
1

A Generic Local Algorithm for Mining Data
Streams in Large Distributed Systems

Ran Wolff, Kanishka Bhaduri, and Hillol KarguptaSenior Member, IEEE

Abstract— In a large network of computers or wireless sensors,
each of the components (henceforth, peers) has some data about
the global state of the system. Much of the system’s functionality
such as message routing, information retrieval and load sharing
relies on modeling the global state. We refer to the outcome of the
function (e.g., the load experienced by each peer) as themodel of
the system. Since the state of the system is constantly changing,
it is necessary to keep the models up-to-date.

Computing global data mining models e.g. decision trees,k-
means clustering in large distributed systems may be very costly
due to the scale of the system and due to communication cost,
which may be high. The cost further increases in a dynamic
scenario when the data changes rapidly. In this paper we describe
a two step approach for dealing with these costs. First, we
describe a highly efficient local algorithm which can be used
to monitor a wide class of data mining models. Then, we
use this algorithm as a feedback loop for the monitoring of
complex functions of the data such as itsk-means clustering. The
theoretical claims are corroborated with a thorough experimental
analysis.

I. I NTRODUCTION

In sensor networks, peer-to-peer systems, grid systems, and
other large distributed systems there is often the need to
model the data that is distributed over the entire system. In
most cases, centralizing all or some of the data is a costly
approach. When data is streaming and system changes are
frequent, designers face a dilemma: should they update the
model frequently and risk wasting resources on insignificant
changes, or update it infrequently and risk model inaccuracy
and the resulting system degradation.

At least three algorithmic approaches can be followed in
order to address this dilemma: Theperiodic approach is to
rebuild the model from time to time. Theincrementalapproach
is to update the model with every change of the data. Last,
the reactive approach, what we describe here, is to monitor
the change and rebuild the model only when it no longer
suits the data. The benefit of the periodic approach is its
simplicity and its fixed costs in terms of communication and
computation. However, the costs are fixed independent of the

A preliminary version of this work was published in the Proceedings of
the 2006 SIAM Data Mining Conference (SDM’06).

Manuscript received ...; revised
Ran Wolff is with the Department of Management Information Systems,

Haifa University, Haifa-31905, Israel. Email:rwolff@mis.haifa.il. Kanishka
Bhaduri is with Mission Critical Technologies Inc at NASA Ames Research
Center, Moffett Field CA 94035. Email:kanishkabh@yahoo.com. Hillol Kar-
gupta is with the Department of Computer Science and Electrical Engineer-
ing, University of Maryland Baltimore County, Baltimore, MD 21250. E-
mail:hillol@cs.umbc.edu. Hillol Kargupta is also affiliated to AGNIK LLC,
Columbia, MD 21045. This work was done when Kanishka Bhaduriwas at
UMBC.

fact that the data is static or rapidly changing. In the former
case the periodic approach wastes resources, while on the latter
it might be inaccurate. The benefit of the incremental approach
is that its accuracy can be optimal. Unfortunately, coming
up with incremental algorithms which are both accurate and
efficient can be hard and problem specific. On the other hand,
model accuracy is usually judged according to a small number
of rather simple metrics (misclassification error, least square
error, etc.). If monitoring is done efficiently and accurately,
then the reactive approach can be applied to many different
data mining algorithm at low costs.

Local algorithms are one of the most efficient family of
algorithms developed for distributed systems. Local algorithms
are in-network algorithms in which data is never centralized
but rather computation is performed by the peers of the
network. At the heart of a local algorithm there is a data
dependent criteria dictating when nodes can avoid sending
updates to their neighbors. An algorithm is generally called
local if this criteria is independent with respect to the number
of nodes in the network. Therefore, in a local algorithm, it
often happens that the overhead is independent of the size of
the system. Primarily for this reason, local algorithms exhibit
high scalability. The dependence on the criteria for avoiding
to send messages also makes local algorithms inherently
incremental. Specifically, if the data changes in a way that
does not violate the criteria, then the algorithm adjusts tothe
change without sending any message.

Local algorithms were developed, in recent years, for a large
selection of data modeling problems. These include association
rule mining [1], facility location [2], outlier detection [3],
L2 norm monitoring [4], classification [5], and multivariate
regression [6]. In all these cases, resource consumption was
shown to converge to a constant when the number of nodes
is increased. Still, the main problem with local algorithms,
thus far, has been the need to develop one for every specific
problem.

In this work we make the following progress. First, we
generalize a common theorem underlying the local algorithms
in [1], [2], [4], [5], [6] extending it fromR to R

d. Next, we
describe a generic algorithm, relying on the said generalized
theorem, which can be used to compute arbitrarily complex
functions of the average of the data in a distributed system;
we show how the said algorithm can be extended to other
linear combinations of data, including weighted averages of
selections from the data. Then, we describe a general frame-
work for monitoring, and consequent reactive updating of any
model of horizontally distributed data. Finally, we describe the
application of this framework for the problem of providing a

2

k clustering which is a good approximation of thek-means
clustering of data distributed over a large distributed system.
Our theoretical and algorithmic results are accompanied with
a thorough experimental validation, which demonstrates both
the low cost and the excellent accuracy of our method.

The rest of this paper is organized as follows. The next
section describes our notations, assumptions, and the formal
problem definition. In Section III we describe and prove the
main theorem of this paper. Following, Section IV describes
the generic algorithm and its specification for the L2 thresh-
olding problem. Section V presents the reactive algorithmsfor
monitoring three typical data mining problems –viz. means
monitoring andk-means monitoring. Experimental evaluation
is presented in Section VI while Section VII describes related
work. Finally, Section VIII concludes the paper and lists some
prospective future work.

II. N OTATIONS, ASSUMPTIONS, AND PROBLEM

DEFINITION

In this section we discuss the notations and assumptions
which will be used throughout the rest of the paper. The main
idea of the algorithm is to have peers accumulate sets of input
vectors (or summaries thereof) from their neighbors. We show
that under certain conditions on the accumulated vectors a
peer can stop sending vectors to its neighbors long before it
collects all input vectors. Under these conditions one of two
things happens: Either all peers can compute the result from
the input vectors they have already accumulated or at least
one peer will continue to update its neighbors – and through
them the entire network – until all peers compute the correct
result.

A. Notations

Let V = {p1, . . . , pn} be a set of peers (we use the term
peers to describe the peers of a peer-to-peer system, motes of
a wireless sensor network, etc.) connected to one another via
an underlying communication infrastructure. The set of peers
with which pi can directly communicate,Ni, is known topi.
Assuming connectedness,Ni always containspi and at least
one more peer. Additionally,pi is given a time varying set of
input vectors inRd.

Peers communicate with one another by sending sets of
input vectors (below, we show that for our purposes statistics
on sets are sufficient). We denote byXi,j the latest set of
vectors sent by peerpi to pj . For ease of notation, we
denote the input ofpi (mentioned above)Xi,i. Thus,

⋃

pj∈Ni

Xj,i

becomes the latest set of input vectors known topi.
Assuming reliable messaging, once a message is delivered

both pi and pj know bothXi,j and Xj,i. We further define
four sets of vectors that are central to our algorithm.

Definition 2.1: The knowledgeof pi, is Ki =
⋃

pj∈Ni

Xj,i.

Definition 2.2: Theagreementof pi and any neighborpj ∈
Ni is Ai,j = Xi,j ∪Xj,i.

Definition 2.3: The withheld knowledgeof pi with respect
to a neighborpj is the subtraction of the agreement from the
knowledgeWi,j = Ki \ Ai,j .

Definition 2.4: Theglobal inputis the set of all inputsG =
⋃

pi∈V

Xi,i.

We are interested in inducing functions defined onG. Since
G is not available at any peer, we derive conditions onK, A
andW which will allow us to learn the function onG. Our
next set of definitions deal with convex regions which are a
central point of our main theorem to be discussed in the next
section.

A regionR ⊆ Rd is convex, if for every two pointsx, y ∈ R
and everyα ∈ [0, 1], the weighted averageα ·x+(1− α) ·y ∈
R. Let F be a function fromRd to an arbitrary domain
O. F is constant onR if ∀x, y ∈ R : F (x) = F (y).
Any set or regions{R1, R2, . . . } induces a cover ofRd,
R = {R1, R2, . . . , T} in which thetie regionT includes any
point of Rd which is not included by one of the other regions.
We denote a given coverRF respectiveof F if for all regions
except the tie regionF is constant. Finally, for anyx ∈ Rd

we denoteRF (x) the first region ofRF which includesx.

B. Assumptions

Throughout this paper, we make the following assumptions:
Assumption 2.1:Communication is reliable.
Assumption 2.2:Communication takes place over a span-

ning communication tree.
Assumption 2.3:Peers are notified on changes in their own

dataxi, and in the set of their neighborsNi.
Assumption 2.4:Input vectors are unique.
Assumption 2.5:A respective coverRF can be precom-

puted forF .
Note that assumption 2.1 can easily be enforced in all ar-

chitectures as the algorithm poses no requirement for ordering
or timeliness of messages. Simple approaches, such as piggy-
backing message acknowledgement can thus be implemented
in even the most demanding scenarios – those of wireless
sensor networks. Assumption 2.3 can be enforced using a
heartbeat mechanism. Assumption 2.2 is the strongest of the
three. Although solutions that enforce it exist (see for example
[7]), it seems a better solution would be to remove it altogether
using a method as described by Lisset al. [8]. However,
describing such a method in this generic setting is beyond the
scope of this paper. Assumption 2.4 can be enforced by adding
the place and time of origin to each point and then ignoring
it in the calculation ofF . Assumption 2.5 does not hold for
any function. However, it does hold for many interesting ones.
The algorithm described here can be sensitive to an inefficient
choice of respective cover.

