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Abstract

This paper offers a scalable and robust distributed algorithm for decision tree induction in large

Peer-to-Peer (P2P) environments. Computing a decision tree in such large distributed systems using

standard centralized algorithms can be very communication-expensive and impractical because of the

synchronization requirements. The problem becomes even more challenging in the distributed stream

monitoring scenario where the decision tree needs to be updated in response to changes in the data

distribution. This paper presents an alternate solution that works in a completely asynchronous manner

in distributed environments and suffers low communicationoverhead, a necessity for scalability. It also

seamlessly handles changes in data and node failures. The paper presents extensive experimental results

to corroborate the theoretical claims.

Index Terms

peer-to-peer, data mining, decision trees

I. INTRODUCTION

Decision tree [1][2] induction is a powerful statistical and machine learning tool widely used

for data classification, predictive modeling and more. Given a set of learning examples (attribute

values and corresponding class labels) at a single location, there exist several well-known methods

to build a decision tree such as ID3 [1] and C4.5 [3]. However,there can be several situations

in which the data is distributed over a large, dynamic network containing no special server or

client nodes such as Peer-to-Peer (P2P) networks. Performing data mining tasks such as building

decision trees is very challenging in a P2P network because of the large number of data sources,

the asynchronous nature of the P2P networks, and dynamic nature of the data. A scheme which

centralizes the network data is unscalable because any change must be reported to the central

node, since it might very well alter the result.

To deal with this, we propose a P2P decision tree induction algorithm in which every peer

learns and maintains the correct decision tree compared to acentralized scenario. Our algorithm

is highly scalable, completely decentralized and asynchronous and adapts to changes in the data

and the network. The efficiency of the algorithm guarantees that as long as the decision tree

represents the data, the communication overhead is low whencompared to a broadcast-based

algorithm. As a result, the algorithm is highly scalable. When the data distribution changes, the
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decision tree is updated automatically. Our work is the firstof its kind in the sense that it induces

decision trees in large P2P systems in a communication-efficient manner without the need for

global synchronization and the tree is the same that would have been induced given all the data

to all the peers.

The rest of the paper is organized as follows. In the next section (Section II) we present several

scenarios in which decision tree induction in large P2P networks is important for decision making.

Following in Section III, we discuss the work related to thisarea of research. In Section IV

we present the distributed computation assumptions and some background material necessary

to understand the P2P decision tree algorithm presented in Section V. We demonstrate the

performance of the algorithm through extensive experiments in Section VI. We conclude the

paper in Section VII.

II. M OTIVATION

P2P networks are quickly emerging as huge information systems. Through networks such as

Kazaa, e-Mule, BitTorrents and more consumers can share vast amounts of data. While initial

consumer interest in P2P networks was focused on the value ofthe data, more recent research

such as P2P web community formation argues that the consumers will greatly benefit from the

knowledge locked in the data [4] [5].

For instance, music recommendations and sharing are today athriving industry [6][7] - a

sure sign of the value consumers have put on this application. However, all existing systems

require that users submit their listening habits, either explicitly or implicitly, to centralized

processing. Such centralized processing can be problematic because the service provider may

close down the service, or it can result in severe performance bottleneck. In 2003, Wolff et

al. [8] showed that centralized processing may not be a necessity by describing an algorithm

which computes association rules (and hence, recommendations) in-network; processing the data

in-network means that it is extremely difficult to shut the service down. Later, Gilburd et al. [9]

showed that it is relatively easy, given an in-network knowledge discovery algorithm, to produce

a similar algorithm which preserves the privacy of users in awell defined sense.

Another application which offers high value to the consumers is failure determination [10][11].

In failure determination, computer-log data which may haverelation to the failure of software and

this data is later analyzed in effort to determine the reasonfor the failure. Data collection systems
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are today integral to both the Windows and Linux operating systems. Analysis is performed off-

line on a central site and often uses knowledge discovery methods. Still, home users often choose

not to cooperate with current data collection systems because they fear for privacy and currently

there is no immediate benefit to the user for participating inthe system. Collaborative data

mining for failure determination can be very useful in such scenarios.

In the next section we present some work related to this area of research.

III. RELATED WORK

Distributed data mining (DDM) deals with the problem of dataanalysis in environments with

distributed data, computing nodes, and users. This area hasseen considerable amount of research

during the last decade. For an introduction to the area, interested readers are referred to the books

by Kargupta et al. [12] and [13]. P2P data mining has very recently emerged as a subfield of

DDM, specifically focusing on algorithms which are asynchronous, scalable and satisfy certain

other properties. Datta et al. [14] presents an overview to this topic.

The work described in this paper relates to two main bodies ofresearch: classification algo-

rithms and computation in large distributed systems also referred to as P2P systems.

A. Distributed Classification Algorithms

Classification is one of the classic problems of the data mining and machine learning fields.

Researchers have proposed several solutions to this problem – Bayesian models [15], ID3 and

C4.5 decision trees [1][3], and SVMs [16] being just a tiny selection. The solutions differ in

three major aspects – (1) how the search domain is represented using an objective function, (2)

which algorithm is chosen to optimize the objective function, and (3) how the work is distributed

for efficient searching through the entire space. The latterparameter has two typical modes –

in some algorithms the learning examples are only used during the search for a function (e.g.,

in decision trees and SVMs) while in other they are also used during the classification of new

samples (notably, in Bayesian classifiers).

Meta classifiers are another interesting group of classification algorithms. In a meta classifi-

cation algorithm such as bagging [17] or boosting [18], manyclassifiers (of any of the previous

mentioned kinds) are first built on either samples or partitions of the training data. Then, those
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“weak” classifiers are combined using a second level algorithm which can be as simple as taking

the majority of their outcomes for any new sample.

Some classification algorithms are better suited for a distributed set up. For instance, Stolfo et

el. [19] learn a weak classifier on every partition of the data, and then centralize the classifiers

and a sample of the data. This can be a lot cheaper than transferring the entire raw data. Then

the meta-classifier is deduced centrally from these data. Another suggestion, by Bar-Or et al.

[20] was to execute ID3 in a hierarchical network by centralizing, for every node of the tree

and at each level, only statistics regarding the most promising attributes. These statistics can, as

the authors show, provide a proof that the selected attribute is indeed the one having the highest

gain – or otherwise trigger the algorithm to request furtherstatistics.

Caragea et al. [21] presented a decision tree induction algorithm for both distributed homoge-

nous and heterogenous environments. Noting that the crux ofany decision tree algorithm is the

use of an effective splitting criteria, the authors proposea method by which this criteria can be

evaluated in a distributed fashion. More specifically the paper shows that by only centralizing

summary statistics from each site e.g., counts of instancesthat satisfy specific constraints on the

values of the attributes to one location, there can be huge savings in terms of communication

when compared to brute force centralization. Moreover, thedistributed decision tree induced is

the same compared to a centralized scenario. Their system isavailable as part of the INDUS

system.

A different approach was taken by Giannella et al. [22] and Olsen [23]. They used Gini

information gain as the impurity measure and showed that Gini between two attributes can

be formulated as a dot product between two binary vectors. Tocut down the communication

complexity, the authors evaluated the dot product after projecting the vectors in a random

subspace. Instead of sending either the raw data or the largebinary vectors, the distributed

sites communicate only these projected low-dimensional vectors. The paper shows that using

only 20% of the communication cost necessary to centralize the data, they can build trees which

are at least 80% accurate compared to the trees produced by centralization.

