
1

Distributed Identification of Top-l Inner Product
Elements and its Application in a Peer-to-Peer

Network
Kamalika Das, Kanishka Bhaduri, Kun Liu, and Hillol KarguptaSenior Member, IEEE

Abstract— Inner product measures how closely two feature
vectors are related. It is an important primitive for many popular
data mining tasks, e.g., clustering, classification, correlation com-
putation, and decision tree construction. If the entire data set is
available at a single site, then computing the inner product matrix
and identifying the top (in terms of magnitude) entries is trivial.
However, in many real-world scenarios, data is distributed across
many locations and transmitting the data to a central server
would be quite communication-intensive and not scalable. This
paper presents an approximatelocal algorithm for identifying
top-l inner products among pairs of feature vectors in a large
asynchronous distributed environment such as a peer-to-peer
(P2P) network. We develop a probabilistic algorithm for this
purpose using order statistics and Hoeffding bound. We present
experimental results to show the effectiveness and scalability
of the algorithm. Finally, we demonstrate an application of
this technique for interest-based community formation in a P2P
environment.

Index Terms— distributed data mining, inner product, peer-to-
peer network

I. I NTRODUCTION

T HE inner product between two vectors measures how
similar or close they are to each other. It is a very

important primitive for many data mining tasks such as clus-
tering, classification, correlation computation and decision tree
construction [1][2]. In many application scenarios, it is often
desirable to know only the top inner products. For example,
consider the formation of interest-based online communities
in a peer-to-peer (P2P) environment [3]. P2P networks are
large, dynamic, asynchronous, and with little central control.
It is very difficult, if not impossible, to transfer all the data
to a single peer to do the computation since no one would
have such extensive storage and computational capabilities,
let alone the enormous communication overhead. In the online
community formation example, each peer may be associated
with a feature vector describing its web surfing patterns andthe
goal is to find peers having similar interest (browsing patterns).
This helps in routing queries to peers with relevant interests
resulting in better network-search results. In most cases,each
peer may be interested in finding only a few peers with similar

Manuscript received ...; revised
Kamalika Das, Kanishka Bhaduri and Hillol Kargupta are with the De-

partment of Computer Science and Electrical Engineering, University of
Maryland Baltimore County, Baltimore, MD 21250. E-mail:{kdas1, kanishk1,
hillol}@cs.umbc.edu. Kun Liu is with the IBM Almaden Research Center,San
Jose, CA 95120. This work is partially done when Kun is at IBM Almaden.
Email: kun@us.ibm.com. Hillol Kargupta is also affiliated withAGNIK LLC,
Columbia, MD 21045.

interest and not all of them. Many other applications such
as network intrusion detection over data streams [4], query
routing in sensor networks, efficient decision tree construction
in distributed environment demonstrate the same needs. If the
entire data can be conveniently accessed, it is easy to compute
the inner product matrix and determine the top ones. However,
much of the world’s data is distributed over a multitude of
systems connected by communications channels of varying
capacity. This calls for new techniques to perform data mining
in a distributed environment.

In this paper, we consider the problem of identifying the
global top-l inner products (attribute-wise) from distributed
data. We assume that data is scattered among a large number
of peers such that each peer has exactly the same set of
attributes (or features). In the data mining literature, this is
often referred to as horizontally partitioned (homogeneously
distributed) data scenario. We propose an order statistics-based
approximatelocal algorithm for solving the problem. Here the
local algorithm is one where a peer communicates only with
its neighbors (formal definition given later). At the heart of
our algorithm are the ordinal approximation based on theories
from order statistics [5] and the cardinal approximation using
Hoeffding bound [6]. To the best of our knowledge, there does
not exist any algorithm in the literature that can do a global
ranking in a distributed setting without global communication
of all the data. Our experimental results demonstrate that
the algorithm achieves very high accuracy with only a small
fraction of the communication required for data centralization.

The rest of the paper is organized as follows. Section II
overviews some related work. Section III introduces the nota-
tions, problem definition and a brief overview of the algorithm.
Section IV and V present the details of the algorithm. Section
VI gives the definition of thelocal algorithm and proves
that our algorithm is indeedlocal. Section VII studies the
accuracy and communication complexity of the algorithm,
while Section VIII presents the experimental results. Section
IX demonstrates an application of our technique, i.e., client-
side web mining for community formation in a P2P setting.
Section X compares this work to other existing distributed
inner product computation algorithms. Finally, Section XI
concludes this paper.

II. RELATED WORK

Distributed data mining deals with the problem of data
analysis in environments with distributed data, computing

2

nodes, and users. This area has seen considerable amount
of research during the last decade. For a formal introduction
to the area, interested readers are referred to the books by
Kargupta et al. [7] and [8].

In this section, we present a brief overview of the work
related to this area of research.

A. Distributed inner product computation

Fourier and wavelet transforms can be used for efficiently
computing inner product when feature vectors are distributed
between two parties. These transformations project the data to
a new low-dimensional space where the inner product is pre-
served. The dominant Fourier and/or wavelet coefficients are
transmitted to other parties and the inner product can stillbe
computed from those coefficients with high accuracy. Random
projection [9] is another communication-efficient approach
for inner product computation in a two-party scenario. This
technique has been used by Giannella et al. [1] for decision
tree construction over distributed data. Interested readers are
referred to [1] for details. These techniques work well for two
parties, but do not scale well to large asynchronous network.
More discussions are given in Section X.

B. Identifying top-k items

Several techniques exist in the literature for ranking items
of a dataset. Wolff et al. [10] present a local algorithm thatcan
be used for monitoring the entries in a certain percentile of
the population. In their paper, the authors describe a majority
voting algorithm, where each peer,Pi, has a real numberbi,
and a thresholdτ > 0 (the same threshold at all peers).
The goal is for the peers to collectively determine whether
∑

i bi is abovenτ where n is the number of peers in the
network. This technique can be potentially used to find all
the entries of the inner product matrix that belong to thepth

percentile of the population. However, the major disadvantage
is the communication complexity – a separate majority voting
problem needs to be invoked for every inner product entry
and thus the system will not scale well for large number of
features. In the worst case, the communication complexity of
the majority voting algorithm may become equal to the order
of the size of the network.

Distributed top-k monitoring by Babcock et al. [4] presents
a way of monitoring the answers to continuous queries over
data streams produced at physically distributed locations. In
their paper, the authors assume a central node and the top-k
set is always determined by the central node. The coordinator
node finds the answers to the top-k queries and distributes
it to all the monitor agents. Along with it, the central node
also distributes a set of constraints. These constraints allow a
monitor node to validate if the current top-k set matches with
what it finds from the local stream. If the validation results
are true, nothing needs to be done. Otherwise, the monitor
agent sends an alert to the coordinator node. The coordinator
node re-computes the top-k set based on the current data
distribution and sends out both the new top-k and new set
of constraints to be validated by each monitor agent. Since
the paper assumes that there is a central node, this technique

is not directly applicable to many asynchronous large-scale
networks such as Mobile ah-hoc networks, vehicular ad hoc
networks and P2P networks which is the focus of this work.