Note that, the correctness of the algorithm cannot be guar-
anteed in case the assumptions above do not hold. Specifically,
duplicate counting of input vectors can occur if Assumption
2.2 does not hold — leading to any kind of result. If messages
are lost then not even consensus can be guaranteed. The only
positive result which can be proved quite easily is that if at
any time the communication infrastructure becomes a forest,
any tree will converge to the value of the function on the input
of the peers belonging to that tree.

3

C. Sufficient statistics

The algorithm we describe in this paper deals with com-
puting functions of linear combinations of vectors inG. For
clarity, we will focus on one such combination – the average.
Linear combinations, and the average among them, can be
computed from statistics. If each peer learns any input vector
(other than its own) through just one of its neighbors, then
for the purpose of computingKi, Ai,j , andWi,j , the various
Xi,j can be replaced with their average,Xi,j , and their size,
|Xi,j |. To make sure that happens, all that is required from
the algorithm is that the content of every message sent bypi

to its neighborpj would not be dependent on messagespj

previously sent topi. In this way, we can rewrite:

• |Ki| =
∑

pj∈Ni

|Xj,i|

• |Ai,j | = |Xi,j |+ |Xj,i|
• |Wi,j | = |Ki| − |Ai,j |

• Ki =
∑

pj∈Ni

|Xj,i|

|Ki|
Xj,i

• Ai,j =
|Xi,j |
|Ai,j |

Xi,j +
|Xj,i|
|Ai,j |

Xj,i

• Wi,j = |Ki|
|Wi,j |

Ki −
|Ai,j |
|Wi,j |

Ai,j or nil in case|Wi,j | = 0 .

D. Problem Definition

We now formally define the kind of computation provided
by our generic algorithm and our notion of correct and of
accurate computation.

Problem definition: Given a functionF , a spanning network
treeG(V, E) which might change with time, and a set of time
varying input vectorsXi,i at everypi ∈ V , the problem is to
compute the value ofF over the average of the input vectors
G.

While the problem definition is limited to averages of data
it can be extended to weighted averages by simulation. If a
certain input vector needs to be given an integer weightω
then ω peers can be simulated inside the peer that has that
vector and each be given that input vector. Likewise, if it is
desired that the average be taken only over those inputs which
comply with some selection criteria then each peer can apply
that criteria toXi,i apriori and then start off with the filtered
data. Thus, the definition is quite conclusive.

Because the problem is defined for data which may change
with time, a proper definition of algorithmic correctness must
also be provided. We define theaccuracyof an algorithm as
the number of peers which compute the correct result at any
given time, and denote an algorithm asrobust if it presents
constant accuracy when faced with stationarily changing data.
We denote an algorithm aseventually correctif, once the
data stops changing, and regardless of previous changes, the
algorithm is guaranteed to converge to a hundred percent
accuracy.

Finally, the focus of this paper is onlocal algorithms. As
defined in [1], a local algorithm is one whose performance
is not inherently dependent on the system size,i.e., in which
|V | is not a factor in any lower bound on performance. Notice
locality of an algorithm can be conditioned on the data. For
instance, in [1] a majority voting algorithm is described which

may perform as badly asO
(

|V |2
)

in case the vote is tied.
Nevertheless when the vote is significant and the distribution
of votes is random the algorithm will only consume constant
resources, regardless of|V |. Alternative definitions exist for
local algorithms and are thoroughly discussed in [9] and [10].

III. M AIN THEOREMS

The main theorem of this paper lay the background for
a local algorithm which guarantees eventual correctness in
the computation of a wide range of ordinal functions. The
theorem generalizes the local stopping rule described in [1]
by describing a condition which bounds the whereabouts of
the global average vector inRd depending on theKi Ai,j and
Wi,j of each peerpi.

Theorem 3.1:[Main Theorem] Let G(V, E) be a spanning
tree in whichV is a set of peers and letXi,i be the input of
pi, Ki be its knowledge, andAi,j andWi,j be its agreement
and withheld knowledge with respect to a neighborpj ∈ Ni

as defined in the previous section. LetR ⊆ Rd be any convex
region. If at a given time no messages traverse the network
and for allpi andpj ∈ Ni Ki,Ai,j ∈ R and eitherWi,j = ∅
orWi,j ∈ R as well, thenG ∈ R.

Proof: Consider a communication graphG(V, E) in
which for some convexR and everypi andpj such thatpj ∈
Ni it holds thatKi,Ai,j ∈ R and eitherWi,j = ∅ orWi,j ∈ R
as well. Assume an arbitrary leafpi is eliminated and all of
the vectors inWi,j are added to its sole neighborpj . The
new knowledge ofpj is K′

j = Kj ∪Wi,j . Since by definition
Kj ∩ Wi,j = ∅, the average vector of the new knowledge of
pj , K′

j , can be rewritten asKj ∪Wi,j = α·Kj +(1−α)·Wi,j

for some α ∈ [0, 1]. Since R is convex, it follows from
Kj ,Wi,j ∈ R thatK′

j ∈ R too.
Now, consider the change in the withheld knowledge of

pj with respect to any other neighborpk ∈ Nj resulting from
sending such a message. The newW ′

j,k =Wi,j∪Wj,k. Again,
sinceWi,j ∩Wj,k = ∅ and sinceR is convex it follows from
Wi,j ,Wj,k ∈ R thatW ′

j,k ∈ R as well. Finally, notice the
agreements ofpj with any neighborpk exceptpi do not change
as a result of such message.

Hence, following elimination ofpi we have a communica-
tion tree with one less peer in which the same conditions still
apply to every remaining peer and its neighbors. Proceeding
with elimination we can reach a tree with just one peerp1,
still assured thatK1 ∈ R. Moreover, since no input vector was
lost at any step of the eliminationK1 = G. Thus, we have that
under the said conditionsG ∈ R.

Theorem 3.1 is exemplified in Figure 1. Three peers are
shown, each with a drawing of its knowledge, it agreement
with its neighbor or neighbors, and the withheld knowledge.
Notice the agreementA1,2 drawn forp1 is identical toA2,1 at
p2. For graphical simplicity we assume all of the vectors have
the same weight – and avoid expressing it. We also depict
the withheld knowledge vectors twice – once as a subtraction
of the agreement from the knowledge – using a dotted line –
and once – shifted to the root – as measured in practice. If
the position of the three peers’ data is considered vis-a-vis the
circular region then the conditions of Theorem 3.1 hold.

4

Now, assume what would happen when peerp1 is elimi-
nated. This would mean that all of the knowledge it withholds
from p2 is added toK2 and toW2,3. Since we assumed
|W1,2| = |K2| = 1 the result is simply the averaging of the
previousK2 andW1,2. Notice both these vectors remain in
the circular region.

Lastly, asp2 is eliminated as well,W2,3 – which now also
includesW1,2 – is blended into the knowledge ofp3. Thus,K3

becomes equal toG. However, the same argument, as applied
in the elimination ofp1, assures the newK3 is in the circular
region as well.

(a) Three peersp1, p2 andp3 wherep2 is connected to both other peers.

(b) After elimination ofp1.

(c) After elimination ofp2.

Fig. 1. At Figure 1(a) the data at all three peers concur with the conditions
of Theorem 3.1 with respect to the circle – which is a convex region. If
subsequently peerp1 is eliminated andW1,2 sent top2 then A2,3 is not
affected andK2 and W2,3 do change but still remain in the same region.
When subsequently, in Figure 1(c),p2 is eliminated againK3 = G which
demonstratesG is in the circular region.

To see the relation of Theorem 3.1 to the previous the
Majority-Rule algorithm [1], one can restate the majority
voting problem as deciding whether the average of zero-one
votes is in the segment[0, λ) or the segment[λ, 1]. Both
segments are convex, and the algorithm only stops if for all
peers the knowledge is further away fromλ than the agreement
– which is another way to say the knowledge, the agreement,
and the withheld data are all in the same convex region.
Therefore, Theorem 3.1 generalizes the basic stopping rule
of Majority-Rule to any convex region inRd.

Two more issues arise from this comparison: one is that in
Majority-Rule the regions used by the stopping rule coincide
with the regions in whichF is constant. The other is that in
the Majority-Rule, every peer decides according to which of
the two regions it should try to stop by choosing the region
which includes the agreement. Since there are just two non-

overlapping region, peers reach consensus on the choice of
region and, hence, on the output.

These two issues become more complex for a generalF
over Rd. First, for many interestingF , the regions in which
the function is constant are not all convex. Also, there could
be many more than two such regions, and the selection of the
region in which the stopping rule needs be evaluated becomes
non-trivial.

We therefore provide two lemmas which provide a way to
deal with the selection problem and an answer to the case
where in which a function cannot be neatly described as a
partitioning ofRd to convex regions in which it is constant.

Lemma 3.2:[Consensus]Let G(V, E) be a spanning tree
in which V is a set of peers and letXi,i be the input ofpi,
Ki be its knowledge, andAi,j andWi,j be its agreement and
withheld knowledge with respect to a neighborpj ∈ Ni as
defined in the previous section. LetRF = {R1, R2, . . . , T}
be aF -respective cover, and letRF (x) be the first region in
RF which containsx. If for every peerpi and everypj ∈ Ni

RF

(

Ki

)

= RF

(

Ai,j

)

then for every two peerspi and pℓ,
RF

(

Ki

)

= RF

(

Kℓ

)

.
Proof: We prove this by contradiction. Assume that

the result is not true. Then there are two peerspi and
pℓ with RF

(

Ki

)

6= RF

(

Kℓ

)

. Since the communication
graph is a spanning tree, there is a path frompi to pℓ and
somewhere along that path there are two neighbor peers,pu

andpv such thatRF

(

Ku

)

6= RF

(

Kv

)

. Notice, however, that
Au,v = Av,u. Therefore, eitherRF

(

Ku

)

6= RF

(

Au,v

)

or
RF

(

Kv

)

6= RF

(

Av,u

)

— a contradiction.
Building on Lemma 3.2 above, a variant of Theorem 3.1 can

be proved which makes use of a respective cover to compute
the value ofF .