A closely related topic is Multivariate Regression (MR) where the output is real-valued instead

of categorical. Hershberger et al. [24] considered the problem of computing a global MR in a

vertically partitioned data distribution scenario. The authors proposed a wavelet transform of the

data such that, after the transformation, the effect of the cross terms can be dealt with easily. The
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local MR models are then transported to the central site and combined to form the global MR

model. Several other techniques have been proposed for doing distributed MR using distributed

kernel regression such as by Guestrin et al. [25] and Predd etal. [26].

When the scale of the system grows to millions of partitions –as in most modern P2P systems

– the algorithms above cease to function. Mostly this is because for such large scale systems,

no centralization of data, statistics, or models, is practical any longer. By the time such statistics

can be gathered, it is reasonable that both the data and the system have changed to the point that

the model needs to be calculated again. Thus, classificationin P2P networks requires a different

breed of algorithms – ones that are fully decentralized, asynchronous and can cope well with

dynamically changing data.

B. Data Mining in Large Scale Distributed Systems

Previous work on data mining in P2P networks span three main types of algorithms: best effort

heuristics, gossip and flooding based computations, and so called local algorithms. In a typical

best effort heuristic [27][28][5], peers sample data (using some variations of graph random walk

as proposed in [29]) from their own partition and that of several neighbors and then build a model

assuming that this data is representative of that of the entire set of peers. All these algorithms

can be classified as probabilistic approximate algorithms since the results of these algorithms are

correct only on average. On the contrary, deterministic approximate algorithms for large scale

networks return the same result every time they are run. Examples are the variational techniques

developed by Jaakkola and Jordan [30][31]. It poses the original problem as an optimization

problem and aims to solve it. The search space is usually approximated to make the search

feasible. This makes it an approximate technique rather than an exact one. Mukherjee et al. [32]

have developed a communication efficient algorithm for inferencing is sensor networks using

such a variational approximation technique. The paper considers heterogeneously data distributed

scenario where there is one node attribute per node and each node learns a probability distribution

of the hidden variables given the visible variables. It aimsto solve problems such as target

tracking, target classification etc. in wireless sensor networks.

Flooding algorithms, as their name hints, flood data (or sufficient statistics thereof) through

the entire network such that eventually every peer has the data (or combined statistics) of the

entire network. Since flooding is too costly in the common case, actual algorithms usually use
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gossip – randomized flooding. In gossip, every peer sends itsstatistics to a random peer. As

demonstrated by Kempe et al. [33] and Jelasity et al. [34] a variety of aggregated statistics can

be computed in this way. Gossip algorithms provide probabilistic guarantee for the accuracy of

their outcome. However, they can still be quite costly – requiring hundreds of messages per peer

for the computation of just one statistic.

Researchers have proposed several robust and efficient algorithms for P2P systems commonly

termed as local algorithms in the literature such as association rule mining [8], facility location

[35], outlier detection [36], and meta-classification [37](described more thoroughly below). They

are data dependent distributed algorithms. However, in a distributed setup data dependency means

that at certain conditions peer can cease to communicate with one another and the algorithm

terminates with anexact result (equal to that which would be computed given the entire data).

These conditions can occur after a peer collects the statistics of just few other peers. In such

cases, the overhead of every peer becomes independent of thesize of the network (and generally

very low). Furthermore, these data dependent conditions can be rechecked every time the data,

or the system, changes. If the change is stationary (i.e., the result of the computation remains

the same) then, very often, no communication needs to followchange of data. This feature

makes local algorithms exceptionally suitable for P2P networks (as well as for wireless sensor

networks). While the algorithms above assume the existenceof a communication tree to avoid

duplicate accounting of data (except in [36]) some work has shown that this assumption can

be dropped [38]. Lately, researchers have looked into the description of the local algorithm

complexity [39] and the description of generic local algorithms which can be implemented for

a large family of functions [40].

The work most related to the one described in this paper is theDistributed Plurality Algorithm

(DPV) by Ping et al. [37]. In that work, a meta classification algorithm is described in which

every peer computes a weak classifier on its own data. Then, weak classifiers are merged into

a meta classifier by computing – per new sample – the majority of the outcomes of the weak

classifiers. The computation of weak classifiers requires nocommunication overhead at all, and

the majority is computed using an efficient local algorithm.

Our work is different from DPV in several ways: firstly, we compute an ID3-like decision tree

from the entire data (rather than many weak classifiers). Because the entire data is used, smaller

sub-populations of the data stand a chance to gather statistical significance and contribute to the

December 26, 2007 DRAFT



8

model; therefore, we argue our algorithm can be, in general,more accurate. Secondly, as proposed

in DPV, every peer needs to be aware of each new sample and provide their classification of

it. This mode of operation, which is somewhat reminiscent ofBayesian classification, requires

broadcasting new samples to all peers or limits the algorithm to specific cases in which all peers

cooperate in classification of new samples (given to all) based on their private past experience.

In contrast, in our work, all peers jointly study the same decision tree. Then, when a peer is

given a new sample that sample can be classified with no communication overhead at all. When

learning samples are few and new samples are in abundance, our algorithm can be far more

efficient.

IV. BACKGROUND

A. Distributed Computation Assumptions

Let S denote a collection of data tuples with class labels that is horizontally distributed over

a large (undirected) network of machines (peers) wherein each peer communicates only with

its immediate neighbors (one hop neighbors) in the network.The communication network can

be thought of as a graph with vertices (peers)V . For any given peerk ∈ V , let Nk denote the

immediate neighbors ofk. Peerk will only communicate directly with peers inNk.

Our goal is to develop a distributed algorithm under which each node computes the decision

tree overS (the same tree at each node). However, the network is dynamicin the sense that the

network topology can change (peers may enter or leave at any time) or the data held by each

peer can change (henceS, the union of all peers data, can be thought of as time-varying as well

as the set of neighborsNk for each peerk). Our distributed algorithm is designed to seamlessly

adapt to network and data change in a communication-efficient manner.

We assume that communication among neighboring peers is reliable and ordered and that

when a peer is disconnected or reconnected its neighbors,k, are informed,i.e. Nk is known

to k and is updated automatically. These assumptions can easilybe enforced using standard

numbering and retransmission (in which messages are numbered, ordered and retransmitted if

an acknowledgement does not arrive in time), ordering, and heart-beat mechanisms. Moreover,

these assumptions are not uncommon and have been made elsewhere in the distributed algorithms

literature [41]. Khilar and Mahapatra [42] discuss the use of heartbeat mechanisms for failure

diagnosis in mobile ad-hoc networks.
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Furthermore, for simplicity, we assume that the network topology forms a tree. This allows us

to use a relatively simple distributed algorithm as our basic building block: distributed majority

voting (more details later). We could get around this assumption in one of two ways. (1) Liss

et al. [38], have developed an extended version of the distributedmajority voting algorithm

which does not require the assumption that the network topology forms a tree. We could replace

our use of simple majority voting as a basic building block with the extended version of Liss

et al. (2) The underlying tree communication topology could be maintained independently of

our algorithm using standard techniques like [41] (for wired networks) or [43] (for wireless

networks).

B. Distributed Majority Voting

Our algorithm utilizes, as a building block, a variation of the distributed algorithm formajority

voting developed by Wolff and Schuster [8]. Each peerk ∈ V contains a real numberδk and

the objective is to determine whether∆ =
∑

k∈V δk ≥ 0.