Fagin [11] presents a way of combining query results
derived from multiple systems. Often disparate databases and
type of the query run on them return different types of
results; Fagin’s paper talks about combining them. It also
proposes techniques to retrieve top-k elements from distributed
databases. Our algorithm is applicable when there are a large
number of nodes. Fagin’s solution, when applied to our system,
would require every peer to communicate resulting in a highly
communication-intensive algorithm.

In the area of information retrieval, several techniques exist
for top-k object identification. Balke et al. [12] propose a
super-peer approach for finding the top objects. The top
queries are handled by the super peers and any other peer
in the network can contact these super peers to get the
answers to these queries. They also discuss ways to select
these super-peers so that any peer can find its closest super
peer efficiently. There are also techniques which explore the
retrieval algorithms taking into account the relative rankings
of objects. Many of these algorithms depend on gossip-based
techniques for spreading the ranks of its objects [13]. The
major problems with gossip protocols are that they are slow
(convergence can take a long time) and not very scalable due
to global communication.

C. Peer-to-Peer data mining

P2P data mining is a relatively new research area. It pays
careful attention to the distributed resources of data, comput-
ing, communication, and human factors in order to use them
in a near optimal fashion. Clustering in P2P networks [14],
association rule mining [10], monitoring L2 norm [15] are
some of the recent work in this area. Interested readers are
referred to an overview paper by Datta et al. [16].

In the next section, we present a high-level overview of
our algorithm to identify the top inner product entries from
the inner product matrices constructed out of horizontally
partitioned data.

III. N OTATIONS, PROBLEM DEFINITION AND OVERVIEW

OF THE ALGORITHM

A. Notations

We assume that there areS nodesP1, P2, ..., PS in the
network. Since we are dealing with horizontally partitioned
data, let there bec global features, common to all peers.
The local data set for peerPd is denoted byDd having rd

rows andc columns. The union of the data sets of all the
peers is∪S

d=1Dd = D, which is the global dataset. The inner
product matrix at peerPd, denoted byAd, is a c × c matrix
whose (i, j)th entry is the inner product between theith

and jth feature vector inDd. In matrix notation,Ad can be
computed asAd = D

T
d Dd. The global inner product matrix,

denoted byA, can be formed by pointwise addition of all
the inner product matrices of all the peers. In other words,
the (i, j)th entry of A is A[i, j] =

∑S
d=1 Ad[i, j]. Since the

inner product matrix is symmetric about the diagonal and the

3

diagonal elements are the inner product of the feature vectors
with themselves, we consider only the upper triangular matrix
excluding the diagonal. Thus we havec

2−c
2 distinct entries

in the set of inner products that we consider at each site.
Henceforth, any reference toA (or Ad’s) would indicate the
upper triangular inner product matrix excluding the diagonal
elements. We also assume that the entries of all the inner
product matrices (A or Ad’s) are labeled with a single index.
For example, the(i, j)th entry of A, A[i, j] is now denoted
by A

[

(i− 1)× (c− i
2) + (j − i)

]

, 1 < i < j < c2−c
2 .

B. Problem definition

Without loss of generality we assume thatA[1] ≥ A[2] ≥
... ≥ A

[

(i− 1)× (c− i
2) + (j − i)

]

≥ ... ≥ A[c2−c
2] is the

non-increasing ordering of the values of the global inner prod-
uct matrixA. Given such an ordering and a valuep (between 1
and 100), the top-p percentile of the inner product entries con-
sist of the following setF =

{

A[1], A[2], ..., A[p
100 × c2−c

2]
}

such that|F| = k. Now, given a connected and undirected
graph G(V,E) with |V | = S and |E| = e and each node
having its local inner product matrixAd (as defined in the
previous section), our goal is to identify somel elements from
F using local inner product matricesAd and some locally
exchanged information among the peers.

C. Overview of the algorithm

Having discussed the notations and problem definition, we
are now in a position to present an overview of our algorithm.
We develop an approximatelocal algorithm to solve the
problem, which relies on random sampling in the network
to avoid traversing all the nodes for collecting data. At the
heart of this algorithm are the ordinal approximation basedon
theories from order statistics and cardinal approximationusing
Hoeffding bound.

Order statistics provides a lower bound on the number
of samples required to identify the top percentile of a data
distribution with a user-specified confidence level. Therefore,
it can be used to compute the number of samples (the
number of global inner products) required to determine the
top-l inner product entries. We call thisordinal sampling
since we are primarily interested in estimating the relative
ordering in this case. However, since the value of each sample
(i.e., the global value of each attribute-wise inner product)
is distributed at different sites, we have to estimate it by
doing a second round of sampling. We call this thecardinal
sampling. These random samplings are done in the network
using random walks. A node in the network that wants to
identify some of the highest inner product entries of the global
inner product matrix, launches random walks to collect the
ordinal and cardinal samples. Once the initiator node gets back
the estimates of the ordinal samples, it can then arrange the
elements in a non-increasing order. Then, depending on the
thresholddetermined by applying ordinal decision theory, the
node can make decisions about the top-l inner product entries
in the global data set. Thus, the initiator node could conclude
about the globally most related features in the dataset without
actually getting every other nodes’ data.

IV. BUILDING BLOCKS

This section elaborates on some building blocks that are
necessary to understand our distributed algorithm for identi-
fying significant inner product entries.

A. Decomposable inner product computation

Let x andy be twoτ -dimensional feature vectors. The inner
product betweenx andy is defined as:

< x,y > =

τ
∑

i=1

xiyi.

Now in our scenario, the values ofx andy are distributed
over the network. The inner product of those two vectors are:

< x,y > =
τ
∑

i=1

xiyi =
S
∑

d=1

rd
∑

j=1

xjyj

 =
S
∑

d=1

Id,

where peerPd has anrd-dimensional vector, which isPd’s
contribution towards the inner product betweenx and y. Id

is the local inner product of thePd-th peer. Visiting all the
peers is infeasible especially in large systems and hence we
resort to sampling from a subset of peers in order to estimate
< x,y >.

B. Ordinal approximation

Given a data set horizontally partitioned among peers,
we want to find some top-l entries which are in the top-p
percentile of the population. A trivial approach to this problem
would be to collect the entire data set from all peers and
compare all the pairwise inner products among the features.
This simple approach, however, does not work in a large-
scale distributed P2P environment because the overhead of
communication would be extremely high. Order statistics isan
excellent choice in this case, since, by considering only a small
set of samples from the entire population, we can still produce
a reasonably good solution with probabilistic performance
guarantees. Order statistics has been applied in a number of
different fields such as classifier learning [17], sensor networks
[18], and discrete event optimization [19]. Next we discussthe
application of order statistics in our framework.

Let X be a continuous random variable with a strictly
increasing cumulative density function (CDF)FX(x). Let
ξp be the population percentile of orderp, i.e. FX(ξp) =
Pr{x ≤ ξp} = p, e.g. ξ0.5 is called the median of the
distribution. Suppose we taken independent samples from
the given populationX and write the ordered samples as
x1 < x2 < · · · < xn. We are interested in computing the
value ofn that guarantees

Pr{xn > ξp} > q, for a given constantq.