Theorem 3.3:Let G(V, E) be a spanning tree in whichV
is a set of peers and letXi,i be the input ofpi, Ki be its
knowledge, andAi,j andWi,j be its agreement and withheld
knowledge with respect to a neighborpj ∈ Ni as defined
in the previous section. LetRF = {R1, R2, . . . , T} be a
respective cover, and letRF (x) be the first region inRF

which containsx. If for every peerpi and everypj ∈ Ni

RF

(

Ki

)

= RF

(

Ai,j

)

6= T and if furthermore eitherWi,j =
∅ or Wi,j ∈ RF

(

Ki

)

then for everypi, F(Ki) = F(G).
Proof: From Lemma 3.2 it follows that all peers compute

the sameRF

(

Ki

)

. Thus, since this region is notT , it must be
convex. It therefore follows from Theorem 3.1 thatG is, too,
in RF

(

Ki

)

. Lastly, sinceRF is a respective coverF must
be constant on all regions exceptT . Thus, the value ofF(G)
is equal to that ofF(Ki), for anypi.

IV. A G ENERIC ALGORITHM AND ITS INSTANTIATION

This section describes a generic algorithm which relies
on the results presented in the previous section to compute
the value of a given function of the average of the input
vectors. This generic algorithm is both local and eventually
correct. The section proceeds to exemplify how this generic
algorithm can be used by instantiating it to compute whether
the average vector has length above a given thresholdF (x) =

5

{

0 ‖x‖ ≤ ǫ

1 ‖x‖ > ǫ
. L2 thresholding is both an important problem

in its own right and can also serve as the basis for data mining
algorithms as will be described in the next section.

A. Generic Algorithm

The generic algorithm, depicted in Algorithm 1, receives as
input the functionF , a respective coverRF , and a constant,
L, whose function is explained below. Each peerpi outputs,
at every given time, the value ofF based on its knowledge
Ki.

The algorithm is event driven. Events could be one of the
following: a message from a neighbor peer, a change in the
set of neighbors (e.g., due to failure or recovery), a change in
the local data, or the expiry of a timer which is always set to
no more thanL. On any such eventpi calls theOnChange
method. When the event is a messageX, |X | received from
a neighborpj , pi would updateXi,j to X and |Xi,j | to |X |
before it callsOnChange.

The objective of theOnChangemethod is to make certain
that the conditions of Lemma 3.3 are maintained for the peer
that runs it. These conditions requireKi, Ai,j , andWi,j (in
case it is not null) to all be inRF

(

Ki

)

, which is not the tie
regionT . Of the three,Ki cannot be manipulated by the peer.
The peer thus manipulates bothAi,j , andWi,j by sending a
message topj , and subsequently updatingXi,j .

In caseRF

(

Ki

)

6= T one way to adjustAi,j andWi,j so
that the conditions of Lemma 3.3 are maintained is to send
the entireWi,j to pj . This would makeAi,j equal toKi, and
therefore makeAi,j equal toKi and inRF

(

Ki

)

. Additionally,
Wi,j becomes empty. However, this solution is one of the
many possible changes toAi,j andWi,j , and not necessarily
the optimal one. We leave the method of finding a value for
the next messageXi,j which should be sent bypi unspecified
at this stage, as it may depend on characteristics of the specific
RF .

The other possible case is thatRF

(

Ki

)

= T . SinceT is
always the last region ofRF , this meansKi is outside any
other regionR ∈ RF . SinceT is not necessarily convex, the
only option which will guarantee eventual correctness in this
case is ifpi sends the entire withheld knowledge to every
neighbor it has.

Lastly, we need to address the possibility that although
|Wi,j | = 0 we will haveAi,j which is different fromKi.
This can happen,e.g., when the withheld knowledge is sent
in its entirety and subsequently the local data changes. Notice
this possibility results only from our choice to use sufficient
statistics rather than sets of vectors: Had we used sets of
vectors,Wi,j would not have been empty, and would fall into
one of the two cases above. As it stands, we interpret the case
of non-emptyWi,j with zero |Wi,j | as ifWi,j is in T .

It should be stressed here that if the conditions of Lemma
3.3 hold the peer does not need to do anything even if its
knowledge changes. The peer can rely on the correctness of
the general results from the previous section which assure that
if F

(

Ki

)

is not the correct answer then eventually one of its
neighbors will send it new data and changeKi. If, one the

other hand, one of the aforementioned cases do occur, then
pi sends a message. This is performed by theSendMessage
method. IfKi is in T thenpi simply sends all of the withheld
data. Otherwise, a message is computed which will assureAi,j

andWi,j are inRF

(

Ki

)

.
One last mechanism employed in the algorithm is a “leaky

bucket” mechanism. This mechanism makes certain no two
messages are sent in a period shorter than a constantL. Leaky
bucket is often used in asynchronous, event-based systems to
prevent event inflation. Every time a message needs to be sent,
the algorithm checks how long has it been since the last one
was sent. If that time is less thanL, the algorithm sets a timer
for the reminder of the period and callsOnChangeagain when
the timer expires. Note that this mechanism does not enforce
any kind of synchronization on the system. It also does not
affect correctness: at most it can delay convergence because
information would propagate more slowly.

Algorithm 1 Generic Local Algorithm

Input of peer pi: F , RF = {R1, R2, . . . , T}, L, Xi,i, and
Ni

Ad hoc output of peer pi: F
(

Ki

)

Data structure for pi: For eachpj ∈ Ni Xi,j , |Xi,j |, Xj,i,
|Xi,j |, last message
Initialization: last message← −∞
On receiving a messageX, |X | from pj :
– Xj,i ← X, |Xj,i| ← |X |
On change inXi,i, Ni, Ki or |Ki|: call OnChange()
OnChange()
For eachpj ∈ Ni:
– If one of the following conditions occur:
– 1.RF

(

Ki

)

= T and eitherAi,j 6= Ki or |Ai,j | 6= |Ki|
– 2. |Wi,j | = 0 andAi,j 6= Ki

– 3.Ai,j 6∈ RF

(

Ki

)

or Wi,j 6∈ RF

(

Ki

)

– then
– – call SendMessage(pj)
SendMessage(pj):
If time ()− last message ≥ L
– If RF

(

Ki

)

= T then the newXi,j and |Xi,j | areWi,j

and |Wi,j |, respectively
– Otherwise compute newXi,j and |Xi,j | such that
Ai,j ∈ RF

(

Ki

)

and eitherWi,j ∈ RF

(

Ki

)

or |Wi,j | = 0
– last message← time ()
– SendXi,j , |Xi,j | to pj

Else
– Wait L− (time ()− last message) time units and then
call OnChange()

B. Eventual correctness

Proving eventual correctness requires showing that if both
the underlying communication graph and the data at every peer
cease to change then after some length of time every peer
would output the correct resultF

(

G
)

; and that this would
happen forany static communication treeG(V, E), any static
dataXi,i at the peers, and any possible state of the peers.

6

Proof: [Eventual Correctness] Regardless of the state of
Ki, Ai,j , Wi,j , the algorithm will continue to send messages,
and accumulate more and more ofG in eachKi until one of
two things happens: One is that for every peerKi = G and
thusAi,j = Ki for all pj ∈ Ni. Alternatively, for everypi Ai,j

is inRF

(

Ki

)

, which is different thanT , andWi,j is either in
RF

(

Ki

)

as well or is empty. In the former case,Ki = G, so
every peer obviously computesF

(

Ki

)

= F
(

G
)

. In the latter
case, Theorem 3.1 dictates thatG ∈ Rℓ, soF

(

Ki

)

= F
(

G
)

too. Finally, provided that every message sent in the algorithm
carries the information of at least one input vector to a peer
that still does not have it, the number of messages sent between
the time the data stops changing and the time in which every
peer has the data of all other peers is bounded byO

(

|V |2
)

.

C. Local L2 Norm Thresholding

Following the description of a generic algorithm, specific
algorithms can be implemented for various functionsF . One
of the most interesting functions (also dealt with in our
previous paper [4]) is that of thresholding the L2 norm of
the average vector, i.e., deciding if

∥

∥G
∥

∥ ≤ ǫ.
To produce a specific algorithm from the generic one, the

following two steps need to be taken:

1) A respective coverRF , needs to be found
2) A method for findingXi,j and|Xi,j | which assures that

bothAi,j andWi,j are inR needs to be formulated

In the case of L2 thresholding, the area for whichF outputs
true – the inside of anǫ circle – is convex. This area is denoted
Rin. The area outside theǫ-circle can be divided by randomly
selecting unit vectorŝu1, . . . , ûℓ and then drawing the half-
spacesHj = {~x : ~x · ûj ≥ ǫ}. Each half-space is convex.
Also, they are entirely outside theǫ circle, soF is constant on
every Hj . {Rin, H1, . . . , Hℓ, T } is, thus, a respective cover.
Furthermore, by increasingℓ, the area between the halfspaces
and the circle or the tie area can be minimized to any desired
degree.

It is left to describe how theSendMessagemethod com-
putes a message that forcesAi,j andWi,j into the region
which containsKi if they are not in it. A related algorithm,
Majority-Rule [1], suggests sending all of the withheld knowl-
edge in any case. However, experiments with dynamic data
hint this method may be unfavorable. If all or most of the
knowledge is sent and the data later changes the withheld
knowledge becomes the difference between the old and the
new data. This difference tends to be far more noisy than the
original data. Thus, while the algorithm makes certainAi,j and
Wi,j are brought into the same region asKi, it still makes an
effort to maintain some withheld knowledge.