The following algorithm meets this objective. For peersk, ℓ ∈ V , let δkℓ denote the most recent

message (a real number) peerk sent toℓ. Peerk computes∆k = δk +
∑

ℓ∈Nk
δℓk, which can

be thought of ask′s estimate of∆ based on all the information available. Peerk also computes

∆kℓ = δkℓ + δℓk, for each neighborℓ ∈ Nk. When an event at peerk occurs,k will decide,

for each neighborℓ, whether a message need be sent toℓ. An event atk consists of one of the

following three situations: (i)k is initialized (enters the network or otherwise begins computation

of the algorithm); (ii)k experiences a local data change or a change of its neighborhood, Nk;

(iii) u receives a message from a neighborℓ.

The crux of the algorithm is in determining whenk must send a message to a neighborℓ

in response tok detecting an event. More precisely, the question is when cana message be

avoided, despite the fact that the local knowledge has changed. Upon detecting an event, peer

k would send a message to neighborℓ when either of the following two situations occurs: (i)k

is initialized; (ii)
(

∆kℓ ≥ 0 ∧∆kℓ > ∆k
)

∨
(

∆kℓ < 0 ∧∆kℓ < ∆k
)

evaluates true. Observe that

since all events are local, the algorithm requires no form ofglobal synchronization.

When k detects an event and the conditions above indicate that a message must be sent to

neighborℓ, k sendsα∆k − δℓk and setsδkℓ to α∆k − δℓk (thereby making∆kℓ = α∆k) where

α is a fixed parameter between 0 and 1. Ifα were set close to one, then small subsequent
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variations in∆k will trigger more messages fromk increasing the communication overhead. On

the other hand, ifα were set close to zero, the convergence rate of the algorithmcould be made

unacceptable slow. In all our experiments, we setα to 0.5. This mechanism replicates the one

used by Wolffet al. in [40].

To avoid a message explosion, we implement aleaky bucketmechanism such that the interval

between messages sent by a peer does not become arbitrarily small. This mechanism was also

used by Wolffet al. in [40]. Each peer logs the time when the last message was sent. When

a peer decides that a message need to be sent (to any of its neighbors), it does the following.

If L time units has passed since the time the last message was sent, it sends the new message

right away. Otherwise, it buffers the message and sets a timer to L units after the registered

time the last message was sent. Once the timer expires all thebuffered messages are sent. For

the remainder of the paper, we leave the leaky bucket mechanism implicit in our distributed

algorithm descriptions.

V. P2P DECISION TREE INDUCTION ALGORITHM

This section presents a distributed and asynchronous algorithm P 2DT which induces a decision

tree over a P2P network in which every peer has a set of learning examples.P 2DT, which is

inspired by ID3 and C4.5, aims to select at every node – starting from the root – the attribute

which will maximize a gain function; then,P 2DT aims to split the node, and the learning

examples associated with it, into two new leaf nodes and proceed to split them recursively. A

stopping rule directsP 2DT to stop this recursion. In this section a simple depth limitation is

used. Other, more complex predicates are described in the appendix.

The main computational task ofP 2DT is choosing the attribute having the highest gain among

all attributes. Similar to other distributed data mining algorithms,P 2DT needs to coordinate the

decision among the multiple peers. The main exceptions ofP 2DT are that it stresses the efficiency

of decision making and the lack of synchronization. These features make it exceptionally scalable

and therefore suitable for networks spanning millions of peers.

P 2DT deviates from the standard decision tree induction algorithms in the choice of a simpler

gain function – the misclassification error – rather than themore popular (and, arguably, better)

information-gain and gini-index functions. Misclassification error offers less distinction between

attributes: a split can have the same misclassification error in these two seemingly different cases
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– (1) the erroneous examples are divided equally between thetwo leaves it creates or (2) if one

of these leaves is 100% accurate. Comparatively, both information-gain and gini-index would

prefer the latter case to the former. Still, the misclassification error can yield accurate decision

trees (see, e.g., [44]) and its relative simplicity makes itfar easier to compute in a distributed

set-up.

In the interest of clarity, we divide the discussion of the algorithm into two subsections:

Section V-A below describes an algorithm for the selection of the attribute offering the lowest

misclassification error from amongst a large set of possibilities. Next, Section V-B describes

how a collection of such decisions can be efficiently used to induce a decision tree.

A. Splitting attribute choosing using the misclassification gain function

1) Notations:Let S be a set of learning examples – each a vector in{0, 1}d×{0, 1} – where

the first d entries of each example denote the attributes,A1, . . . , Ad, and the additional one

denotes the classC. The cross table of attributeAi and the class isX i =
xi

00 xi
01

xi
10 xi

11

wherexi
01

is the number of examples in the setS for which Ai = 0 andC = 1. We also define the indicator

variablessi
0 = sign (xi

00 − xi
01) andsi

1 = sign (xi
10 − xi

11), with sign (x) =











1 x ≥ 0

−1 x < 0
.

Assumingxi
01 is larger thanxi

00 andAi is indeed selected as the splitting attribute the outcome

is thatxi
00 examples would be misclassified in the leaf associated with the attribute valueAi = 0.

Conveniently, the overall number of misclassifications resulting from a split according toAi can

be written
|xi

00−xi
01|

2
+
|xi

10−xi
11|

2
; thus avoiding the need to specify which class has the majority in

every new leaf. According to the misclassification gain function, the best attribute to split is thus

Abest = arg min
i∈[1,d]

|xi
00−xi

01|
2

+
|xi

10−xi
11|

2
= arg min

i∈[1,d]

|xi
00 − xi

01|+ |x
i
10 − xi

11|. Note that ifAi = Abest

then for anyAj 6= Ai Ci,j = |xi
00 − xi

01|+ |x
i
10 − xi

11| −
∣

∣x
j
00 − x

j
01

∣

∣−
∣

∣x
j
10 − x

j
11

∣

∣ is either zero

or less.

In a distributed setup,S is partitioned inton setsS1 throughSn. X i
k =

xi
k,00 xi

k,01

xi
k,10 xi

k,11

would

therefore denote the cross table of attributeAi and the class in the example setSk. Note thatxi
00 =

∑

k=1...n

xi
k,00 andCi,j =

∣

∣

∣

∣

∑

k=1...n

[

xi
k,00 − xi

k,01

]

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

k=1...n

[

xi
k,10 − xi

k,11

]

∣

∣

∣

∣

−

∣

∣

∣

∣

∑

k=1...n

[

x
j
k,00 − x

j
k,01

]

∣

∣

∣

∣

−
∣

∣

∣

∣

∑

k=1...n

[

x
j
k,10 − x

j
k,11

]

∣

∣

∣

∣

. Also, notice thatCi,j is not, in general, equal to
∑

k=1...n

∣

∣xi
k,00 − xi

k,01

∣

∣ +
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∑

k=1...n

∣

∣xi
k,10 − xi

k,11

∣

∣ −
∑

k=1...n

∣

∣x
j
k,00 − x

j
k,01

∣

∣−
∑

k=1...n

∣

∣x
j
k,10 − x

j
k,11

∣

∣. Still, using the indicatorssi
0

and si
1 defined above we can writeCi,j = si

0

∑

k=1...n

[

xi
k,00 − xi

k,01

]

+ si
1

∑

k=1...n

[

xi
k,10 − xi

k,11

]

−

s
j
0

∑

k=1...n

[

x
j
k,00 − x

j
k,01

]

− s
j
1

∑

k=1...n

[

x
j
k,10 − x

j
k,11

]

which can be rewritten as

Ci,j =
∑

k=1...n

(

si
0

[

xi
k,00 − xi

k,01

]

+ si
1

[

xi
k,10 − xi

k,11

]

− s
j
0

[

x
j
k,00 − x

j
k,01

]

− s
j
1

[

x
j
k,10 − x

j
k,11

])

;

This last expression, in turn, is simply a sum – across all peers – of a numberδi,j
k =

si
0

[

xi
k,00 − xi

k,01

]

+ si
1

[

xi
k,10 − xi

k,11

]

− s
j
0

[

x
j
k,00 − x

j
k,01

]

− s
j
1

[

x
j
k,10 − x

j
k,11

]

which can be com-

puted independently by each peer, assuming it knows the values of the indicators. Finally, denote

δ
i,j
k |abcd the value ofδi,j

k assumingsi
0 = a, si

1 = b, s
j
0 = c, ands

j
1 = d. Notice that, unlikeδi,j

k ,

δ
i,j
k |abcd can be computed independently by every peer, regardless of the actual values ofsi

0, si
1,

s
j
0, ands

j
1.