Lemma 4.1 (Ordinal Approximation):Let x1, x2, ..., xn be
n i.i.d. samples drawn from an underlying distribution. They
are arranged such thatx1 < x2 < ... < xn. Then P (xn >
ξp) = 1−pn, whereξp is thepth percentile of the population.

Proof:

P (xn > ξp) = 1− P (xn ≤ ξp) = 1− Fn(ξp) = 1− pn.

4

Now if the above probability is bounded by a confidenceq,
we can rewrite the above equation as

1− pn > q ⇒ n ≥
⌈

log(1− q)

log(p)

⌉

. (1)

For example, forq = 0.95 and p = 0.80, the value of
n obtained from the above expression is 14. That is, if we
took 14 independent samples from any distribution, we can
be 95% confident that80% of the population would be below
the largest order statisticx14. In other words, any sample with
value greater or equal tox14 would be in the top20 percentile
of the population with95% confidence. Note that, the value
of n decreases by decreasingp. For detailed treatment of this
subject we refer the reader to David’s book [5].

WhenX is discrete, the equationFX(x) = p does not have
a unique solution. However,ξp can still be defined byPr{x <
ξp} ≤ p ≤ Pr{x ≤ ξp}. This givesξp uniquely unlessFX(ξp)
equalsp, in which caseξp again lies in an interval. It can be
shown that in this case,Pr{xn < ξp} ≤ Ip(n, 1) = pN ,
whereIp(n, 1) is the incomplete beta function. Therefore, in
the discrete scenario, we have

Pr{xn ≥ ξp} = 1− Pr{xn < ξp}
≥ 1− pn > q.

This does not change the conclusion in Equation 1.

C. Cardinal approximation

Ordinal decision theory, as presented in the previous section,
provides a bound on the number of samples that needs to be
drawn from any population so that the highest-valued sample
is in the top-p percentile of the population. However, in order
to apply ordinal approximation, we need to estimate each of
these ordinal samples using another round of sampling. We
refer to this ascardinal sampling. In our distributed scenario,
the samples are the inner product entry at each node. Therefore
we need to visit a number of nodes for estimating each ordinal
sample. In order to derive bounds on the number of peers
to sample (m) for estimating each of these ordinal samples,
we have used the Hoeffding Bound [6] which bounds the tail
probability of a distribution.

Lemma 4.2 (Hoeffding Bound):Let xi, i ∈ {1, . . . ,m} be
m independent samples of a random variableX with values
in the range[a, b]. Let the sample mean beQm = 1

m

∑

i xi.
Then for anyǫ > 0, we have

Pr{Qm − E(X) ≥ ǫ} ≤ exp

(

− 2mǫ2

(b− a)2

)

,

P r{E(X)−Qm ≥ ǫ} ≤ exp

(

− 2mǫ2

(b− a)2

)

.

Next, we show how the Hoeffding bound can be used to
derive an upper bound on the value ofm.

Lemma 4.3 (Cardinal Approximation):Let xi,
i ∈ {1, . . . ,m} be m independent samples drawn
from a population X with values in the range[a, b].

Let Qm = 1
m

∑

i xi be the sample mean. Then, when

m ≥ (b−a)2ln(q′)
2ǫ2

, we have

Pr{Qm − E(X) ≥ ǫ} ≤ q′,

P r{E(X)−Qm ≥ ǫ} ≤ q′.
Proof: Following Lemma 4.2, we have

Pr{Qm − E(X) ≥ ǫ} ≤ exp

(

− 2mǫ2

(b− a)2

)

≤ q′.

Therefore,

− 2mǫ2

(b− a)2
≤ ln (q′) =⇒ m ≥

(b− a)2ln
(

1
q′

)

2ǫ2
. (2)

Note that0 < q′ < 1, 0 < ǫ < 1 and both are parameters
determined by the user. For example, ifb− a = 5, q′ = 0.05
andǫ = 0.5, we havem ≥ 150. In other words, if we take at
least 150 samples for estimating the mean of a random variable
having a range 5, the probability that the difference between
the true mean and the mean of the population is greater than
0.5 is less than by 0.05 (i.e. Pr (Qm − E[X] ≥ 0.5) ≤ 0.05
andPr (E[X]−Qm ≥ 0.5) ≤ 0.05). Note that, as bothǫ and
q′ decreases,m increases.

In a distributed scenario, the peer which initiates the random
walk needs to estimate this value ofm. For each attribute
ci, it can compute the value ofmi using only the range of
each attribute. Thenm can be set to the maximum of all the
individual mi’s i.e. m = maxc

i=1{mi}, wherec is the number
of attributes as defined in Section III-A.

D. Random sampling and random walk

The cardinal sampling process that we just discussed re-
quires collecting samples from the peers. Random walk is a
popular technique for random sampling from the network. It
can be performed by modeling the network as an undirected
graph with transition probability on each edge, and defining
a corresponding Markov chain. Random walks of prescribed
length on this graph produce a stationary state probability
vector and the corresponding random sample. The simplest
random walk algorithm chooses an outgoing edge at every
node with equal probability,e.g. if a node has degree five,
each of the edges is traversed with a probability 0.2. However,
it can be shown that this approach does not yield a uniform
sample of the network unless the degrees of all nodes are equal
(see [20] for example). Since typical large-scale P2P network
tends to have non-uniform degree distribution, this approach
will generate a biased sample in most practical scenarios.
Figure 1(a) shows the non-uniform selection probability using
a power-law graph of 5000 nodes.

Fortunately, the elegant Metropolis-Hastings algorithm [21],
[22] implies a simple way to modify the transition probability
so that it leads to a uniform stationary state distribution,and
therefore results in uniform sample. Such a technique has been
used by Datta et al. [23] to generate uniform samples from a
P2P network. In this paper, we use an adaptation [24] of this
classical algorithm. Next we briefly introduce the Metropolis-
Hastings algorithm for random walk.

5

0 50 100 150
0

1

2

3

4

5

6

7

8x 10
−3

Node Degree

P
ro

ba
bi

lit
y

of
 S

el
ec

tio
n

(a) Simple Random Walk

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4x 10
−3

Node Degree

P
ro

ba
bi

lit
y

of
 S

el
ec

tio
n

(b) Metropolis Hastings

0 50 100 150
0

0.5

1

1.5x 10
−3

Node Degree

P
ro

ba
bi

lit
y

of
 S

el
ec

tio
n

(c) Degree Balanced Random Walk

Fig. 1. Performance of three different random walks on a powerlaw topology of 5000 Nodes.

