the decisiom atgorithm on the depth of the induced tree.

5) Size of Leaky Buckeifhe last algorithm parameter that we have experimented iwiithe

leaky bucket mechanism. In this section we present the teffethe size of the leaky bucket

|L| on the accuracy and the cost of tféDTI algorithm. Figure 8 summarizes the effect. As

shown in Figure 8(a), the stationary accuracy remains eohstven as the size of the leaky

bucket is made twice or thrice of the edge delay (which is hbyid100 time units). The overall
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quality degrades. This is exactly what we expect.|Akis increased, for every epoch change,
the algorithm takes more time to converge, thereby carrinagcurate results for a longer time.
For this reason the overall accuracy degrades. Howevee tive algorithm adapts to the new
distribution, a small number of messages is sufficient tonta& correctness. This is why the
leaky bucket has no effect on the stationary accuracy. @onto the quality, the cost reduces
drastically, from 0.98 stationary messages per peeffr500 to 0.71 for| L|=4000. Similar is

the trend for the bytes transferred.

1.4
80 a >Stationary 19 % > Stationary,
(=] [%]
t % b % £10 %, o Overall 817 % o Overall

7o 3 @
g { s % 515 %
370 %‘ B % % N13
g N @
< %’ 'T0.8 E11 % % %

65/[> Stationary, % % } 29 }

60 [©Overall | Z06 ;

500 1000 200(|)_ 4000 500 1000 200|0L | 3000 4000 500 1000 200|0L | 3000 4000
(a) Quality vs. size ofL]. (b) Normalized messages vs. size|@f. (c) Normalized bytes transferred vs. size

of |L|.

Fig. 8. Dependence of the quality and cost of the decisiom atgorithm on the size of the leaky bucket.

6) Noise in Data:In this section we vary one of the data parameters — noiseh@sise in
the data is increased from 0% to 20%, quality degrades andremeases. This is demonstrated
in Figures 9. In Figure 9(a), the stationary accuracy dea®fom 83% to approximately 75%.
The stationary messages increase from 0.52 to 1.24 andretati bytes increase from 9.43 to
17.89 as demonstrated in Figures 9(b) and 9(c) respectiMely happens because with increasing
noise, every comparison consumes more resources to déeideetter one and this decision can
often get flipped every time the data changes. As a resultgtiadity degrades and the cost
increases. The important observation here is that evernéhighest noise, the number of bytes
transferred is 17.89, far less than the maximal allowabie o4 80.

7) Number of AttributesThe last parameter we varied is the number of attributes. &ve h
measured the effect in three different ways — (1) increasiveg number of attributes while
keeping the #tuples constant (Figures 10(a), 10(b) and)10@) increasing the number of
attributes while increasing the #tuples linearly with thetti#butes (Figures 10(d), 10(e) and

10(f)), and (3) increasing the number of attributes whileréasing the #tuples linearly with the
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Fig. 9. Dependence of the quality and cost of the decisiom atgorithm on noise in the data.

size of the domain (Figures 10(g), 10(h) and 10(i)).

As the number of the attributes is increased keeping the eurobtuples constant (at 500
tuples per peer), the stationary accuracy decreases frémt@33% (Figure 10(a)). Similarly
Figures 10(b) and 10(c) demonstrate that the normalizedsages increase from 0.9 to 1.25
and the normalized bytes increase from approximately 172toN®te that for the number of
attributes=10, 15 and 20, the maximal bytes transferredafbroadcast-based algorithm is 80,
120 and 160 respectively.

The second set of Figures 10(d), 10(e) and 10(f) show thetedfethe number of attributes as
the number of tuples is increased linearly with the numbeatofbutes (such that, #tuplesix
#attributes. For 10 attributes we have used 500 data tuplepger. We have increased it to 750
tuples for 15 attributes and further increased it to 1000etupor 20 attributes. The accuracy
degrades from 73% to 63%. The more interesting is the effacthe communication. The
stationary messages increase very slowly (from 0.89 to)0d@@monstrating the fact that the
algorithm is scalable.

One last variation is the relationship of number of att@sutvhen the number of tuples is
increased in proportion to the size of the domain (#tupléss<27#attritutes)  For 10, 15 and
20 attributes, the number of tuples per peer we used are I0aB8 10000 respectively. The
accuracy improves and the normalized messages decredserasiber of attributes is increased.
The number of bytes transferred increases, though for numibattributes=20, it is still well

below what would have been used for a broadcast-based thlgpori
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Fig. 10. Dependence of the quality and cost of the decisiea &lgorithm on the number of attributes.

E. Discussion

In the previous section we have presented the quality anddkeof the P?DTI algorithm

on the different algorithm parameters. Our findings can bersarized as follows.

« In most cases”?DTI results in a loss of accuracy over J48. This is because ofitmgler
gain function that we have chosen. However, due to the heamyrwnication and synchro-
nization cost of centralizing and applying J48, the obsgnwedest loss of accuracy seems
quite reasonable.