Although it may be possible to optimize the size of|Wi,j |
we take the simple and effective approach of testing an
exponentially decreasing sequence of|Wi,j | values, and then
choosing the first such value satisfying the requirements for
Ai,j andWi,j . When a peerpi needs to send a message, it first

sets the newXi,j to |Ki|Ki−|Xj,i|Xj,i

|Ki|−|Xj,i|
. Then, it tests a sequence

of values for|Xi,j |. Clearly, |Xi,j | = |Ki| − |Xj,i| translates

to an empty withheld knowledge and must concur with the
conditions of Lemma 3.3. However, the algorithm begins with
|Xi,j | =

|Ki|−|Xj,i|
2

and only gradually increases the weight,
trying to satisfy the conditions without sending all data.

Algorithm 2 Local L2 Thresholding
Input of peer pi: ǫ, L, Xi,i, Ni, ℓ
Global constants:A random seeds
Data structure for pi: For eachpj ∈ Ni Xi,j , |Xi,j |, Xj,i,
|Xi,j |, last message
Output of peer pi: 0 if

∥

∥Ki

∥

∥ ≤ ǫ, 1 otherwise
Computation of RF :
Let Rin = {~x : ‖~x‖ ≤ ǫ}
Let û1, . . . , ûℓ be pseudo-random unit vectors and let
Hj = {~x : ~x · ûj ≥ ǫ}
RF = {Rin, H1, . . . , Hℓ, T }.
Computation of |Xi,j | and Xi,j :

Xi,j ←
|Ki|Ki−|Xj,i|Xj,i

|Ki|−|Xj,i|

w ← |X | ← |Ki| − |Xj,i|
Do
– w ← ⌊w

2
⌋

– |Xi,j | ← |Ki| − |Xj,i| − w
While (Ai,j 6∈ RF

(

Ki

)

orWi,j 6∈ RF

(

Ki

)

and |Wi,j | 6= 0)
Initialization: last message← −∞, computeRF

On receiving a messageX, |X | from pj :
– Xj,i ← X, |Xj,i| ← |X |
On change inXi,i, Ni, Ki or |Ki|: call OnChange()
OnChange()
For eachpj ∈ Ni:
– If one of the following conditions occur:
– 1.RF

(

Ki

)

= T and eitherAi,j 6= Ki or |Ai,j | 6= |Ki|
– 2. |Wi,j | = 0 andAi,j 6= Ki

– 3.Ai,j 6∈ RF

(

Ki

)

or Wi,j 6∈ RF

(

Ki

)

– then
– – call SendMessage(pj)
SendMessage(pj):
If time ()− last message ≥ L
– If RF

(

Ki

)

= T then the newXi,j and |Xi,j | areWi,j

and |Wi,j |, respectively
– Otherwise compute newXi,j and |Xi,j |
– last message← time ()
– SendXi,j , |Xi,j | to pj

Else
– Wait L− (time ()− last message) time units and then
call OnChange()

V. REACTIVE ALGORITHMS

The previous section described an efficient generic local
algorithm, capable of computing any function even when the
data and system are constantly changing. In this section, we
leverage this powerful tool to create a framework for producing
and maintaining various data mining models. This framework
is simpler than the current methodology of inventing a specific
distributed algorithm for each problem and may be as efficient
as its counterparts.

7

The basic idea of the framework is to employ a sim-
ple, costly, and possibly inaccurateconvergecastalgorithm
in which a single peer samples data from the network and
then computes, based on this “best-effort” sample, a data
mining model. Then, this model isbroadcast to the entire
network; again, a technique which might be costly. Once, every
peer is informed with the current model, a local algorithm,
which is an instantiation of the generic algorithm is used
in order to monitor the quality of the model. If the model
is not sufficiently accurate or the data has changed to the
degree that the model no longer describes it, the monitoring
algorithm alerts and triggers another cycle of data collection. It
is also possible to tune the algorithm by increasing the sample
size if the alerts are frequent and decreasing it when they
are infrequent. Since the monitoring algorithm is eventually
correct, eventual convergence to a sufficiently accurate model
is very likely. Furthermore, when the data only goes through
stationary changes, the monitoring algorithm triggers false
alerts infrequently and hence can be extremely efficient. Thus,
the overall cost of the framework is low.

We describe two instantiations of this basic framework, each
highlighting a different aspect. First we discuss the problem
of computing the mean input vector, to a desired degree of
accuracy. Then, we present an algorithm for computing a
variant of thek-means clusters suitable for dynamic data.

A. Mean Monitoring

The problem of monitoring the mean of the input vectors has
direct applications to many data analysis tasks. The objective
in this problem is to compute a vectorµ which is a good
approximation forG. Formally, we require that

∥

∥G − µ
∥

∥ ≤ ǫ
for a desired value ofǫ.

For any given estimateµ, monitoring whether
∥

∥G − µ
∥

∥ ≤
ǫ is possible via direct application of the L2 thresholding
algorithm from Section IV-C. Every peerpi subtractsµ from
every input vector inXi,i. Then, the peers jointly execute L2
Norm Thresholding over the modified data. If the resulting
average is inside theǫ-circle thenµ is a sufficiently accurate
approximation ofG; otherwise, it is not.

The basic idea of the mean monitoring algorithm is to
employ a convergecast-broadcast process in which the con-
vergecast part computes the average of the input vectors and
the broadcast part delivers the new average to all the peers.
The trick is that, before a peer sends the data it collected upthe
convergecast tree, it waits for an indication that the current µ is
not a good approximation of the current data. Thus, when the
currentµ is a good approximation, convergecast is slow and
only progresses as a result of false alerts. During this time,
the cost of the convergecast process is negligible compared
to that of the L2 thresholding algorithm. When, on the other
hand, the data does change, all peers alert almost immediately.
Thus, convergecast progresses very fast, reaches the root,and
initiates the broadcast phase. Hence, a newµ is delivered to
every peer, which is a more updated estimate ofG.

The details of the mean monitoring algorithm are given in
Algorithm 3. One detail is that of an alert mitigation constant,
τ , selected by the user. The idea here is that an alert should

persist for a given period of time before the convergecast
advances. Experimental evidence suggests that settingτ to
even a fraction of the average edge delay greatly reduces the
number of convergecasts without incurring a significant delay
in the updating ofµ.

A second detail is the separation of the data used for alerting
– the input of the L2 thresholding algorithm – from that which
is used for computing the new average. If the two are the
same then the new average may be biased. This is because an
alert, and consequently an advancement in the convergecast,
is bound to be more frequent when the local data is extreme.
Thus, the initial data, and later every new data, is randomly
associated with one of two buffers:Ri, which is used by the
L2 Thresholding algorithm, andTi, on whom the average is
computed when convergecast advances.

A third detail is the implementation of the convergecast
process. First, every peer tracks changes in the knowledge of
the underlying L2 thresholding algorithm. When it moves from
inside theǫ-circle to outside theǫ-circle the peer takes note of
the time, and sets a timer toτ time units. When a timer expires
or when a data message is received from one of its neighbors
pi checks if currently there is an alert and if it was recorded
τ or more time units ago. If so, it counts the number of its
neighbors from whom it received a data message. If it received
data messages from all of its neighbors, the peer moves to the
broadcast phase, computes the average of its own data and
of the received data and sends it to itself. If it has received
data messages from all but one of the neighbors then this
one neighbor becomes the peer’s parent in the convergecast
tree; the peer computes the average of its own and its other
neighbors’ data, and sends the average with its cumulative
weight to the parent. Then, it moves to the broadcast phase. If
two or more of its neighbors have not yet sent a data messages
pi keeps waiting.

Lastly, the broadcast phase is fairly straightforward. Every
peer which receives the newµ vector, updates its data by
subtracting it from every vector inRi and transfers those
vectors to the underlying L2 thresholding algorithm. Then,
it re-initializes the buffers for the data messages and sends the
new µ vector to its other neighbors and changes the status to
convergecast. There could be one situation in which a peer
receives a newµ vector even though it is already in the
convergecast phase. This happens when two neighbor peers
concurrently become roots of the convergecast tree (i.e., when
each of them concurrently sends the last convergecast message
to the other). To break the tie, a root peerpi which receives
µ from a neighborpj while in the convergecast phase ignores
the message ifi > j it ignores the message. Otherwise ifi < j
pi treats the message just as it would in the broadcast phase.

B. k-Means Monitoring

We now turn to a more complex problem, that of computing
the k-means of distributed data. The classic formulation of
the k-means algorithm is a two step recursive process in
which every data point is first associated with the nearest of
k centroids, and then every centroid is moved to the average
of the points associated with it – until the average is the same

8

Algorithm 3 Mean Monitoring
Input of peer pi: ǫ, L, Xi,i, the set of neighborsNi, an
initial vector µ0, an alert mitigation constantτ .
Output available to every peerpi: An approximated means
vectorµ
Data structure of peer pi: Two sets of vectorsRi andTi, a
timestamplast change, flags:alert, root, andphase, for
eachpj ∈ Ni, a vectorvj and a countercj

Initialization:
Setµ← µ0, alert← false, phase← convergecast
Split Xi,i evenly betweenRi andTi

Initialize an L2 thresholding algorithm with the inputǫ, L,
{x− µ : x ∈ Ri}, Ni

Setvi, ci to Ti, |Ti|, respectively, andvj , cj to 0, 0 for all
otherpj ∈ Ni

On addition of a new vector x to Xi,i:
Randomly addx to eitherRi or Ti

If x was added toRi, update the input of the L2
thresholding algorithm to{x− µ : x ∈ Ri}
Otherwise, updatevi andci.
On change inF

(

Ki

)

of the L2 thresholding algorithm:
If

∥

∥Ki

∥

∥ ≥ ǫ andalert = false then
– setlast change← time()
– setalert← true
– set a timer toτ time units
If

∥

∥Ki

∥

∥ < ǫ then
– Setalert← false
On receiving a data messagev, c from pj ∈ Ni:
Setvj ← v, cj ← c
Call Convergecast
On timer expiry or call to Convergecast:
If alert = false return
If time()− last change < τ set timer to
time() + τ − last change and return
If for all pk ∈ Ni except for oneck 6= 0
– Let s =

∑

pj∈Ni
cj , s =

∑

pj∈Ni

cj

s
vj

– Sends, s to pl

– Setphase← Broadcast
If for all pk ∈ Ni ck 6= 0
– Let s =

∑

pj∈Ni
cj , s =

∑

pj∈Ni

cj

s
vj

– Setphase← Convergecast
– Sendµ to all pk ∈ Ni

On receiving µ′ from pj ∈ Ni:
If phase = convergecast and i > j then return
Setµ← µ′

Replace the input of the L2 thresholding algorithm with
{x− µ : x ∈ Ri}
Setphase← convergecast and set allcj to 0
Sendµ to all pk 6= pj ∈ Ni

Other than that follow the L2 thresholding algorithm

as the centroid. To make the algorithm suitable for a dynamic
data setup, we relax the stopping criteria. In our formulation,
a solution is considered admissible when the average of point
is within an ǫ-distance of the centroid with whom they are
associated.