Let G(V,E) be a connected undirected graph with|V | =
S nodes and|E| = e edges. Letdi denote the degree of a
node i, 1 ≤ i ≤ S. The set of neighbors of nodei is given
by Γ(i) where∀j ∈ Γ(i), edge(i, j) ∈ E. Let T = {pij}
represent then × n transition probability matrix, wherepij

is the probability of walking from nodei to nodej in one
message hop (0 ≤ pij ≤ 1 and

∑

j pij = 1). Algorithm 1
gives the basic protocol for generating thisT in a distributed
fashion using the Metropolis Hastings protocol. Note that peers
need not know the entire matrixT in order to a random walk.
All that peer Pi needs is one row of this matrixTi, which
gives the transition from nodePi to all other nodes.

Algorithm 1 Distributed Metropolis-Hastings (DMH) [22],
[24]

Input of peer Pi: Its degreedi

Output of peer Pi: A row (Ti) of transition matrixT
On initialization: Pi sends out aDegree message to all
Pj ∈ Γ(Pi)
On receiving a message (Degree): If it has received the
degree information from allPj ∈ Γ(Pi) it can compute
pij as follows:

pij =

1/max(di, dj) if i 6= j and j ∈ Γ(i)
1−∑j∈Γ(i) pij if i = j

0 otherwise
Termination: Once thepij ’s have been populated setTi

← [pi1 pi2 · · · piS]. Terminate DHM.

This algorithm generates a symmetric transition probability
matrix and has proven to produce uniform sampling via
random walk. Lov́asz [20] showed that the length of random
walk (λ) necessary to reach to stationary state is of the order of
O(log S). Empirical results show that when the length of walk
is 10× log S, this algorithm converges to uniform distribution.
Figure 1(b) shows the probability of selection using the
Metropolis-Hastings algorithm over a simulated network with
5000 nodes. As can be easily seen, the probability of selection
is near uniform for nodes with different degrees. We also
compared this technique with the Degree Balanced Random
Walk (DRW) proposed by Orponen et al. [25]. Experiments
(Figure 1(c)) shows that the probability is nearly uniform in
this case as well. However, this technique requires a relatively
long walk length in order to achieve stationarity. Therefore,
we choose the MH algorithm for collecting samples from the
network.

For random walk to reach a stationary state, we need an
estimate of the network size. There exists several techniques
in the literature to solve this problem. Examples include the
capture-recapture method proposed by Mane et al. [26] and
the aggregate computation as proposed by Bawa et al. [27].

V. P2P ALGORITHM FOR IDENTIFYING THE SIGNIFICANT

INNER PRODUCT ENTRIES

Using the building blocks discussed in the previous section,
we now describe our algorithm for doing distributed selection
of somel elements from the top-p percentile of the population
when there arek elements in the top-p percentile (l < k).

The process is started by the initiator node in the network
that decides to find the top few entries in the distributed inner
product matrix. Our algorithm needs to know three parameters
– (1) number of ordinal samples to collect (n); (2) the number
of peers to visit for estimating each sample (m); and (3)n
indices of the inner product matrix corresponding to then
samples to collect. Based on the desired level of confidence
(q), the percentile (p) of the population to monitor, the range
R, the accuracyǫ and q′ (Section IV-C), the initiator knows
the values of these parameters using the results of Section IV.
It launchesm × n random walks and after all these walks
terminate, the samples are sent back to the initiator node. The
initiator then needs to add all the samples having the same
index. It then orders then samples and the highest one is the
threshold. Any inner product value greater than this threshold
is expected to be in the top-p percentile of the population with
the chosen confidence. Hence the overall approach consists of
the following tasks:

1) sample size computation,
2) sample collection,
3) threshold detection, and
4) some top-l inner product elements identification

Each of these steps is further discussed below.

A. Sample size computation

The initiator Pd first selects a confidence levelq and the
order of population percentilep it would tolerate. Based on
the bound derived in Section IV-B, the initiator calculatesthe
number of samples (n) required to compute the threshold such
that any inner product that is greater than this threshold is
among the top-p percentile of the population of inner products.
It also randomly generatesn indices (each between1 ≤ i ≤

6

c2−c
2) which will be sampled for the set of all the inner product

entries. The initiator also uses the Hoeffding bound (Section
IV-C) to find the value ofm, or the number of peers to visit
for estimating each of thesen ordinal samples. Thus, after this
step, the initiator peer knows the value ofm, n and the actual
indices of the inner product entries to be sampled.

B. Sample collection

Given the sample size ofn and the number of peers to
visit m, the initiator invokesm × n random walks using the
protocols described in Section IV-D to choose independent
samples from the network. Since estimating one single inner
product entry requires samplingm peers for the same indexed
entry, each random walk carries with it the index number of
the element to be sampled. Also each random walk carries
the IP address and port number of the initiator node so that
the terminal node of a random walk can send its inner product
entry directly to the initiator node. At the end of these random
walks Pd has m × n samples where there aren different
indices andm inner product values for every index of the
inner product.

C. Threshold detection

Once the initiator node gets all the samples, its next task is
to identify the threshold. Since inner product is decomposable,
for every index i, peer Pd sums up the all them entries
corresponding to the same indexi. It then finds the largest
of this n aggregated set of inner product entries and this is
the threshold.

D. Some top-l inner product elements identification

The above technique would give the peer a way to identify
one of the items in the top-k, where there arek elements
in the top-p percentile of the population. We can extend this
to find somel of the top-k elements (l < k). All that a
peerPd needs to do is to launchn × m × l random walks.
Now after aggregating the results we havenl elements and for
every n element we can find a threshold. Thus we will have
l thresholds. The ordinal framework guarantees that each of
thesel thresholds are in the top-p percentile of the population.

OrdSamp (Algorithm 2) presents the sample collection
technique for a single random walk using the ordinal
framework. The initiator sends a token (initialized to a value
equal to the length of the random walkλ), its IP address,
port number (InitiatorNodeNum) and the index of the element
(SampleIndex) to sample for this random walk. When a node
gets this token, it decrements its value by 1. If the value
of the token becomes 0, the inner product entry indexed by
SampleIndexis selected from the local data set and sent back
to the initiator node.

VI. L OCAL ALGORITHM

In this section we first definelocal algorithms and then
prove that the algorithm that we have developed in this paper
is local.

Algorithm 2 Distributed selection of samples (OrdSamp)

Input of peer Pd: Dd - the local database,Γ(d) - set of
immediate neighbors ofPd, a row Td of the transition
matrix T

Output of peer Pd: Sends the sample if the random walk
terminates at this peer
On receiving a message (Token):
Token = Token - 1
FetchSampleIndex
FetchInitiatorNodeNum
IP Address and Port number of the initiator node
if Token = 0 then

Pick the element whose index isSampleIndex from
Dd.
SendSampleIndex to theInitiatorNodeNum.
Wait for newToken messages for other random walks

else
SendSampleIndex, InitiatorNodeNum to a
neighbor selected according to the transition matrix

end if

Definition 6.1 (α-neighborhood of a vertex):Let
G = (V,E) be the graph representing the network whereV
denotes the set of nodes andE represents the edges between
the nodes. Theα-neighborhood of a vertexv ∈ V is the
collection of vertices at distanceα or less from it in G:
Γα(v, V) = {u|dist(u, v) ≤ α}, wheredist(u, v) denotes the
length of the shortest path in betweenu andv and the length
of a path is defined as the number of edges in it.