It is therefore possible to computeAbest by concurrently running the following set of majority

votes: two per attributeAi, with inputsxi
00 − xi

01 and xi
10 − xi

11, to compute the values ofsi
0

and si
1; and one for every per of attributes and every possible combination of si

0, si
1, s

j
0, and

s
j
1. Given the results forsi

0 andsi
1, one could select the right combination and ignore the other.

Then, given all of the selected votes, one could find the attribute whose misclasification error

is lower than that of any other attribute. Below, we describean algorithm which performs the

same computation far more efficiently.

2) P2P Misclassification Minimization:The P2P Misclassification MinimizationP 2MM algo-

rithm, Algorithm 1, aims to solve two problems concurrently: it will decide which of the attributes

A1 throughAd is Abest while at the same time compute the true value ofsi
0 andsi

1. The general

framework of theP 2MM algorithm is that of pivoting: it assumes a certainAi is Abest and follows

to validate the assumption. If the assumption is true thenAi is reported. Otherwise, the revocation

of the assumption provides an evidence: one or more attributes have lower misclassification error

than Ai. The algorithm then follows by naming one of these attributes Abest and comparing it

to all other. To provide the input to those comparisons, eachpeer computesδi,j
k |abcd relying on

the current ad-hoc value ofsi
0, si

1, s
j
0, ands

j
1. The ad-hoc values peerk computes forsi

0 andsi
1

will be denotedsi
k,0 and si

k,1, respectively. To make sure those ad hoc results converge tothe

correct value, two additional majority votes are carried per attribute concurrent to those of the

pivoting; in these, the inputs of peerk arexi
00 − xi

01 andxi
10 − xi

11, respectively.
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TheP 2MM algorithm works in streaming mode: Every peerk takes two inputs – the set of its

neighborsNk and a setSk of learning examples. Those inputs may (and often do) changeover

time and the algorithm responds to every such change by adjusting its output and by possibly

sending messages. Similarly, messages stream in to the peerand, can influence both the output

and the outgoing messages. The output of peerk is the attribute it computes to be the one with

the smallest misclassification error. This output, by nature, ad-hoc and may change in response

to any of the events described above.

P 2MM is based on a large number of instances of the distributed majority voting algorithm

described earlier in Section IV-B. On initialization,P 2MM invokes two instances of majority

voting per attribute to determine the values ofsi
0 and si

1; M i
0 and M i

1 denote these majority

votes. For each peerk, its inputs to these votes (instances) areM i
0.δk = xi

k,00 − xi
k,01 and

M i
1.δk = xi

k,10 − xi
k,11. Additionally, for every pairi < j ∈ [1 . . . d] P 2MM initializes sixteen

instances of majority voting – one for each possible combination of values forsi
0, si

1, s
j
0, ands

j
1.

Those instances are denoted byM
i,j
abcd with abcd referring to the combination of values forsi

0,

si
1, s

j
0, ands

j
1. For each peerk, its inputs to these instances areM

i,j
abcd.δk = a

[

xi
k,00 − xi

k,01

]

+

b
[

xi
k,10 − xi

k,11

]

− c
[

x
j
k,00 − x

j
k,01

]

− d
[

x
j
k,10 − x

j
k,11

]

.

Following initialization, the algorithm is event based. Each peerk is idle unless there is a

change inNk or Sk, or an incoming message changes the∆k of one of the instances of majority

voting. On such event, the simple solution would be to check the conditions for sending messages

in any of the majority votes. However, as shown by [45][37] pivoting can be used to reduce the

number of condition checked fromO (d2) to an expectedO(d). Thus,P 2MM chooses as pivot

the attribute with the largestM i,j .∆k,ℓ – as suggested in [37] and tests the conditions for sending

messages in the context of any majority voting which compares the pivot to other attributes. If

the test for anyM i,j fails, M i,j.∆k,ℓ needs to be modified by sending a message toℓ. P 2MM

does this by sending a message which will setM i,j .∆k,ℓ to αM i,j .∆k (α is set to1
2

by default),

which is in line with the findings of [40].

Notice M
i,j
abcd.δk = −M

i,j
−a−b−c−d.δk and thus half of the comparisons actually replicate the

other half and can be avoided. This optimization is avoided in the pseudocode in order to

maintain conciseness. Also notice that while the peer accepts updates in the context of any of

the majority votesM i,j
abcd it will only respond with a message for the majority voteM i,j – the

instance witha, b, c, andd equal tosi
k,0, si

k,1, s
j
k,0, ands

j
k,1, respectively. The rest of the instances
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are, in effect, ‘suspended’ and cause no communication overhead.

Algorithm 1 P2P Misclassification Minimization (P 2MM)
Input variables of peer k: the set of neighbors –Nk, the set of examples –Sk

Output variables of peer k: the attributeApivot

Initialization:
• For everyAi in A1 . . . Ad initialize two instances of LSD-Majority with inputsxi

k,00−xi
k,01

and xi
k,10 − xi

k,11. Denote these instancesM i
0 and M i

1 respectively, and let and letM i
0.∆k

andM i
0∆k,ℓ, andM i

1.∆k andM i
1∆k,ℓ be their knowledge and agreement.

• For everya, b, c, d ∈ {−1, 1} and everyAi, Aj ∈
[

A1 . . . Ad
]

initialize an instance of
LSD-Majority with input δ

i,j
k |abcd. Denote these instancesM i,j

abcd and let M i,j
abcd.∆k and

M
i,j
abcd∆k,ℓ be the knowledge and agreement of theM i,j instance, respectively. Specifically

denoteM i,j .∆k andM i,j∆k,ℓ the instance witha, b, c, andd equal tosi
k,0, si

k,1, s
j
k,0, and

s
j
k,1, respectively.