Similar to the mean monitoring, thek-means monitoring al-
gorithm (Algorithm. 4) is performed in a cycle of convergecast
and broadcast. The algorithm, however, is different in some
important respects. First, instead of taking part of just one
execution of L2 thresholding, each peer takes part ink such
executions – one per centroid. The input of theℓth execution
are those points in the local data setXi,i for which theℓth

centroid, cℓ, is the closest. Thus, each execution monitors
whether one of the centroids needs to be updated. If even one
execution discovers that the norm of the respective knowledge
∥

∥

∥
Kℓ

i

∥

∥

∥
is greater thanǫ, the peer alerts, and if the alert persists

for τ time units the peer advances the convergecast process.
Another difference betweenk-means monitoring and mean

monitoring is the statistics collected during convergecast. In k-
means monitoring, that statistics is a sample of sizeb (dictated
by the user) from the data. Each peer samples with returns
from the samples it received from its neighbors, and from
its own data, such that the probability of sampling a point is
proportional to a weight. The result of this procedure is that
every input point stands an equal chance to be included in
the sample that arrives to the root. The root then computes
the k-means on the sample, and sends the new centroids in a
broadcast message.

VI. EXPERIMENTAL VALIDATION

To validate the performance of our algorithms we conducted
experiments on a simulated network of thousands of peers. In
this section we discuss the experimental setup and analyze the
performance of the algorithms.

A. Experimental Setup

Our implementation makes use of the Distributed Data
Mining Toolkit (DDMT)1– a distributed data mining devel-
opment environment from DIADIC research lab at UMBC.
DDMT uses topological information which can be generate
by BRITE2, a universal topology generator from Boston
University. In our simulations we used topologies generated
according to theBarabasi Albert (BA)model, which is often
considered a reasonable model for the Internet. BA also defines
delays for network edges, which are the basis for our time
measurement3. On top of the network generated by BRITE,
we overlayed a spanning tree.

The data used in the simulations was generated using a
mixture of Gaussians inRd. Every time a simulated peer
needed an additional data point, it sampledd Gaussians and
multiplied the resulting vector with ad× d covariance matrix
in which the diagonal elements were all 1.0’s while the off-
diagonal elements were chosen uniformly between 1.0 and

1http://www.umbc.edu/ddm/wiki/software/DDMT
2http://www.cs.bu.edu/brite/
3Wall time is meaningless when simulating thousands of computers on a

single PC.

9

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30
Distribution 1
Distribution 2
White Noise

(a) Typical data set

0 0.5 1 1.5 2
x 10

6

0

50

100

Time

%
 p

ee
rs

 r
ep

or
tin

g
||G

||<
ε

(b) Typical changes in the percent of peers with
∥

∥Ki

∥

∥ ≤ ǫ

0 0.5 1 1.5 2
x 10

6

0

0.1

0.2

0.3

0.4

Time

N
or

m
al

iz
ed

 m
es

sa
ge

s

(c) Typical messaging throughout an experi-
ment

Fig. 2. A typical experiment is run for 10 equal length epochs. The epochs have very similar means, and very large variance. Quality and overall cost are
measured across the entire experiment – including transitional phases.

2.0. Alternatively, 10% of the points were chosen uniformly
at random in the range ofµ ± 3σ. At controlled intervals,
the means of the Gaussians were changed, thereby creating an
epoch change. A typical data in two dimensions can be seen in
Figure 2(a). We preferred synthetic data because of the large
number of factors (twelve, in our analysis) which influence the
behavior of an algorithm, and the desire to perform a tightly
controlled experiment in order to understand the behavior of
a complex algorithm which operates in an equally as complex
environment.

The two most important qualities measured in our experi-
ments are thequality of the result and thecost of the algo-
rithm. Quality is defined differently for the L2 thresholding
algorithm, the mean monitoring algorithm, and thek-means
algorithm.

For the L2 thresholding algorithm, quality is measured in
terms of the number of peers correctly computing an alert
i.e. the percentage of peers for whom

∥

∥Ki

∥

∥ < ǫ when
∥

∥G
∥

∥ < ǫ, and the percentage of peers for whom
∥

∥Ki

∥

∥ ≥ ǫ
when

∥

∥G
∥

∥ ≥ ǫ. We measure the maximal, average and
minimal quality over all the peers (averaged over a number
of different experiments). Quality is reported in three different
scenarios: overall quality, averaged over the entire experiment;
and quality on stationary data, measured separately for periods
in which the mean of the data is inside theǫ-circle

(
∥

∥G
∥

∥ < ǫ
)

and for periods in which the means of the data is outside the
circle

(
∥

∥G
∥

∥ ≥ ǫ
)

.
For the mean monitoring algorithm, quality is the average

distance betweenG and the computed mean vectorµ. We plot,
separately, the overall quality (during the entire experiment)
and the quality after the broadcast phase ended.

Lastly, for the k-means algorithm, quality is defined as
the distance between the solution of our algorithm and that
computed by a centralized algorithm, given all the data of all
of the peers.

We have measured the cost of the algorithm according
to the frequency in which messages are sent by each peer.
Because of the leaky bucket mechanism which is part of the
algorithm, the rate of messages per average peer is bounded
by two for every L time units (one to each neighbor, for
an average of two neighbors per peer). The trivial algorithm
that floods every change in the data would send messages
at this rate. The communication cost of our algorithms is

thus defined in terms of normalized messages - the portion
of this maximal rate which the algorithm uses. Thus, 0.1
normalized messages means that nine times out of ten the
algorithm manages to avoid sending a message. We report
both overall cost, which includes the stationary and transitional
phases of the experiment (and thus is necessarily higher), and
the monitoring cost, which only refers to stationary periods.
The monitoring cost is the cost paid by the algorithm even
if the data remains stationary; hence, it measures the “wasted
effort” of the algorithm. We also separate, where appropriate,
messages pertaining to the computation of the L2 thresholding
algorithm from those used for convergecast and broadcast of
statistics.

There are many factors which may influence the perfor-
mance of the algorithms. First, are those pertaining to the
data: the number of dimensionsd, the covarianceσ, and the
distance between the means of the Gaussians of the different
epochs (the algorithm is oblivious to the actual values of the
means), and the length of the epochsT . Second, there are
factors pertaining to the system: the topology, the number of
peers, and the size of the local data. Last, there are control
arguments of the algorithm: most importantlyǫ – the desired
alert threshold, and then alsoL – the maximal frequency of
messages. In all the experiments that we report in this section,
one parameter of the system was changed and the others were
kept at their default values. The default values were : number
of peers = 1000,|Xi,i| = 800, ǫ = 2, d = 5, L = 500
(where the average edge delay is about 1100 time units), and
the Frobenius norm of the covariance of the data‖σ‖F at
5.0. We selected the distance between the means so that the
rates of false negatives and false positives are about equal.
More specifically, the means for one of the epochs was +2
along each dimension and for the other it was -2 along each
dimension. For each selection of the parameters, we ran the
experiment for a long period of simulated time, allowing 10
epochs to occur.

A typical experiment is described in Figure 2(b) and 2(c).
In the experiment, after every 2× 105 simulator ticks, the data
distribution is changed, thereby creating an epoch change.To
start with, every peer is given the same mean as the mean of
the Gaussian. Thus a very high percentage (∼ 100 %) of the
peers states that

∥

∥G
∥

∥ < ǫ. After the aforesaid number (2×105)
of simulator ticks, we change the Gaussian without changing

10

Algorithm 4 k-Means Monitoring
Input of peer pi: ǫ, L, Xi,i, the set of immediate neighbors
Ni, an initial guess for the centroidsC0, a mitigation
constantτ , the sample sizeb.
Output of peer pi: k centroids such that the average of the
points assigned to every centroid is withinǫ of that centroid.
Data structure of peer pi: A partitioning of Xi,i into k sets
X1

i,i . . . Xk
i,i, a set of centroidsC = {c1, . . . , ck}, for each

centroidj = 1, . . . , k, a flagalertj , a times tamp
last changej, a bufferBj and a counterbj, a flagroot and
a flagphase.
Initialization:
SetC ← C0. Let

Xj
i,i =

{

x ∈ Xi,i : cj = argmin
c∈C

‖x− c‖

}

. Initialize k

instances of the L2 thresholding algorithm, such that thejth

instance has inputǫ, α, L,
{

x− cj : x ∈ Xj
i,i

}

, Ni. For all
pj ∈ Ni, setbj ← 0, for all j = 1, . . . , k setalertj ← false,
last changej ← −∞, andphase← convergecast
On addition of a new vector x to Xi,i:
Find thecj closest tox and addx− cj to the jth L2
thresholding instance.
On removal of a vector x from Xi,i:
Find thecj closest tox and removex− cj from thejth L2
thresholding instance.
On change inF