Definition 6.2 (α-local query): Let G = (V,E) be a graph
as defined in last definition. Let each nodev ∈ V store a data
setXv. An α-local queryby some vertexv is a query whose
response can be computed using some functionf(Xα(v))
whereXα(v) = {Xv|v ∈ Γα(v, V)}.

Definition 6.3 ((α, γ)-local algorithm): An algorithm is
called (α, γ)-local if it never requires computation of aβ-
local query such thatβ > α and the total size of the response
to all suchα-local queries sent out by a peer is bounded by
γ. α can be a constant or a function parameterized by the size
of the network whileγ can be parameterized by both the size
of the data of a peer and the size of the network.

We call such an (α, γ)-local algorithmefficient if both α and
γ are either small constants or some slow growing functions
(sub-linear) with respect to its parameters. The following
lemma, Lemma 6.1 proves that Algorithm 2 islocal according
to this definition.

Lemma 6.1 (Locality):The OrdSamp algorithm is
(O(logS), nml)-local whereS is the number of nodes in the
network and the other items are as defined in Section IV.

Proof: We prove this using the property of random walks.
The initiator node, launchesO(nml) independent random
walks. Each random walk has a walk length of O(logS). So
the maximum number of hops that a query can propagate
for finding each samples is O(logS). While returning these
samples, back to the initiator, it is a 1-hop process. Note
that in the sample collection process, all the random walks

7

are launched using the same walk length. Hence the entire
algorithm is an(O(logS), nml)-local since the number of
queries isnml.

Note that theOrdSamp algorithm is efficient sinceα =
O(logS) is a slowly growing polynomial compared to the
network sizeS andγ = nml is a small number, independent
of the network size. We have given typical example values of
n, m and l in Sections IV-B, IV-C and V-D respectively.

Similarly we can show that the running time of our algo-
rithm is O(nml × logS).

The previous definition discusses about the efficiency of
such algorithms, it does not specify the quality of the result.
There are two types of local algorithms in terms of accuracy:
exactand approximate. In an exact local algorithm, once the
computation terminates, the result computed by each peer
is the same as that compared to a centralized execution
[10]. However, such algorithms have only been developed
till date for very simple thresholding functions (e.g.,l2-norm
[15]). For more complicated tasks, researchers have proposed
approximate local algorithms using probabilistic techniques
(for example K-means [14]). Next, we define the notation for
measuring the quality of local algorithms.

Definition 6.4 ((ǫ, δ) correct local algorithm): An local al-
gorithm is (ǫ, δ) correct, if it returns the result of a query
within an ǫ-distance of its actual result with a probability of
(1− δ), where the actual result is computed on a centralized
data andδ is the probability that the result is outside theǫ
radius.

The algorithm we have developed in this paper is both
(O(logS), nml)-local and (ǫ, δ) correct, where1 − δ = q,
as defined in Section IV-B andǫ corresponds to the error
discussed in the next section.

VII. ERRORBOUND AND MESSAGECOMPLEXITY

In this section we analyze the error bound and the message
complexity of our distributed algorithm.

A. Error bound

In our distributed algorithm there are two sources of error
– (1) error due to ordinal sampling and (2) due to cardinal
sampling. Letx̃1, x̃2, . . . , x̃n denote the samples as found by
the distributed algorithm (the subscripts correspond to the
indexing scheme defined in III-A). Note that each of these
x̃d-s are estimated by aggregating the values of thedth entry
of the inner product matrix fromm peers. The value of
the dth entry for the ith peer is given byAi[d]. Therefore,
x̃d =

∑m

i=1 Ai[d]. Let Ā[d] =
P

m
i=1

Ai[d]

m
denote the mean

of the estimates,∀d ∈ {1, . . . , n}. Lemma 7.1 derives the
probability that the thresholdi.e. x̃n is greater than thepth

percentile of the population.
Lemma 7.1 (Error):Let x̃1, x̃2, . . . , x̃n be then samples

found by the distributed algorithm. They are ordered such
that x̃1 < x̃2 < · · · < x̃n. Then, P (x̃n > ξp) = 1 −
∏n

d=1 Φ
([

ξp

m
− µd

] √
m

σd

)

, whereµd andσd are the mean and
standard deviation of the feature of the population correspond-
ing to x̃d, ξp is the population percentile of orderp andΦ(.)
is the area under the standard normal curve.

Proof:

P (x̃n > ξp) = 1− P (x̃n ≤ ξp)

= 1−
n
∏

d=1

P (x̃d ≤ ξp)

= 1−
n
∏

d=1

P

(

m
∑

i=1

Ai[d] ≤ ξp

)

= 1−
n
∏

d=1

P

(∑m

i=1 Ai[d]

m
≤ ξp

m

)

= 1−
n
∏

d=1

P

(

Ā[d] ≤ ξp

m

)

= 1−
n
∏

d=1

P

(

Ā[d]− µd
σd√
m

≤
ξp

m
− µd

σd√
m

)

= 1−
n
∏

d=1

P

(

Z ≤
[

ξp

m
− µd

] √
m

σd

)

= 1−
n
∏

d=1

Φ

([

ξp

m
− µd

] √
m

σd

)

.

Step 2 follows directly from step 1. Now sincẽxd is a sum
of all the elements obtained by visitingm peers, we must have
x̃d =

∑m

i=1 Ai[d] ∀ d. Finally, since
∑m

i=1 Ai[d] is a sum
of random variables we have used Central Limit Theorem to
derive the final expression.

Hence the probability of error is
∏n

d=1 Φ
([

ξp

m
− µd

] √
m

σd

)

.
This shows that asn increases, the error decreases since each
term of the product isΦ(.), which is the area under a unit
Normal variable and is less than or equal to 1. Also asm
increases, the expression insideΦ decreases and thus the
overall probability of error decreases. For a special case in
which all the µd’s and σd’s are equal to sayµ and σ, the

error becomesΦ
([

ξp

m
− µd

] √
m

σd

)n

– hence asn increases,
the error decreases exponentially.

B. Message complexity

The distributed algorithm that we just described launches
n × m × l parallel random walks each of lengthλ such
that each random walk will return a single element. The
coordinator node can then aggregates these samples, and finds
thel thresholds. We will use this model to analyze the message
complexity.

For each such a random walk, the initiator node needs to
send the following four information in the message:

1) Token Number - Integer 32 bits
2) Index of the inner product entry to sample - Integer 32

bits
3) IP Address - Integer 32 bits
4) Port Number - Integer 32 bits

The message complexity for this step is :128×m×n× l×
λ = 128mnlλ bits. Since at the end of each random walk, the
terminal node needs to send the sampled element back to the
initiator node, it would need 64 bits (assuming that each entry

8

of the inner product matrix can be represented as a double
number). Thus, the overall message complexity for the entire
sample collection process is:128mnlλ + 64nml = O(mnlλ)
bits. Substituting the values ofn andm from equations 1 and
2 respectively, and using10 ∗ log(S) as the value ofλ, the
message complexity can be rewritten as,

[1 + 20log(S)]

[

64l
(b− a)2ln(1/q′)log(1− q)

2ǫ2log(p)

]

bits,

where the symbols are defined in the respective sections. Note
that this expression is independent of the number of features
c, the number of rowsri and is logarithmic with respect to
the number of nodes.