On any event:
• For Ai ∈

{

A1 . . . Ad
}

and everyℓ ∈ Nk

– If M i
0.∆k,ℓ < M i

0.∆k < 0 or M i
0.∆k,ℓ > M i

0.∆k ≥ 0 call Send (M i
0, ℓ)

– If M i
1.∆k,ℓ < M i

1.∆k < 0 or M i
1.∆k,ℓ > M i

1.∆k ≥ 0 call Send (M i
1, ℓ)

• Do

– Let pivot = arg max
i∈[1...d]

{

max
ℓ∈Nk

{

M j,i.∆k,ℓ,−M i,m.∆k,ℓ

}

}

– For Ai ∈ {A1 . . . Apivot−1} and everyℓ ∈ Nk

∗ If not M i,pivot.∆k < M i,pivot.∆k,ℓ < 0 and notM i,pivot.∆k > M i,pivot.∆k,ℓ ≥ 0 call
Send (M i,pivot, ℓ)

– For Ai ∈
{

Apivot+1 . . . Ad
}

and everyℓ ∈ Nk

∗ If not Mpivot,i.∆k < Mpivot,i.∆k,ℓ < 0 and notMpivot,i.∆k > Mpivot,i.∆k,ℓ ≥ 0 call
Send (Mpivot,i, ℓ)

• While pivot changes
On message(id, δ) from ℓ:

• Let M be a majority voting instance withM.id = id

• SetM.δℓ,k to δ

Procedure Send(M, ℓ):
• M.δk,ℓ = αM.∆k + M.δℓ,k

• Send toℓ (M.id, M.δk,ℓ)

a) Proof Sketch:To see whyP 2MM convergence is guaranteed, first notice that eventual

correctness of each of the majority votesM i
0 and M i

1 is guaranteed because the condition for

sending messages is checked for every one of them each time the data changes or a message is

received. Next, consider two neighbor peers who choose different pivots, peerk which selects

i and peerℓ which selectsj. Since bothk and ℓ will check the condition ofM i,j , and since
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M i,j .∆k,ℓ = M i,j .∆ℓ,k at least one of them would have to change its pivot. Thus, peers will

continue to change their pivot until they all agree on the same pivot. To see that peers will

converge to the decision that the pivot is the attribute withthe minimal misclassification error

(denote itAm), assume they converge on another pivot. Since the condition of votes comparing

the Apivot to any other attribute is checked whenever the data changes,it is guarantee that if

m < pivot then Mm,pivot.∆k,ℓ will eventually be larger than zero for allk and ℓ ∈ Nk and if

pivot < m then Mm,pivot.∆k,ℓ > 0 for all k and ℓ ∈ Nk. Thus, the algorithm will replace the

pivot with eitherm or another attribute, but would not be able to converge on thecurrent pivot.

This completes the proof of the correct convergence of theP 2MM algorithm.

b) Complexity:The P 2MM algorithm compares the attributes in an asynchronous fashion

and outputs the best attribute. Consider the case of comparing only two attributes. The worst

case communication complexity of theP 2MM algorithm is O(size of the network). This can

happen when the misclassification gains of the two attributes are very close. Since our algorithm

is eventually correct, the data will need to be propagated through the entire network i.e. all

the peers will need to communicate to find the correct answer.Thus the overall communication

complexity of theP 2MM algorithm, in the worst case, is O(size of the network). Similarly, the

worst case running time of theP 2MM algorithm is O(diameter of the network). Now if the

misclassification gains of the two attributes are not very close (which is often the case for most

datasets), the algorithm is not global; rather theP 2MM algorithm can prune many messages as

shown by our extensive experimental results. Finally formulating the complexity of such data

dependent algorithms in terms of the complexity of the data is a big open research issue even for

simple primitives such as majority voting protocol [8], leave aside the complexP 2MM algorithm

presented in this paper.

Figure 1 demonstrates how two attributesAi andAj are compared by two peersPk andPℓ.

At time t0, the peers initialize all the sixteen votesM
i,j
abcd along with the votes for the indicator

variables. At timet1, the values of the indicator variables are{1, 1, 1,−1} for Pk. Hence it only

sends messages corresponding to the voteM
i,j
111−1. All the rest fifteen votes are in a suspended

state. Similarly the figure shows the suspended votes forPℓ at timet2. Finally it depicts that at

time t4, the peers converge to the same vote which is not suspended viz. M
i,j
1−11−1.

Figure 2 shows the pivot selection process for three attributes Ah, Ai and Aj for peerPk

having two neighborsPℓ andPm. Snapshot 1 shows the knowledge (∆k) and agreements ofPk
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Fig. 1. Comparison of two attributesAi andAj for two peersPk andPℓ. The figure also shows some example values of the
indicator variables and the suspended/not suspended votesin each case.

(∆k,ℓ and∆k,m) for the three attributes. Since pivot is the highest agreement, Ah is selected as

the pivot. Now there is a disagreement between∆k and∆k,ℓ for Ah. This results in a message

and subsequent reevaluation of∆k,ℓ (to be set equal to∆k). In the next snapshot,Ai is selected

as the pivot and since∆k,ℓ < ∆k, no message needs to be sent.
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Fig. 2. The pivot selection process and how the best attribute is selected. The blue rectangles represent the pivot at each round.
The yellow one is the best attribute.

Comment: The P 2MM algorithm above utilizes the assumption the the data at all peers

in boolean (attributes and class labels). The boolean attributes assumption can be relaxed to

arbitrary categorial data at the expense of increased majority voting instances per attribute pair

(the number of instances increases exponentially with the number of distinct attribute values).

Another approach to relaxing the boolean attributes assumption could be to treat each attribute

distinct value as its own boolean attribute. As a result, each categorical attribute withv distinct

values is treated asv boolean attributes. Here, the number of majority voting instances per pair

of attributes increases only linearly with the number of distinct attribute values. However, the

issue of deciding which attribute has lower misclassification error on the basis of the associated

boolean attributes is not entirely clear and is the subject of future work.

B. Speculative decision tree induction

P 2MM can be used to decide which attribute would best divide a given set of learning

examples. It is well known that decision trees can be inducedby recursively and greedily dividing

a set of learning examples – starting from the root and proceeding onwards with every node of

the tree (e.g., ID3 and C4.5 algorithms [1][3]). In a P2P set-up the progression of the algorithm
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needs to be coordinated among all peers, or they might end up developing different trees. In

smaller scale distributed systems, occasional synchronization usually addresses coordination.

However, since a peer to peer system is too large to synchronize, we prefer speculation [46].

The starting point of tree development – the root – is known toall peers. Thus, they can all

initialize P 2MM to find out which attribute best splits the example set of the root. However, the

peers are only guaranteed to converge to the same attribute selection eventually and may well

choose different attributes intermediately. Several questions thus arise: How and when should

the algorithm commit resources to a specific split of a node, what should be done if such split

appears to be wrong after resources were committed and what should be done about incoherence

between neighboring peers?

The P2P Decision Tree Induction (P 2DTI, see Alg. 2) algorithm has two main functionalities.

Firstly, it manages the ad hoc solution which is a decision tree composed ofactive nodes.

The root is always active and so is any node whose parent is active provided that the node

corresponds with one of the values of the attribute which best splits its parent’s examples – i.e.,

the ad hoc solution ofP 2MM as computed by the parent. The rest of the nodes areinactive. A

node (or a whole subtree) can become inactive because its parent (or fore-parent) have changed

its preference for splitting attribute. Inactive nodes arenot discarded; a peer may well accept

messages intended to inactive nodes – either because a neighbor considers then active or because

the message was delayed by the network. Such message would still update the majority voting

to which it is intended. However, peers never send messages resulting from an inactive node.

Instead, they check, whenever a peer becomes active, whether there are pending messages (i.e.,

majority votes whose test require sending messages) and if so they send the message.

Another activity which occurs in active nodes is further development of the tree. Each time a

leaf it is generated it is inserted into a queue. Once everyτ time units, the peer takes the first

active leaf in the queue and develops it according to the ad hoc result ofP 2MM for that leaf.

Inactive leaves which precede this leaf in the queue are re-inserted at the end of the queue.

Last, it may happen that a peer receives a message in the context of a node it had note yet

developed. Such messages are stored in theout-of-contextqueue. Whenever a new leaf is created,

the out-of-context queue is searched and messages pertaining to the new leaf are accepted.