« The P?DTI algorithm is highly scalable with respect to the number adrpeAs shown by

our scalability experiments, increasing the number of pé@s little effect on the quality
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or cost.

« Increasing the number of tuples increases the accuracyedtfréle and decreases the cost.
Even for tuples per peer = a quarter of the size of the doma&f {@ples per peer for 10
attributes), the monitoring cost is 1.25 — less than the makallowable cost of 2.0.

« Note that every increment in the number of attributes daitile search space. The quality
and cost of our algorithm remains moderate even of the numibattributes is doubled.

. Noise in the data degrades the quality and cost — it can be eosaped either by increasing
the number of tuples or increasing the depth of the tree. IDeptthree seems to a be
moderate choice since the accuracy is good and the momgtooist is low as well. Increasing

the depth improves the accuracy with a heavy penalty on tee co

VIlI. CONCLUSION

In this paper we presented an asynchronous scalable &lgofdr inducing a decision tree
in a large P2P network. With sufficient time, the algorithrmeerges to the same tree given
all the data of all the peers. To the best of the authors’ kadge this is one of the first
attempts on developing such an algorithm. The algorithnuigakle for scenarios in which the
data is distributed across a large P2P network as it sedgleasdles data changes and node
failures. We have conducted extensive experiments witthgyic dataset to analyze the different
parameters of the algorithms. The results point out thatalgerithm is accurate and suffers
moderate communication overhead compared to a broadaastalgorithm. The algorithm is
also highly scalable both with respect to the number of paatsnumber of attributes.

This paper relies on the majority voting algorithm as a baogdblock. The majority voting
protocol is a highly efficient and scalable protocol, maidiye to the existence of local pruning
rules. In the literature such algorithms are commonly refitito as local algorithms. Previous
work on exact local algorithms mainly focused on develogaffgcient building blocks such as
majority voting [8], L2-thresholding [40] and more. In thggper, similar to [35], we leverage
these powerful building blocks to show how more complex daiaing algorithms can be
developed for large-scale distributed systems. In thege®eve have also shown how complex
functions such as entropy need to be simplified to misclassifin gain in order to aid in the
algorithm development process.

Most of these algorithms use the term ‘local’ in an intuitsense; they rely on experimental
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results to claim the efficiency and scalability of the algums. Very recently, researchers have
proposed more formal definitions of local algorithms as &)l We do not prove the locality
of our algorithm since it is not the central focus of our papee plan to explore it in the future
along with developing other techniques of inductive leagnsuch as Naive Bayegrnearest
neighbor, SVM’s and more.
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APPENDIX

A decision tree induction algorithm cannot be consideradmete without a pruning technique
stating which branches over-fit the data. Pruning techsiga@ be divided betwegrostpruning
— removing nodes of whole subtrees after the tree is induaettpre-pruning — instructing the
algorithm which nodes not to develop in the first place. SitieeP2DTI algorithm works on
streaming data the idea of first inducing the tree and aftelsvaruning it seems less suitable
(because there is no specific point in time in which pruningusth begin). We therefore focus on
pre-pruning heuristics. Several common pre-pruning tieghas can easily be adopted ByDTI,
because they use simple statistics. We will describe thueb techniques.

The simplest pre-pruning technique is to terminate newded&velopment which the tree
reaches a pre-specified depth. The biggest benefit of thisitpee is that it limits the resources
used by the algorithm. This technique is trivial to impleman part of P2DTI and performs
quite favorably in experiments. It's greatest disadvaatagthat the depth limit has to be found

in trial and error, and is the same for all leaves.
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A second popular pre-pruning technique is to require a mahategree of gain from every split
in the tree, or abort the split if the gain is below the reqairember. Splitting any given node
according to an attributd’ will have non-negative gain ifc}, + =%, — zi; — 21| — |zl — 24| —
|2io — 2%,| > 0. Let 8" = sign (z{, + ', — x{, — 2},), the previous formula can be rewritten
st (xhy + 2ty — why — ) — sh (xhy — xhy) — st (2%, — %) > 0. Just as in Section V-A.2, this
formula can be evaluated by holding eight different mayovibtes per attribute, one for every
possible value of’, s{, ands’, and then selecting one of them according to the ad hoc rekult
separate votes on the valuessof sj, andsi. Notice that votes fos} ands| are held anyhow.
Also, the input for the vote fog’ is independent of so just one extra vote is needed for Al
Furthermore, for all nodes but the root, a vote on the valug & actually held in the context
of the parent of the node.

A third pruning technique is to require non-negative gaonfrevery split when this gain is
measured on a test set rather than on the learning set. Thidimtroduces little complexity
beyond the described above: the difference is that each, rstalting with the root, should be
associated with an additional set of examples and that {nat ito the votes regarding pruning
be taken from that set. Notice that the input to votes of thiype should still be taken from

the learning set.
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