Now, considering the centralized algorithm, if each peer
has a dataset of sizeri × c =O(ric), then the total message
complexity for the centralized scheme can be written as :
64 × ri × c × S = O(ricS) bits. Hence, the communication
complexity of the centralized algorithm is dependent linearly
on the size of the data set (ri andc) and network (S).

VIII. E XPERIMENTS AND PERFORMANCEEVALUATION

In this section, we study the performance of the proposed
inner product identification algorithm.

A. Network topology, simulator and data generation

Our network topology is generated using the ASWaxman
Model from BRITE [28], a universal topology generator.
The generator initially assigns node degrees from a power-
law distribution and then proceeds to interconnect the nodes
using Waxman’s probability model. Power-law random graph
is often used in the literature to model large non-uniform
network topologies. It is believed that P2P networks conform
to such power law topologies [29]. We use the Distributed
Data Mining Toolkit (DDMT) [30] developed by the DIADIC
research lab at UMBC to simulate the distributed computing
environment.

The experimental data consists of tuples generated from
different random distributions. Each column of the data is
generated from a fixed uniform distribution (with a fixed
range). Thus, there are as many different distributions as the
number of features. The centralized data set is then uniformly
split (so that each peer has the same number of tuples) among
all the peers to simulate a horizontally partitioned scenario.

B. Performance

We study the applicability of the ordinal approximation
theories in our distributed environment by comparing the
results produced by the centralized algorithm. By a centralized
algorithm we mean centralizing the entire data set of all
peers and running the ordinal approximation on this data set.
Our measurement metric consisted of two quantities – (1)
Quality and (2)Cost. By quality we measure the thresholds
detected both in the distributed and centralized scenario as
compared to the actual percentile of the population. Cost refers
to the message exchanged in Kilobytes (KB) for doing the
computation with reference to a centralized scheme.

85 90 95
2

3

4

5

6

x 10
6

Percentile

H
ig

he
st

 o
rd

er
 s

ta
tis

tic

Centralized
Distributed
Population Percentile

0.8 0.85 0.9 0.95
10

2

10
3

10
4

10
5

10
6

Percentile

M
es

sa
ge

s
(K

B
)

in
 lo

g
sc

al
e

Distributed
Centralized

Fig. 2. Relative values of the estimated highest order statistic (distributed
and centralized experiments) with corresponding values of actual population
percentile (top figure) and corresponding cost (bottom figure).

We report here three sets of experiments - (1) performance
of the algorithm when monitoring increasing percentile of
population, (2) the scalability of our algorithm, and (3) the
effect of increasing the cardinal sampling (m). We have re-
ported both the quality and cost whenever appropriate. Unless
otherwise noted we have the following default values for the
different parameters: (1)S=500, (2)c=100, (3)n=19 (p=85%
and q=95%), (4)m = 35 (R = 5, q′ = 0.5, ǫ = 0.5), (5) l=1,
(6) λ = 10× logS, and (7)ri (number of data rows for each
peer) = 500. Each random experiment was run for 100 trials
and the we plot both the average and the standard deviation.

1) Experiments with different percentile of population:In
this experiment we compared the accuracy of the distributed
algorithm with the centralized one. We have experimented
with three different percentile (p) values of 95, 90 and 85 for
which the number of samples (n) required are 59, 29 and 19
respectively. Figure 2 shows the effect on quality and cost with
changes in population percentile. In Figure 2 (top), the circular
points represent the actualpth percentile of the population,
whereas the blue square error bars and the red star error bars
represent the threshold for the same confidence and percentile
for the distributed and centralized scenario respectivelyusing
ordinal approximation. The distance between the red (stars)
error bars and the green circular dots represents the error due to
ordinal approximation whereas the difference between the red
(stars) error bars and the blue (squares) error bars in the graph
can be attributed to the cardinal approximation introduced
in the distributed environment. We notice that in both the
centralized and distributed scenario, the threshold is greater
than the actualpth percentile of the population. This means
that there will be no false positives in ordinal estimation.

Figure 2 (bottom) compares the communication of our
algorithm with that of the centralized version for monitoring
different percentiles of population (p) plotted in the log-

9

200 500 1000

2.5

3

3.5

4

4.5

5

5.5

6x 10
6

Number of Peers

H
ig

he
st

 o
rd

er
 s

ta
tis

tic

Centralized
Distributed
Population Percentile

200 500 1000 2000
10

2

10
3

10
4

10
5

10
6

Number of Peers

M
es

sa
ge

s
(K

B
)

in
 lo

g
sc

al
e

Distributed
Centralized

Fig. 3. Variation of the threshold detected by the centralized and distributed
algorithms (top figure) and cost (bottom figure) with changes in the size of
the network.

scale. Since the number of featuresc = 100, ri = 500
and S = 500 remain constant, messages for the centralized
experiments for different percentiles does not change. In the
distributed scenario, the expression in Section VII-B is used
for finding the number of messages. In all cases, our algorithm
outperforms the centralizing scheme in terms of message
complexity.

2) Scalability: We test the scalability of our algorithm both
with respect to the number of nodes and number of features
of the dataset. In both cases we plot the quality and cost of
the algorithm.

For the scalability w.r.t. the number of peers, we keep the
number of data points per peer constant (500). Figure 3 (top
figure) shows the effect on the threshold detected as the size
of the network is changed (all the other parameters are at their
default values). As can be seen from the figure, the threshold
detected by both the centralized and distributed experiments
using order statistics are greater than thepth percentile of the
population. Moreover, the centralized and distributed estimates
are quite close for different sizes of the network. This shows
that our proposed distributed algorithm has good accuracy w.r.t
scalability.

Figure 3 (bottom figure) shows the cost of the algorithm
(plotted in log-scale) with increasing number of nodes. Forthe
centralized algorithm, the effect of the number of nodes (S) is
linear. On the other hand, it is logarithmic for the distributed
algorithm (refer to Section VII-B for details). This means that
the proposed distributed algorithm is far more communication
efficient than the centralized counterpart as corroboratedby
the experiments here.

In the other scalability experiment, we varied the number
of features (c). The results are shown in Figure 4. Figure 4
(top figure) shows that the quality of our estimate is quite
good – in all cases, the highest order statistic is greater than
the actual percentile of the population. Also, the centralized

50 100 200 300
0

2

4

6

8

10x 10
7

Number of Features

H
ig

he
st

 o
rd

er
 s

ta
tis

tic

Centralized
Distributed
Population Percentile

100 200 300 400 500
10

2

10
4

10
6

Number of Features

M
sg

 (
K

B
)

in
 lo

g
sc

al
e

Distributed
Centralized

Fig. 4. Quality and cost with changes in number of features.

and distributed estimates are very close. Since there is a large
difference in the scale, the points are close (almost on top of
each other). The number of features has no effect on the cost
of the distributed algorithm, while the same for the centralized
algorithm increases linearly as shown in Figure 4 (bottom
figure).