A high level overview of the speculative decision tree induction process is shown in Figure

3. Filled rectangles represent newly created nodes. The first snapshot shows the creation of the
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Algorithm 2 P2P Decision Tree Induction (P 2DTI)
Input: S – a set of learning examples,τ – mitigation delay
Initialization:

Create a root leaf and letroot.S ← S. Setnodes← {root}. Pushroot to queue

Send BRANCH message to self with delayτ

On BRANCH message:
Send BRANCH message to self with delayτ

For (i← 0, ℓ← null; i < queue.length and not active(ℓ); i++)
Pop head of queue intoℓ
If not active(ℓ)

enqueueℓ
If active(ℓ)
Let Aj be the ad-hoc solution ofP 2MM for ℓ

call Branch(ℓ, j)
On data message〈n, data〉:

If n 6∈ nodes

store〈n, data〉 in out− of − context

Else
Transfer thedata to theP 2MM instance ofn

If active(n) then
Process(n)

Procedure Active(n):
If n = null or n = root

return true
Let Aj be the ad-hoc solution forP 2MM for n.parent

If n 6∈ n.parent.sons [j]
return false

Return Active(n.parent)
Procedure Process(n):

Perform tests required byP 2MM for n and send any resulting messages
Let Aj be the ad-hoc solution forP 2MM for n

If n.sons [j] is not empty
for eachm ∈ n.sons [j]

call Process(m)
Else

pushn to the tail of the queue
Procedure Branch(ℓ, , j):

Create two new leavesℓ0 and ℓ1

Set ℓ0.parent← ℓ, ℓ1.parent← ℓ

Set ℓ0.S ← {s ∈ ℓ.S : s [j] = 0} and ℓ1.S ← {s ∈ ℓ.S : s [j] = 1}
Remove fromout− of − context messages intended forℓ0 andℓ1 and deliver the data to the

respective instance ofP 2MM
Set ℓ.sons [j] = {ℓ0, ℓ1}, addℓ0, ℓ1 to nodes and pushℓ0 andℓ1 to the tail of the queue
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root with A1 as the best attribute. The root is split in the next snapshot,followed by further

development of the left path. The fourth snapshot shows how the root is changed to a new

attribute A2 and the entire tree rooted atA1 is made inactive (yellow part). Finally as time

progresses, the tree rooted atA2 is further developed. If it so happens thatA1 now becomes

better thanA2, the old inactive tree will now become active and the tree rooted at A2 will

become inactive.

root
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RightChildLeftChild

0 1
0

0

1

1

LeftChild RightChild
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10 0 1
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Fig. 3. Figure showing how the speculative decision tree is build by a peer. Filled rectangles represent the newly created nodes.
In the first snapshot the root is just created withA1 as the current best attribute. The root is split into two children in the second
snapshot. The third snapshot shows further development of tree by splitting the left child. In the fourth snapshot, the peer gets
convinced thatA2 is the best attribute corresponding to the root. Earlier tree is made inactive and a new tree is developed with
split at A2. Fifth snapshot shows the leaf label assignments.
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VI. EXPERIMENTS

To validate the performance of our decision tree algorithm,we conducted experiments on

a simulated network of peers. In this section we discuss the experimental setup, measurement

metric and the performance of the algorithm.

A. Experimental Setup

Our implementation makes use of the Distributed Data MiningToolkit (DDMT) [47] which

is a JADE-LEAP based event simulator developed by the DIADICresearch lab at UMBC. The

topology is generated using BRITE [48] – an open software forgenerating network topologies.

We have used theBarabasi Albert (BA)model in BRITE since it is often considered a reason-

able model for the Internet. We use the edge delays defined in BA as the basis for our time

measurement1. On top of each network generated by BRITE, we overlayed a spanning tree.

B. Data Generation

The input data of a peer is generated using the scheme proposed by Domingos and Hulten

[49]. Each input data point is a vector in{0, 1}d × {0, 1}. The data generator is a random tree

built as follows. At each level of the tree, an attribute is selected randomly and made an internal

node of the tree with the only restriction that attributes are not repeated along the same path.

After the tree is built up to a depth of 3, a node is randomly made a leaf with a probability

of p along with a randomly generated label. We limit the depth of the tree to maximum 6, and

make all the non-leaf nodes a leaf (with random labels) afterit exceeds that depth. Whenever a

peer needs an additional point, it generates a random vectorin thed-dimensional space and then

passes it through the tree. The label it gets assigned to forms the class label for that input vector.

This forms noise-free input vectors. In order to add noise, the bits of the vectors (including the

class label) are flipped with a certain probability. Therefore, n% noise means that each bit of

the input vector is flipped withn% chance and the new value of that bit is chosen uniformly

from all the possibilities (including the original value).The data generator is changed every

5 × 105 simulator ticks, thereby creating an epoch. A typical experiment consists of 10 equal

length epochs In addition, throughout the experiment we change 10% data of each peer after

1Wall time is meaningless when simulating thousands of computers on a single PC.
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every 1000 clock ticks. Therefore, in all our experiments there are two levels of data change

– (1) stationary change when we sample from the same data distribution every 1000 simulator

ticks, and (2) dynamic change when the data distribution changes after every5× 105 simulator

ticks.

C. Measurement Metric

The two measurements of our algorithm are thequality of the result and thecost incurred.

Given a test dataset to each peer, generated from the same distribution as the local dataset,

quality is measured in terms of the percentage of correctly classified tuples of this test set. We

report both thestationary accuracywhich refers to the accuracy measured during the last 80%

of the epochs and theoverall accuracy. Each quality graph in Figures 5, 6, 7, 8, 9 and 10 reports

two quantities – (1) the average quality over all peers, all epochs and 10 independent trials (the

center markers) and (2) the standard deviation over 10 independent trials (error bars).

For measuring the cost of the algorithm we report two quantities –normalized messagessent

and normalized bytestransferred. Our measurement metric for the normalized messages is the

number of messages sent by each peer per unit of leaky bucketL. For an algorithm whose

communication model is broadcast, its normalized messagesis 2, considering 2 neighbors on an

average per peer. We report both the overall messages and themonitoring messages; the latter

refers to the “wasted effort” of the algorithm. For a given time instance, if a peer needs to sendk

separate messages corresponding to different majority votes to one particular peer, it is counted

as one message to that neighbor.

Similarly, to understand the actual communication overhead of our algorithm in terms of the

number of bytes sent, we report both theoverall and monitoringbytes transferred, per unit of

L. In every raw message the distributed algorithm sends 5 numbers – the data of the vote, the id

of the vote, the id of the attributes which this vote corresponds to, the path of the tree and the

maximum pivot. Considering the above example, the number ofbytes sent is5 ∗k per neighbor.

As before, for a broadcast based algorithm, having an attribute cross-table with four entries (2

values and 2 classes), its bytes sent would beno of attributes×4 × 2. The factor of two is

assuming 2 neighbors per peer. For example, with 10 attributes, the number of bytes sent perL

is 80. Similar to what we did for quality, we have plotted boththe average cost and the standard

deviation of the result over 10 independent trials.
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There are three parameters of theP 2DTI algorithm that we have explored – (1) the number

of local tuples or the size of the local dataset|Si|, (2) the depth of the induced tree, and (3) the

size of the leaky bucketL. The measurement points for the local data points per peer are 250,

500, 1000, 2000 and 4000. For the depth of tree, we used valuesof 2, 3, 4, 5 and 7 while we

variedL among 1000, 2000, 3000 and 4000. The values ofL are in simulator ticks where the

average edge delay is about 1100 time units.

The data generator had two parameters – (1) noise in the data varied between 0%, 5%, 10%

and 20%, and (2) number of attributes (10, 15, and 20).

Finally, as a system parameter we varied the number of peers from 50 to 1500.