(

Ki

)

of the jth instance of the L2
thresholding algorithm:
If

∥

∥Ki

∥

∥ ≥ ǫ andalertj = false then set
last changej ← time(), alertj ← true, and set a timer to
τ time units
If

∥

∥Ki

∥

∥ < ǫ then setalertj ← false
On receiving B, b from pj ∈ Ni:
SetBj ← B, bj ← b and call Convergecast
On timer expiry or call to Convergecast:
If for all ℓ ∈ [1, . . . , k] alertℓ = false then return
Let t←Minℓ=1...k {last messageℓ : alertℓ = true}
Let A be a set ofb samples returned bySample
If time() < t + τ then set a timer tot + τ − time() and
return
If for all pk ∈ Ni except for onebk 6= 0
– Setroot← false, phase← Broadcast
– SendA, |Xi,i|+

∑

m=1... bm to pℓ and return
If for all pk ∈ Ni bk 6= 0
– Let C′ be the centroids resulting from computing the
k-means clustering ofA
– Setroot← true
– SendC′ to self and return
On receiving C′ from pj ∈ Ni or from self:
If phase = convergecast and i > j then return
SetC ← C′

For j = 1 . . . k set

Xj
i,i =

{

x ∈ Xi,i : cj = argmin
c∈C

‖x− c‖

}

For j = 1 . . . |Ni| set bj ← 0
SendC to all pk 6= pj ∈ Ni

Setphase← Convergecast
On call to Sample:
Return a random sample fromXi,i with probability

1/
(

1 +
∑

m=1...|Ni|
bm

)

or from a bufferBj with

probability bj/
(

|Xi,i|+
∑

m=1...|Ni|
bm

)

the mean given to each peer. Thus, for the next epoch, we
see that a very low percentage of the peers (∼ 0 %) output
that

∥

∥G
∥

∥ < ǫ. For the cost of the algorithm in Figure 2(c),
we see that messages exchanged during the stationary phase
is low. Many messages are, however, exchanged as soon as
the epoch changes. This is expected since all the peers need
to communicate in order to get convinced that the distribution
has indeed changed. The number of messages decreases once
the distribution becomes stable again.

B. Experiments with Local L2 Thresholding Algorithm

The L2 thresholding algorithm is the simplest one we
present here. In our experiments, we use the L2 thresholding
to establish the scalability of the algorithms with respectto
both the number of peers and the dimensionality of the data,
and the dependency of the algorithm on the main parameters
– the norm of the covarianceσ, the size of the local data set,
the toleranceǫ, and the bucket sizeL.

200 500 1000 2000 3000
80

85

90

95

100

Number of Peers

%
 c

or
re

ct
 p

ee
rs

||G||<ε
||G||>ε
Overall

(a) Quality vs. number of peers

200 500 1000 2000 3000

0.02

0.04

0.05

Number of Peers

N
or

m
al

iz
ed

 M
es

sa
ge

s

Overall
Stationary period

(b) Cost vs. number of peers

Fig. 3. Scalability of Local L2 algorithm with respect to thenumber of
peers.

2 3 4 5 6 7 8 9 10
85

90

95

100

Dimension

%
 c

or
re

ct
 p

ee
rs

||G||<ε
||G||>ε
Overall

(a) Quality vs. dimension

2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

Dimension

N
or

m
al

iz
ed

 M
es

sa
ge

s
Overall
Stationary period

(b) Cost vs. dimension

Fig. 4. Scalability of Local L2 algorithm with respect to thedimension of
the domain.

In Figures 3 and 4, we analyze the scalability of the local L2
algorithm. As Figure 3(a) and Figure 3(b) show, the average
quality and cost of the algorithm converge to a constant as
the number of peers increase. This typifies local algorithms–
because the computation is local, the total number of peers do
not affect performance. Hence, there could be no deterioration
in quality or cost. Similarly, the number of messages per
peer become a constant – typical to local algorithms. Figure
4(a) and Figure 4(b) show the scalability with respect to the
dimension of the problem. As shown in the figures, quality
does not deteriorate when the dimension of the problem is
increased. Also note that the cost increases approximately
linearly with the dimension. This independence of the quality
can be explained if one thinks of what the algorithm does
in terms of domain linearization. We hypothesis that when

11

the mean of the data is outside the circle, most peers tend
to select the same half-space. If this is true then the problem
is projected along the vector defining that half-space – i.e.,
becomes uni-dimensional. Inside the circle, the problem is
again uni-dimensional: If thought about in terms of the polar
coordinate system (rooted at the center of the circle), thenthe
only dimension on which the algorithm depends is the radius.
The dependency of the cost on the dimension stems from the
linear dependence of the variance of the data on the number of
Gaussians, the variance of whom is constant. This was proved
in experiments not included here.

In Figures 5, 6, 7 and 8 we explore the dependency of the L2
algorithm on different parametersviz. Frobenius norm of the
covariance of the dataσ (‖σ‖F =

∑

i=1...m

∑

j=1...n |σi,j |
2),

the size of the local data buffer|Xi,i|, the alert thresholdǫ,
and the size of the leaky bucketL. As noted earlier, in each
experiment one parameter was varied and the rest were kept
at their default values.

0 5 10
x 10

4

70

80

90

100

||σ||
F

%
 c

or
re

ct
 p

ee
rs

||G||<ε
||G||>ε
Overall

(a) Quality vs.‖σ‖F

0 5 10
x 10

4

0

0.05

0.1

0.15

0.2

0.25

||σ||
F

N
or

m
al

iz
ed

 M
es

sa
ge

s

Overall
Stationary period

(b) Cost vs.‖σ‖F

Fig. 5. Dependency of cost and quality of L2 thresholding on‖σ‖F . Quality
is defined by the percentage of peers correctly computing an alert (separated
for epochs with

∥

∥G
∥

∥ less and more thanǫ). Cost is defined as the portion of
the leaky buckets intervals that are used. Both overall costand cost of just the
stationary periods are reported. Overall measurements include the transitional
period too.

The first pair of figures, Figure 5(a) and Figure 5(b), outline
the dependency of the quality and the cost on the covariance
of the data (σ = AE) whereA is the covariance matrix and
E is the variance of the gaussians. MatrixA is as defined
in Section VI-A while E is the column vector representing
the variance of the gaussians and takes the values 5, 10, 15
or 25. For epochs with

∥

∥G
∥

∥ < ǫ, the maximal, the average,
and the minimal quality in every experiment decrease linearly
with the variance (from around99% on average to around
96%). Epochs with

∥

∥G
∥

∥ > ǫ, on the other hand, retained
very high quality, regardless of the level of variance. The
overall quality also decreases linearly from around 97% to
84%, apparently resulting from slower convergence on every
epoch change. As for the cost of the algorithm, this increases
as the square root of‖σ‖F (i.e., linear to the variance), both
for the stationary and overall period. Nevertheless, even with
the highest variance, the cost stayed far from the theoretical
maximum of two messages per peer per leaky bucket period.

The second pair of figures, Figure 6(a) and Figure 6(b),
shows that the variance can be controlled by increasing the
local data. As|Xi,i| increases, the quality increases, and cost
decreases, proportional to

√

|Xi,i|. The cause of that is clearly
the relation of the variance of an i.i.d. sample to the sample
size which is inverse of the square root.

200 800 1600 3200
85

90

95

100

|S
i
|

%
 c

or
re

ct
 p

ee
rs

||G||<ε
||G||>ε
Overall

(a) Quality vs.|Xi,i|

200 800 1600 3200
0

0.05

0.1

0.15

0.2

0.25

|S
i
|

N
or

m
al

iz
ed

 M
es

sa
ge

s

Overall
Stationary period

(b) Cost vs.|Xi,i|

Fig. 6. Dependency of cost and quality of L2 thresholding on|Xi,i|. Quality
is defined by the percentage of peers correctly computing an alert (separated
for epochs with

∥

∥G
∥

∥ less and more thanǫ). Cost is defined as the portion of
the leaky buckets intervals that are used. Both overall costand cost of just the
stationary periods are reported. Overall measurements include the transitional
period too.

The third pair of figures, Figure 7(a) and Figure 7(b), present
the effect of changingǫ on both the cost and quality of
the algorithm. As can be seen, below a certain point, the
number of false positives grows drastically. The number of
false negatives, on the other hand, remains constant regardless
of ǫ. When ǫ is about two, the distances of the two means
of the data (for the two epochs) from the boundary of the
circle are approximately the same and hence the rates of false
positives and false negatives are approximately the same too.
As ǫ decreases, it becomes increasingly difficult to judge if the
mean of the data is inside the smaller circle and increasingly
easier to judge that the mean is outside the circle. Thus, the
number of false positives increase. The cost of the algorithm
decreases linearly asǫ grows from 0.5 to 2.0, and reaches
nearly zero forǫ = 3. Note that even for a fairly lowǫ = 0.5,
the number of messages per peer per leaky bucket period is
around 0.75, which is far less than the theoretical maximum
of 2.

0.5 1 2 3
40

60

80

100

ε

%
 c

or
re

ct
 p

ee
rs

||G||<ε
||G||>ε
Overall

(a) Quality vs.ǫ

0.5 1 2 3
0

0.25

0.5

0.75

1

ε

N
or

m
al

iz
ed

 M
es

sa
ge

s

Overall
Stationary period

(b) Cost vs.ǫ

Fig. 7. Dependency of cost and quality of L2 thresholding onǫ. Quality is
defined by the percentage of peers correctly computing an alert (separated for
epochs with

∥

∥G
∥

∥ less and more thanǫ). Cost is defined as the portion of the
leaky buckets intervals that are used. Both overall cost andcost of just the
stationary periods are reported. Overall measurements include the transitional
period too.