3) Experiments with increasingm: This section presents
the quality and cost of the algorithm as the percentage of
cardinal sampling (m) increases. Figure 5 (top figure) shows
the effect on the highest threshold detected with increasing
sampling m. The trend is clear - as we increase the per-
centage of network sampled, the distributed threshold (red
stars) approaches the centralized threshold (blue squares). In
Figure 5 (bottom figure), plotted in the log-scale, the messages
transmitted increase as the percentage of network sampled
increases. On the other hand, for the centralized version the
message complexity is a constant.

Overall, this experiment shows that the estimation of our
algorithm is comparable to the corresponding centralized ver-
sion at a cost which is far less than its centralized counterpart.

IX. A PPLICATION

An interesting application of this technique is client-side
web mining. In this section we discuss how we modify our
order statistics based top-l item identification technique for
this application. Interested readers are referred to the paper by
Liu et al. [3] for a detailed discussion on this application.

A. Why P2P communities and client-side web mining ?

According to Maslow’s theory [31], social motive, which
drives people to seek contact with others and to build satisfying
relations with them, is one of the most basic needs of human
beings. The tendency to have affiliations with others is visible
even in virtual environments such as the World Wide Web.
Many online communities like Google and Yahoo! groups

10

7 101520 30 50 60 80
2

3

4

5

6x 10
6

Percentage of network sampled

H
ig

he
st

 o
rd

er
 s

ta
tis

tic

Centralized
Distributed
Population Percentile

7 101520 30 50 60 80
10

2

10
3

10
4

10
5

10
6

Percentage of network sampled

M
sg

 (
K

B
)

in
 lo

g
sc

al
e

Distributed
Centralized

Fig. 5. Quality and cost with changes in cardinal sampling (m).

provide the user a place to share knowledge, and to request and
offer services. Traditional web mining has spent lots of efforts
on the web server side,e.g. to analyze the server log. We
propose a framework that utilizes the client-side information,
namely, the web browsing cache. In many cases the server-
side web data is inaccessible to the user who generated the
data – so no information about that data is available to the
user. On the other hand, using the data at the source machine
itself (which we call the client-side data), we can learn several
interesting facts about the data and develop several systems
(e.g. P2P community, recommender systems etc.). We define
a P2P community as a collection of nodes in the network
that share common interests. Communities can then exchange
information for better query routing for example. Compared
with other related work, our framework has the following
specific features:

• It applies the order statistics-based algorithm already
discussed to quantify the similarity between peers over
the network. This approach allows a peer to build a
community with hierarchical structure.

• Any technique in which the similarity between two peers
can be expressed in metric space (vectors, trees and the
like) can be plugged into our framework.

B. Related work: P2P communities

Generally speaking, the research on self-formation of P2P
communities can be grouped into four major categories: 1)
ontology matching-based approach; 2) attribute similarity-
based approach; 3) trust-based approach; and 3) link analysis-
based approach. We briefly introduce each of them as follows.

Castano et al. addressed the problem of formation of se-
mantic P2P communities [32]. Each peer is associated with an
ontology which gives a semantically rich representation ofthe
interests that the peer exposes to the network. The advantage
of this approach is that peers do not have to agree on the same

predefined ontology, and therefore they have lots of flexibility
of describing their interests. However, the gain of flexibility
comes at the price of accuracy because of the uncertainty of
concepts. We refer the reader to [33] for a brief survey of
existing ontology matching approaches.

Khambatti et al. proposed a P2P community discovery
approach where each peer is associated with a set of attributes
that represent the interests of that peer [34]. These attributes
are chosen from a controlled vocabulary that each peer agrees
with. In this paper, we also assume each peer has a set of
attributes, which we call as profile vector. The difference is
that each interest in the profile vector can be given a weight to
show its importance. Moreover, we do not simply check the
intersection of attributes, instead, we quantitatively compute
the similarity between profile vectors (using inner product),
and we use an order statistics-based algorithm that can tell
how similar a pair of peers are to each other in the whole
network.

Trust-based community formation is usually discussed in
the scenario of file sharing and service providing. The notation
“trust” is a measure used by a peer to evaluate other peer’s
capability of providing a good quality service or resource.This
trust is based on information about the peer’s past behavior.
We refer the reader to [35] as a starting point on this topic.
In this paper, we are interested in forming a community based
on peers’ interests without considering the past interactions of
peers.

There exists another area of research that focuses on the link
structure analysis of network to identify patterns of interaction.
For example, Scott identified the various cliques, components
and circles into which networks are formed [36]. The draw-
back of link analysis-based approach is that it depends on the
stable link structure of the network, and therefore precludes
a peer from being a member of more than one community
simultaneously.

C. Peer profiles

A crucial issue in forming P2P communities is to create
peer profiles that accurately reflect a peer’s interests. These
interests can be either explicitly claimed by a peer, or im-
plicitly discovered from the peer’s behaviors. A peer’s profile
is usually represented by a keyword/concept vector. Trajkova
et al. proposed techniques to implicitly build ontology-based
user profiles by automatically monitoring the user’s browsing
habits [37]. Figure 6 shows a sample ontology for user profile.
We point out that any approach that represents a peer’s profile
in a feature vector can be used in our framework. In this paper,
we use the frequency of the web domains a peer has visited
during a period of time as the peer’s profile vector. To avoid
the uncertainty of ontology matching, we expect all peers to
agree on the same ontology defined by a controlled vocabulary.
In this paper, this means that all peers agree on a superset of
web domain names.

D. Similarity measurement

The goal of community formation is to find peers sharing
similar interests. However, if we choose a similarity measure-
mentΩ, and simply setup a subjective threshold such that peers

11

Fig. 6. A sample ontology for user profile.

with similarities greater than this threshold can be grouped
together, we can’t represent the essential characteristics of
a social community, namely,hierarchy. In a social network,
a person may have multi-level friends, where the first level
might be family members and closest friends, the second level
might be some colleagues who are not so familiar with. A
person could also have indirect friends from his/her friends’
social network. A P2P community from one peer’s perspective
should also have such a kind of hierarchical structure. Thatis,
some peers share more interests with this peer, while others
share less.

To achieve this goal, we use our order statistics-based
approach which enables a peer to know how similar the other
peer is to itself. In other words, our statistical measurement
guarantees that if the similarity between peerPi and Pj is
above a threshold,Pi can determine with confidence level
q that Pj is among the top-p percentile most similar peers
of Pi’s. As a running example, let us assume there are 5
peers{P1, P2, P3, P4, P5} in the network, and the similarity
measures betweenP1 and all other peers are{1, 3, 2, 4}, re-
spectively, where the higher the value, the higher the similarity.
If P1 knows the similarity between her andP5 is 4, our
approach will enableP1 to know with high confidence that
P5 is among the top25% most similar peers ofP1’s in the
network, without computing all the similarity values.

Now we formally define a P2P community based on our
above discussion.