Unless otherwise stated, we have used the following defaultvalues:|Si| = 500, depth of the

tree = 3, noise =10%, number of attributes = 10, number of peers = 1000, andL = 1000

(where the average edge delay is about 1100 time units). Under these values, for a broadcast

algorithm, the number of normalized messages is 2 while the number of normalized bytes is

10× 4× 2 = 80.

In all our experiments we have observed the following phenomenon. As soon as the epoch

changes, the accuracy of the algorithm goes down and the communication increases since the

algorithm adapts to the new distribution. As soon as the distribution becomes stable, the message

overhead reduces and the accuracy improves. To take note of this, we have plotted both the overall

and stationary behavior of the algorithm with respect to thedifferent parameters.

In the next section we first present the accuracy of theP 2DTI compared to a standard decision

tree algorithm. Following, we present the performance of the P 2DTI algorithm on the different

parameters.

D. Performance Evaluation

1) Accuracy ofP 2DTI on Centralized Dataset:The proposed distributed decision tree algo-

rithm P 2DTI deviates from the standard decision tree induction algorithm in two major ways:

(1) instead of using entropy or gini-index as the splitting criteria, we have used misclassification

error, and (2) as a stopping rule, we have limited the depth ofour trees (which effects the

communication complexity of our distributed algorithm as we show later).

In this section we report the results of the comparison ofP 2DTI algorithm to that of an off-the-

shelf entropy-based pruned decision tree J48 implemented in Weka [50] on a centralized dataset.
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0   5 10 20
50

60

70

80

90

100

Percentage noise

A
cc

ur
ac

y

J48 (weka)
Pyramid

(c) Depth ofP 2DTI = 7.

Fig. 4. Comparison of accuracy (using 10-fold cross validation) of J48 weka tree andP 2DTI on centralized dataset. The three
graphs correspond to depths of 3, 5 and 7 ofP

2DTI.

There are 500 tuples and 10 attributes in the centralized dataset generated using the scheme

discussed in Section VI-B. We have varied the noise in the data ranging from 0% to 20%.

For both the trees, the accuracy is measured using 10-fold cross validation. Figure 4 presents

the comparative study. The red circles correspond to the accuracy of J48 and the blue squares

correspond to the accuracy ofP 2DTI. These set of results point out some important facts:

1) In most casesP 2DTI results in a loss of accuracy over J48. This is not unexpecteddue to

the restrictive nature of the decision tree induction algorithm employed. But the accuracy

loss is modest. Moreover, due to the heavy communication andsynchronization cost of

centralizing and applying J48, this modest loss of accuracyseems quite reasonable.

2) The decrease in accuracy ofP 2DTI when going to depth 7 at high noise levels is likely

due to over-fitting (for the reasons already discussed. The possible reason is overfitting –

for depth of 3 the average number of tuples per leaf is 56 compared to only 3 tuples per

leaf for depth of 7.

Since limiting the depth affects the communication complexity of our distributed algorithm,

we will use depths of 3, as it produces quite accurate trees for all noise levels.

2) Scalability: Our first set of results demonstrate the scalability of theP 2DTI algorithm

as the number of peers is varied from 50 to 1500. The number of peers has no effect on

the performance as we see in Figure 5. In Figure 5(a), both theoverall and stationary accuracy

converges to a constant as the number of peers is increased. Normalized messages and normalized

bytes transferred, as shown in Figures 5(b) and 5(c), changes very slowly and almost remains a

constant as the number of peers is increased. Since our algorithm relies on some data dependent
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rules to prune messages, the total number of peers has littleeffect on the quality or the cost.

Hence the algorithm is highly scalable. Note that for an algorithm which broadcasts sufficient

statistics to maintain the trees the normalized messages and normalized bytes transferred would

be 2 and 80 respectively. Our results show a significant improvement.
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Fig. 5. Dependence of the quality and cost of the decision tree algorithm on the number of peers.

3) Data Tuples per Peer:In this section we have experimented with the first algorithm

parameter – the number of tuples in the local dataset|Si|. Figure 6 summarizes the results.

Stationary accuracy increases from 72% to 85%, stationary messages decrease from 1.21 to 0.32

and stationary bytes reduce from 20.9 to 4.24 as the size of the local dataset is increased from

250 tuples per peer to 4000 tuples per peer. This is true sincewith increasing|Si|, the global

tree is induced on a larger dataset, leading to better accuracy. Moreover, with increasing|Si|,

the algorithm can capture more variability in the distribution (since the majority votes are run

on a larger dataset) leading to lower communication. Even for the smallest dataset size of 250,

the normalized messages is 1.21 and the stationary bytes is 20.9, both are far less than 2 and

80 respectively considering the broadcast algorithm.

4) Depth of Tree:As pointed out in Section VI-D.1, depth of the decision tree induced by

the P 2DTI algorithm affects the cost of the algorithm. In this section, we validate this result.

The experimental results are shown in Figure 7. As shown, theeffect of the depth is more

pronounced on the communication than on the quality of the result. Accuracy increases from

72% to 81% as the depth is increased from 2 to 5. However for a depth of 7, the accuracy of

the P 2DTI decreases by 2% compared to a depth of 5. The reason for this isoverfitting of the

domain. As the depth is increased, there is potentially moreties for every majority vote leading
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Fig. 6. Dependence of the quality and cost of the decision tree algorithm on|Si|.

to a message explosion. As the depth is increased from 2 to 7, the stationary messages increase

from 0.71 to 1.56. The stationary bytes goes up to 58.71, for adepth of 7.

Although the induced tree of depth 5 is around 3% more accurate than the tree of depth 3,

we have used trees of depth 3 in all as a baseline. This is because a tree of depth 3 has far

lower communication overhead than a tree of depth 5 (0.89 normalized messages for depth of

3 compared to 1.19 normalized messages for depth of 5).
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Fig. 7. Dependence of the quality and cost of the decision tree algorithm on the depth of the induced tree.

5) Size of Leaky Bucket:The last algorithm parameter that we have experimented withis the

leaky bucket mechanism. In this section we present the effect of the size of the leaky bucket

|L| on the accuracy and the cost of theP 2DTI algorithm. Figure 8 summarizes the effect. As

shown in Figure 8(a), the stationary accuracy remains constant even as the size of the leaky

bucket is made twice or thrice of the edge delay (which is roughly 1100 time units). The overall
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quality degrades. This is exactly what we expect. As|L| is increased, for every epoch change,

the algorithm takes more time to converge, thereby carryinginaccurate results for a longer time.

For this reason the overall accuracy degrades. However, once the algorithm adapts to the new

distribution, a small number of messages is sufficient to maintain correctness. This is why the

leaky bucket has no effect on the stationary accuracy. Contrary to the quality, the cost reduces

drastically, from 0.98 stationary messages per peer for|L|=500 to 0.71 for|L|=4000. Similar is

the trend for the bytes transferred.
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Fig. 8. Dependence of the quality and cost of the decision tree algorithm on the size of the leaky bucket.

6) Noise in Data:In this section we vary one of the data parameters – noise. As the noise in

the data is increased from 0% to 20%, quality degrades and cost increases. This is demonstrated

in Figures 9. In Figure 9(a), the stationary accuracy decreases from 83% to approximately 75%.

The stationary messages increase from 0.52 to 1.24 and stationary bytes increase from 9.43 to

17.89 as demonstrated in Figures 9(b) and 9(c) respectively. This happens because with increasing

noise, every comparison consumes more resources to decide the better one and this decision can

often get flipped every time the data changes. As a result, thequality degrades and the cost

increases. The important observation here is that even for the highest noise, the number of bytes

transferred is 17.89, far less than the maximal allowable rate of 80.