Figure 8(a) and Figure 8(b) explore the dependency of
the quality and the cost on the size of the leaky bucketL.
Interestingly, the reduction in cost here is far faster thanthe
reduction in quality, with the optimal point (assuming 1:1
relation between cost and quality) somewhere between 100
time units and 500 time units. It should be noted that the
average delay BRITE assigned to an edge is around 1100
time units. This shows that even a very permissive leaky
bucket mechanism is sufficient to greatly limit the number

12

of messages.

100 250 500 1000
70

80

90

100

L

%
 c

or
re

ct
 p

ee
rs

||G||<ε
||G||>ε
Overall

(a) Quality vs.L

100 250 500 1000
0.02

0.04

0.06

0.08

L

N
or

m
al

iz
ed

 M
es

sa
ge

s

Overall
Stationary period

(b) Cost vs.L

Fig. 8. Dependency of cost and quality of L2 thresholding onL. Quality is
defined by the percentage of peers correctly computing an alert (separated for
epochs with

∥

∥G
∥

∥ less and more thanǫ). Cost is defined as the portion of the
leaky buckets intervals that are used. Both overall cost andcost of just the
stationary periods are reported. Overall measurements include the transitional
period too.

We conclude that the L2 thresholding provides a moderate
rate of false positives even for noisy data and an excellent rate
of false negatives regardless of the noise. It requires little com-
munication overhead during stationary periods. Furthermore,
the algorithm is highly scalable – both with respect to the
number of peers and dimensionality – because performance
is independent of the number of peers and dimension of the
problem.

C. Experiments with Means-Monitoring

Having explored the effects of the different parameters of
the L2 thresholding algorithm, we now shift our focus on the
experiments with the mean monitoring algorithm. We have
explored the three most important parameters that affect the
behavior of the mean monitoring algorithm:τ – the alert
mitigation period,T – the length of an epoch, andǫ – the
alert threshold.

100 500 1000 1500 2000
0

0.025

0.05

0.075

0.1

0.125

A
vg

 ||
 G

 −
 µ

 ||

Alert mitigation period (τ)

Overall
After Data Collection

(a) Quality vs.τ

100 500 1000 1500 2000

2

2.5

3

A
ve

ra
ge

 D
at

a
C

ol
le

ct
io

n

Alert mitigation period (τ)
100 500 1000 1500 2000

0

0.05

0.1

0.15

0.2

N
or

m
al

iz
ed

 L
2

M
es

sa
ge

s

(b) Cost vs.τ

Fig. 9. Dependency of cost and quality of mean monitoring on the alert
mitigation periodτ .

Figure 9, 10 and 11 summarize the results of these experi-
ments. As can be seen, the quality, measured by the distance
of the actual means vectorG from the computed oneµ is
excellent in all three graphs. Also shown are the cost graphs
with separate plots for the L2 messages (on the right axis) and
the number of convergecast rounds – each costs two messages
per peer on average – (on the left axis) per epoch.

In Figure 9(a), the average distance betweenG and µ
decreases as the alert mitigation period(τ) is decreased for
the entire length of the experiment. This is as expected, since,
with a smaller τ , the peers can rebuild the model more
frequently, resulting in more accurate models. On the other

hand, the quality after the data collection is extremely good
and is independent ofτ . With increasingτ , the number of
convergecast rounds per epoch decreases (from three to two
on average) as shown in Figure 9(b). In our analysis, this
results from a decrease in the number of false alerts.

1K2K 5K 10K
0

0.08

0.16

0.24

A
vg

 ||
 G

 −
 µ

 ||

Epoch Length(T)

Overall
After Data Collection

(a) Quality vs. epoch length

1K2K 5K 10K

2.5

3

3.5

A
ve

ra
ge

 D
at

a
C

ol
le

ct
io

n

1K2K 5K 10K

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

 L
2

M
es

sa
ge

s

Epoch Length (T)

(b) Cost vs. epoch length

Fig. 10. Dependency of cost and quality of mean monitoring onthe length
of epochT .

Figure 10(a) depicts the relation of the quality (both overall
and stationary periods) toT . The average distance between
the estimated mean vector and the actual one decreases as
the epoch lengthT increases. The reason is the following: at
each epoch, several convergecast rounds usually occur. The
later the round is, the less polluted is the data by remnants
of the previous epoch – and thus the more accurate isµ.
Thus, when the epoch length increases, the proportion of these
later µ’s, which are highly accurate, increases in the overall
quality leading to a more accurate average. Figure 10(b) shows
a similar trend for the cost incurred. One can see that the
number of L2 messages decrease asT increases. Clearly, the
more accurateµ is, the less monitoring messages are sent.
Therefore with increasingT , the quality increases and cost
decreases in the later rounds and these effects are reflectedin
the figures.

Finally, the average distance betweenG and µ decreases
as ǫ decreases. This is as expected, since with decreasingǫ,
the L2 algorithm ensures that these two quantities be brought
closer to each other and thus the average distance between
them decreases. The cost of the algorithm, however, shows
the reverse trend. This result is intuitive – with increasing ǫ,
the algorithm has a larger region in which to bound the global
average and thus the problem becomes easier, and hence less
costly, to solve.

0.5 1 2 3
0

0.02

0.04

0.06

A
vg

 ||
 G

 −
 µ

 ||

ε

Overall
After Data Collection

(a) Quality vs.ǫ

0.5 1 2 3

3

3.5

A
ve

ra
ge

 D
at

a
C

ol
le

ct
io

n

ε
0.5 1 2 3

0

0.25

0.5

0.75

1

N
or

m
al

iz
ed

 L
2

M
es

sa
ge

s

(b) Cost vs.ǫ

Fig. 11. Dependency of cost and quality of mean monitoring onthe alert
thresholdǫ.

On the whole, quality of the mean monitoring algorithm
outcome behaves well with respect to all the three parameters
influencing it. The monitoring costi.e. L2 messages is also
low. Furthermore, on an average, the number of convergecast

13

rounds per epoch is around three – which can easily be reduced
further by using a longerτ as the default value.

D. Experiments withk-Means Monitoring

500 2000 4000 8000

0.25

0.5

0.75

1

1.25

1.5

Sample Size

D
is

ta
nc

e
to

 o
pt

im
al

 c
en

tr
oi

d

Centralized Experiment
Distributed Experiment

(a) Average quality vs. sample size

500 2000 4000 8000
1.5

2

2.5

A
ve

ra
ge

 D
at

a
C

ol
le

ct
io

n
500 2000 4000 8000

0.1

0.15

0.2

0.25

0.3

N
or

m
al

iz
ed

 L
2

M
es

sa
ge

s

Sample Size

(b) Average monitoring cost vs. sam-
ple size

Fig. 12. Dependency of quality and cost ofk-means monitoring on the
sample size

In this set of experiments our goal is to investigate the
effect of the sample size on thek-means monitoring algorithm.
To do that we compare the results of our algorithm to those
of a centralized algorithm that processed the entire data. We
compute the distance between each centroid computed by the
peer-to-peer algorithm and the closest centroid computed by
the centralized one. Since our algorithm is not only distributed
but also sample-based, we include for comparison the results
of centralized algorithm which takes a sample from the entire
data as its input. The most outstanding result, seen in Figure
12(a), is that most of the error of the distributed algorithmis
due to sampling and not due to decentralization. The error,
both average, best case, and worst case, is very similar to that
of the centralized sample-based algorithm. This is significant
in two ways. First, the decentralized algorithm is obviously
an alternative to centralization; especially consideringthe
far lower communication cost. Secondly, the error of the
decentralized algorithm can be easily controlled by increasing
the sample size.

The costs ofk-means monitoring have to be separated to
those related to monitoring the current centroids and those
related to the collection of the sample. Figure 12(b) presents
the costs of monitoring a single centroid and the number of
times data was collected per epoch. These could be multiplied
by k to bound the total costs (note that messages relating
to different centroids can be piggybacked on each other).
The cost of monitoring decreases drastically with increasing
sample size – resulting from the better accuracy provided by
the larger sample. Also there is a decrease in the number of
convergecast rounds as the sample size increases. The default
value of the alert mitigation factorτ in this experimental setup
was 500. For any sample size greater than 2000, the number
of convergecast rounds is about two per epoch – in the first
round, it seems, the data is so much polluted by data from
the previous epoch that a new round is immediately triggered.
As noted earlier, this can be further decreased using a larger
value ofτ .

VII. R ELATED WORK

Algorithms for large distributed systems have been devel-
oped over the last half decade. These can be roughly classified

into three categories: convergecast based or centralized algo-
rithms, gossip based algorithms, and local algorithms. Some
best-effort heuristics [11], [12], [13] were suggested as well.

The first category, convergecast based algorithms, is perhaps
the simplest. Algorithms such as [14] provide generic solutions
– suitable for the computation of multiple functions. They
are also extremely communication efficient: computing the
average, for instance, only requires one message from each
peer. Some of these algorithms can be extremely synchronized
– every round of computation taking a lot of time. This
becomes very problematic when the data is dynamic and
computation has to be iterated frequently. Other, such as
STAR [15] can dynamically tune accuracy and timeliness vs.
communication overhead. The most thorough implementation
of this approach is possibly the Astrolabe system [16] which
implement a general purpose infrastructure for distributed
system monitoring.

The second category, gossip based algorithms, relies on the
properties of random walks on graphs to provide probabilistic
estimates for various statistics of data stored in the graph.
Gossip based computation was first introduced by Kempeet
al. [17], and have, since then, been expanded to general graphs
by Boydet al. [18]. The first gossip based algorithms required
that the algorithm be executed from scratch if the data changes
in order to maintain those guarantees. This problem was later
addressed by Jelasityet al. [19]. The main benefit of our
algorithm with respect to gossiping is that it is data driven.
Thus, it is far more efficient than gossiping when the changes
are stationary.