7) Number of Attributes:The last parameter we varied is the number of attributes. We have

measured the effect in three different ways – (1) increasingthe number of attributes while

keeping the #tuples constant (Figures 10(a), 10(b) and 10(c)), (2) increasing the number of

attributes while increasing the #tuples linearly with the #attributes (Figures 10(d), 10(e) and

10(f)), and (3) increasing the number of attributes while increasing the #tuples linearly with the
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Fig. 9. Dependence of the quality and cost of the decision tree algorithm on noise in the data.

size of the domain (Figures 10(g), 10(h) and 10(i)).

As the number of the attributes is increased keeping the number of tuples constant (at 500

tuples per peer), the stationary accuracy decreases from 73% to 63% (Figure 10(a)). Similarly

Figures 10(b) and 10(c) demonstrate that the normalized messages increase from 0.9 to 1.25

and the normalized bytes increase from approximately 17 to 92. Note that for the number of

attributes=10, 15 and 20, the maximal bytes transferred fora broadcast-based algorithm is 80,

120 and 160 respectively.

The second set of Figures 10(d), 10(e) and 10(f) show the effect on the number of attributes as

the number of tuples is increased linearly with the number ofattributes (such that, #tuples=50×

#attributes. For 10 attributes we have used 500 data tuples per peer. We have increased it to 750

tuples for 15 attributes and further increased it to 1000 tuples for 20 attributes. The accuracy

degrades from 73% to 63%. The more interesting is the effect on the communication. The

stationary messages increase very slowly (from 0.89 to 0.92), demonstrating the fact that the

algorithm is scalable.

One last variation is the relationship of number of attributes when the number of tuples is

increased in proportion to the size of the domain (#tuples=1%×2#attributes). For 10, 15 and

20 attributes, the number of tuples per peer we used are 10, 330 and 10000 respectively. The

accuracy improves and the normalized messages decrease as the number of attributes is increased.

The number of bytes transferred increases, though for number of attributes=20, it is still well

below what would have been used for a broadcast-based algorithm.
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Fig. 10. Dependence of the quality and cost of the decision tree algorithm on the number of attributes.

E. Discussion

In the previous section we have presented the quality and thecost of theP 2DTI algorithm

on the different algorithm parameters. Our findings can be summerized as follows.

• In most casesP 2DTI results in a loss of accuracy over J48. This is because of the simpler

gain function that we have chosen. However, due to the heavy communication and synchro-

nization cost of centralizing and applying J48, the observed modest loss of accuracy seems

quite reasonable.

• TheP 2DTI algorithm is highly scalable with respect to the number of peers. As shown by

our scalability experiments, increasing the number of peers has little effect on the quality
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or cost.

• Increasing the number of tuples increases the accuracy of the tree and decreases the cost.

Even for tuples per peer = a quarter of the size of the domain (250 tuples per peer for 10

attributes), the monitoring cost is 1.25 – less than the maximal allowable cost of 2.0.

• Note that every increment in the number of attributes doubles the search space. The quality

and cost of our algorithm remains moderate even of the numberof attributes is doubled.

• Noise in the data degrades the quality and cost – it can be compensated either by increasing

the number of tuples or increasing the depth of the tree. Depth of three seems to a be

moderate choice since the accuracy is good and the monitoring cost is low as well. Increasing

the depth improves the accuracy with a heavy penalty on the cost.

VII. CONCLUSION

In this paper we presented an asynchronous scalable algorithm for inducing a decision tree

in a large P2P network. With sufficient time, the algorithm converges to the same tree given

all the data of all the peers. To the best of the authors’ knowledge this is one of the first

attempts on developing such an algorithm. The algorithm is suitable for scenarios in which the

data is distributed across a large P2P network as it seamlessly handles data changes and node

failures. We have conducted extensive experiments with synthetic dataset to analyze the different

parameters of the algorithms. The results point out that thealgorithm is accurate and suffers

moderate communication overhead compared to a broadcast-based algorithm. The algorithm is

also highly scalable both with respect to the number of peersand number of attributes.

This paper relies on the majority voting algorithm as a building block. The majority voting

protocol is a highly efficient and scalable protocol, mainlydue to the existence of local pruning

rules. In the literature such algorithms are commonly referred to as local algorithms. Previous

work on exact local algorithms mainly focused on developingefficient building blocks such as

majority voting [8], L2-thresholding [40] and more. In thispaper, similar to [35], we leverage

these powerful building blocks to show how more complex datamining algorithms can be

developed for large-scale distributed systems. In the process we have also shown how complex

functions such as entropy need to be simplified to misclassification gain in order to aid in the

algorithm development process.

Most of these algorithms use the term ‘local’ in an intuitivesense; they rely on experimental
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results to claim the efficiency and scalability of the algorithms. Very recently, researchers have

proposed more formal definitions of local algorithms as well[5]. We do not prove the locality

of our algorithm since it is not the central focus of our paper. We plan to explore it in the future

along with developing other techniques of inductive learning such as Naive Bayes,k-nearest

neighbor, SVM’s and more.
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APPENDIX

A decision tree induction algorithm cannot be considered complete without a pruning technique

stating which branches over-fit the data. Pruning techniques can be divided betweenpost-pruning

– removing nodes of whole subtrees after the tree is induced –andpre-pruning – instructing the

algorithm which nodes not to develop in the first place. Sincethe P 2DTI algorithm works on

streaming data the idea of first inducing the tree and afterwards pruning it seems less suitable

(because there is no specific point in time in which pruning should begin). We therefore focus on

pre-pruning heuristics. Several common pre-pruning techniques can easily be adopted byP 2DTI,

because they use simple statistics. We will describe three such techniques.

The simplest pre-pruning technique is to terminate new leave development which the tree

reaches a pre-specified depth. The biggest benefit of this technique is that it limits the resources

used by the algorithm. This technique is trivial to implement as part ofP 2DTI and performs

quite favorably in experiments. It’s greatest disadvantage is that the depth limit has to be found

in trial and error, and is the same for all leaves.
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A second popular pre-pruning technique is to require a minimal degree of gain from every split

in the tree, or abort the split if the gain is below the required number. Splitting any given node

according to an attributeAi will have non-negative gain if|xi
00 + xi

10 − xi
01 − xi

11|−|x
i
00 − xi

01|−

|xi
10 − xi

11| ≥ 0. Let si = sign (xi
00 + xi

10 − xi
01 − xi

11), the previous formula can be rewritten

si (xi
00 + xi

10 − xi
01 − xi

11) − si
0 (xi

00 − xi
01) − si

1 (xi
10 − xi

11) ≥ 0. Just as in Section V-A.2, this

formula can be evaluated by holding eight different majority votes per attribute, one for every

possible value ofsi, si
0, andsi

1, and then selecting one of them according to the ad hoc resultof

separate votes on the values ofsi, si
0, andsi

1. Notice that votes forsi
0 andsi

1 are held anyhow.

Also, the input for the vote forsi is independent ofi so just one extra vote is needed for allAi.

Furthermore, for all nodes but the root, a vote on the value ofsi is actually held in the context

of the parent of the node.

A third pruning technique is to require non-negative gain from every split when this gain is

measured on a test set rather than on the learning set. This method introduces little complexity

beyond the described above: the difference is that each node, starting with the root, should be

associated with an additional set of examples and that the input to the votes regarding pruning

be taken from that set. Notice that the input to votes of thesi type should still be taken from

the learning set.
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