Local algorithms were first discussed by Afeket al. [20],
Linial [21], and Naor and Stockmeyer [22], in the context of
graph theory. Kutten and Peleg introduced local algorithmsin
which the input is data which is stored at the graph vertices,
rather than the graph itself [23]. The first application of
local algorithms to peer-to-peer data mining is the Majority-
Rule algorithm by Wolff and Schuster [1]. Since then, local
algorithms were developed for other data mining taskse.g.,
decision tree induction [24], multivariate regression [6], outlier
detection [3], L2 norm monitoring [4], approximated sum [25],
and more. The algorithm for L2 thresholding, and an initial
application of that algorithm fork-means monitoring were first
presented in a previous publication by the authors of this paper
[4].

VIII. C ONCLUSIONS ANDOPEN QUESTIONS

In this paper we present a generic algorithm which can
computeany ordinal function of the average data in large
distributed system. We present a number of interesting appli-
cations for this generic algorithm. Besides direct contributions
to the calculation of L2 norm, the mean, andk-means in peer-
to-peer networks, we also suggest a new reactive approach in
which data mining models are computed by an approximate or
heuristic method and are then efficiently judged by an efficient
local algorithm.

This work leaves several interesting open questions. The
first is the question of describing the “hardness” of locally
computing a certain functionF – its “locallability”. For

14

instance, it is simple to show that majority voting lends itself
better for local computation than the parity function. However,
there is lack of an orderly method by which the hardness
of these and other functions can be discussed. The second
interesting question is the question of robustness of a generic
local algorithm for general topologies. Last, in view of our
generic algorithm it would be interesting to revisit Naor’sand
Stockmeyer’s question [22] regarding the limitations of local
computation.

ACKNOWLEDGMENTS

This research is supported by the United States National
Science Foundation CAREER award IIS-0093353 and NASA
Grant NNX07AV70G.

REFERENCES

[1] R. Wolff and A. Schuster, “Association Rule Mining in Peer-to-Peer
Systems,” inProceedings of ICDM’03, Melbourne, Florida, 2003, pp.
363–370.

[2] D. Krivitski, A. Schuster, and R. Wolff, “A Local Facility Location
Algorithm for Sensor Networks,” inProceedings of DCOSS’05, Marina
del Rey, California, 2005, pp. 368–375.

[3] J. Branch, B. Szymanski, R. Wolff, C. Gianella, and H. Kargupta, “In-
Network Outlier Detection in Wireless Sensor Networks,” inProceed-
ings of ICDS’06, Lisboa, Portugal, 2006, pp. 51–58.

[4] R. Wolff, K. Bhaduri, and H. Kargupta, “Local L2 Thresholding based
Data Mining in Peer-to-Peer Systems,” inProceedings of SDM’06,
Bethesda, Maryland, 2006, pp. 428–439.

[5] P. Luo, H. Xionga, K. Lu, and Z. Shi, “Distributed classification in peer-
to-peer networks,” inProceedings of SIGKDD’07, San Jose, California,
2007, pp. 968–976.

[6] K. Bhaduri and H. Kargupta, “An Efficient Local Algorithmfor Dis-
tributed Multivariate Regression in Peer-to-Peer Networks,” in Proceed-
ings of SDM’08, Atlanta, Georgia, 2008, pp. 153 – 164.

[7] N. Li, J. C. Hou, and L. Sha, “Design and Analysis of an MST-
based Topology Control Algorithm,”IEEE Transactions on Wireless
Communications, vol. 4, no. 3, pp. 1195–1206, 2005.

[8] Y. Birk, L. Liss, A. Schuster, and R. Wolff, “A Local Algorithm for Ad
Hoc Majority Voting Via Charge Fusion,” inProceedings of DISC’04,
Amsterdam, Netherlands, 2004, pp. 275–289.

[9] K. Bhaduri, “Efficient Local Algorithms for DistributedData Mining in
Large Scale Peer to Peer Environments: A Deterministic Approach,”
Ph.D. dissertation, University of Maryland, Baltimore County, Balti-
more, Maryland, USA, May 2008.

[10] K. Das, K. Bhaduri, K. Liu, and H. Kargupta, “Distributed Identification
of Top-l Inner Product Elements and its Application in a Peer-to-Peer
Network,” IEEE Transactions on Knowledge and Data Engineering
(TKDE), vol. 20, no. 4, pp. 475–488, 2008.

[11] S. Bandyopadhyay, C. Giannella, U. Maulik, H. Kargupta, K. Liu,
and S. Datta, “Clustering Distributed Data Streams in Peer-to-Peer
Environments,”Information Science, vol. 176, no. 14, pp. 1952–1985,
2006.

[12] W. Kowalczyk, M. Jelasity, and A. E. Eiben, “Towards Data Mining
in Large and Fully Distributed Peer-to-Peer Overlay Networks,” in
Proceedings of BNAIC’03, Nijmegen, Netherlands, 2003, pp. 203–210.

[13] S. Datta, C. Giannella, and H. Kargupta, “K-Means Clustering over
Large, Dynamic Networks,” inProceedings of SDM’06, Maryland, 2006,
pp. 153–164.

[14] M. Rabbat and R. Nowak, “Distributed Optimization in Sensor Net-
works,” in Proceedings of IPSN’04, California, 2004, pp. 20–27.

[15] N. Jain, D. Kit, P. Mahajan, P. Yalagandula, M. Dahlin, and Y. Zhang,
“STAR: Self-tuning aggregation for scalable monitoring,”in Proceedings
of VLDB’07, Sept. 2007, pp. 962–973.

[16] R. van Renesse, K. P. Birman, and W. Vogels, “Astrolabe:A robust and
scalable technology for distributed system monitoring, management, and
data mining,”ACM Transactions on Computer Systems (TOCS), vol. 21,
no. 2, pp. 164–206, 2003.

[17] D. Kempe, A. Dobra, and J. Gehrke, “Computing AggregateInformation
using Gossip,” inProceedings of FOCS’03, Cambridge, Massachusetts,
2003, pp. 482–491.

[18] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “ Gossip Algorithms:
Design, Analysis and Applications,” inProceedings of INFOCOM’05,
Miami, Florida, 2005, pp. 1653–1664.

[19] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based Aggregation
in Large Dynamic Networks,”ACM Transactions on Computer Systems,
vol. 23, no. 3, pp. 219 – 252, 2005.

[20] Y. Afek, S. Kutten, and M. Yung, “Local Detection for Global Self
Stabilization,”Theoretical Computer Science, vol. 186, no. 1-2, pp. 199–
230, 1997.

[21] N. Linial, “Locality in Distributed Graph Algorithms,” SIAM Journal of
Computing, vol. 21, no. 1, pp. 193–2010, 1992.

[22] M. Naor and L. Stockmeyer, “What can be Computed Locally?” in
Proceedings of STOC’93, 1993, pp. 184–193.

[23] S. Kutten and D. Peleg, “Fault-Local Distributed Mending,” in Proceed-
ings of PODC’95, Ottawa, Canada, 1995, pp. 20–27.

[24] K. Bhaduri, R. Wolff, C. Giannella, and H. Kargupta, “Distributed
Decision Tree Induction in Peer-to-Peer Systems,”Statistical Analysis
and Data Mining Journal, vol. 1, no. 2, pp. 85–103, 2008.

[25] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani, “The Price of
Validity in Dynamic Networks,” inProceedings of SIGMOD’04, Paris,
France, 2004, pp. 515–526.

Ran Wolff is faculty of the Management Infor-
mation Systems department at University of Haifa,
Israel. A graduate of the Technion – Israel, he previ-
ously held a post doctoral position at the University
of Maryland in Baltimore County. His main fields of
expertise are data mining in large-scale distributed
environments: peer-to-peer networks, grid systems,
and wireless sensor networks, and privacy preserving
data mining. Ran regularly serves as PC in ICDM,
SDM and SIGKDD, and as a reviewer for the
DMKD and TKDE journals, among other. More

information about him can be found at http://mis.haifa.ac.il/ ˜ rwolff.

Kanishka Bhaduri received his B.E. in Computer
Science and Engineering from Jadavpur Univer-
sity, India in 2003 and PhD degree in Computer
Science from University of Maryland Baltimore
County in 2008. Currently he is a research sci-
entist with Mission Critical Technologies Inc at
NASA Ames Research Center. His research inter-
ests include distributed and P2P data mining, data
stream mining, and statistical data analysis. Kan-
ishka serves as a reviewer for many conferences and
journals such as ICDM, SDM, PKDD, SIGKDD,

TKDE, TMC and more. More information about him can be found at
http://www.csee.umbc.edu/˜ kanishk1.

Hillol Kargupta is an Associate Professor at the De-
partment of Computer Science and Electrical Engi-
neering, University of Maryland Baltimore County.
He received his Ph.D. in Computer Science from
University of Illinois at Urbana-Champaign in 1996.
He is also a co-founder of AGNIK LLC, a ubiquitous
data intelligence company. His research interests
include distributed data mining, data mining in
ubiquitous environment, and privacy-preserving data
mining. Dr. Kargupta won a US National Science
Foundation CAREER award in 2001 for his research

on ubiquitous and distributed data mining. He has publishedmore than 90
peer-reviewed articles in journals, conferences, and books. He is an associate
editor of the IEEE Transactions on Knowledge and Data Engineering, the
IEEE Transactions on Systems, Man, and Cybernetics, Part B,and the
Statistical Analysis and Data Mining Journal. He regularlyserves on the
organizing and program committees of many data mining conferences. More
information about him can be found at http://www.csee.umbc.edu/̃ hillol.