Definition 9.1 ((Ω, p, q)-P2P Community):A (Ω, p, q)-P2P
community from peerPi’s view is a collection of peers in
the network, denoted byC, such that the similarity measures
Ω betweenPi and all the members inC are among the top-p
percentile of the population of similarity measures between Pi

and all the peers in the network, with confidence levelq.
Definition 9.2 (Extended (Ω, p, q)-P2P Community):An

extended (Ω, p, q)-P2P community from peerPi’s view is the
union ofC (defined by the above Definition) and all the peers
from the (Ω, p, q)-P2P community of each member inC.

These two definitions implicitly capture the hierarchical
characteristics of the community. When a peer finds a similar
buddy, she could compute the percentile value and determine

P i

P j

C

E

G

A

B

D

F
H I

commun ity in it ia tor

fir st level commun ity m ember

second level commun ity m ember

not commun ity m ember

fir st level commun ity m ember of th e commun ity in it ia t ed by Pj

Fig. 7. Example of P2P communities.

which area this buddy belongs to. A peer could also specify a
p value and only invite those belonging to top-p percentile area
to be her community members. The community could be ex-
panded to include members from members’s community. For
example, in Figure 7, PeerA,Pj ,H are the first level members
(with largerp) of community initiated byPi. PeerC,F andG
are the second level members (with smallerp) of community.
Note thatPj is also a initiator of another community, and it
hasE as its first level community member. PeerA,Pj ,H,E
compose an extended P2P community initiated byPi.

We use the scalar product between two profile vectors to
quantify the similarity between two peers. Other similarity
metrics such as Euclidean distance, graphs, trees can also
be applied in our framework without any hurdle. In the next
subsection we discuss how the community is actually formed.
Note than in this application, since each peer has the entire
vector, there is no need for cardinal sampling. We can simply
do an ordinal sampling of the entries of the inner product
entries in order to identify the top few.

E. Community formation process

We address the P2P community formation process under
the assumptions that: 1) each peer can be a member of
multiple virtual communities; 2) peers interact with each other
by submitting or replying queries to determine the potential
members of a given community; and 3) there is no super peer
as a centralized authority.

The P2P community emerges as a peer,Pi, called commu-
nity initiator, invokes a community discovery process which
consists of the following tasks:sample size computation, per-
centile estimation, member identification, member notification
and acceptance,andcommunity expansion.
Sample Size Computation: The initiator Pi first selects a
confidence levelq and the order of population percentilep it
would tolerate. It can then find the sample sizen as discussed
in Section IV-B. Note that for this scenario a peer does not
need to do a cardinal sampling since we are dealing with a
special case of the distributed inner product computation here
– when each peer has only one feature vector and not a matrix
of local inner product elements.
Percentile Estimation: Given the sample sizen, the initiator
invokes n random walks using the protocols described in
Section IV-D to choose independent sample peers in the
network. Whenever a new peerPj is chosen, it replies toPi

12

with its address and port number, and builds an end-to-end
connection withPi. ThenPi computes the scalar product of
its profile vector andPj ’s profile vector. AfterPi collects all
the n scalar products, it finds the largest one as the threshold
for percentile of orderp. These two steps are very similar to
the first two steps of the algorithm discussed in Section V.
Member Identification: The initiator Pi composes a dis-
covery message containing its address and port number, as
well as a time-to-live (TTL) parameter defining the maximum
number of hops allowed for the discovery propagation. Then
the discovery message is sent to allPi neighbors. When
a peerPj receives this message, it replies toPi with its
address and port number.Pi then invokes a scalar product
computation withPj to get the similarity value. If TTL≥ 0,
Pj forwards the discovery message to all its neighbors, except
for the peer from which the message has been received. Each
peer discards duplicate copies of the same discovery message
possibly received.
Member Invitation and Acceptance: The initiator Pi

evaluates the quality of the discovered peers by comparing
the similarity values with the different levels of threshold. If
the similarity is above the threshold,Pi sends an invitation
message to that peer. If the similarity is below the first level
of threshold,Pi still could analyze, with the same confidence
level and order of percentilep′. Given this information,Pi

can decide whether to send an invitation to a peer with less
similarity. Once a peerPj receives an invitation message,
it decides whether to accept it or not by replying with an
acceptance message. Receiving the acceptance message,Pi

recordsPj in its cache.
Community Expansion: When a peerPj accepts the invi-
tation, it replies to the initiator with an acceptance message,
as well as with the member lists in its local cache. These
members are from the P2P community or extended P2P
community initiated byPj . The peers thatPi receives from
Pj , however, belong to the lowest level of friends ofPi in its
hierarchical network, since they are not directly discovered by
Pi and are just part of its social network through association.
As a reward,Pi sends the current member list in its local cache
to Pj . In this way, each peer has an extended P2P community.

F. Experiments

In this section, we study the performance of the proposed
framework for P2P community formation.

1) Data Preparation:We use the web domains a peer has
browsed to create the profile vector. Each element of the vector
corresponds to the frequency that the domain has been visited
by the peer during a period of time. The data was collected
from the IE history files of volunteers from UMBC and Johns
Hopkins University. There are totally40842 browsing history
records in our data set, and 3318 unique web domains. These
records are randomly split and distributed to peers in our
network simulator so that each peer can compute its own
profile vector. As we have stated previously, we assume all
the peers agree on the same profile ontology,i.e. the same set
of domain names, and therefore, all the profile vectors have
the same size -3318. Figure 9 shows a snapshot of a peer’s
profile.

0.8 0.85 0.9

1450

1500

1550

1600

Percentile

Q
ua

nt
ile

 v
al

ue

Centralized scenario
Distributed scenario
Actual Quantile value

Fig. 8. Quality value w.r.t. the order of percentile.

TABLE I

AVERAGE NUMBER OF COMMUNITY MEMBERS FOUND BY THE INITIATOR

WITH DIFFERENT TTL VALUES.

TTL Friends/peer Messages/peer

1 5 30
2 22 31
3 55 30

2) Performance:Having discussed about the data and the
simulator setup we are in a position to report the experimental
results.
Random Sampling and Percentile Estimation: This ex-
periment evaluates the accuracy of random sampling and
percentile estimation. We chose three differentp values -
80%, 85% and90%. In all the three cases, the confidence level
q was set to95%, and the size of the network was fixed at100
nodes. LetPi be the community initiator. The population can
be defined as the set of all pairwise scalar products betweenPi

and all the other peers. Now, ifPi wants to find similar peers
who are in the top-p percentile of the population, it launchesn
random walks. The terminal peer for each random walk refers
to a sample andPi computes the scalar product between its
own vector and the vector owned by the sample.Pi sorts all the
n scalar products and finds the largest one as the threshold of
percentile of orderp. Figure 8 shows estimated threshold in the
distributed experiment. To compare the results with centralized
sampling,Pi first collects the pairwise scalar products between
itself and all the peers in the network.Pi then performs a
random sampling of sizen and finds the largest scalar product.
The threshold found by this approach is illustrated by the
stars in Figure 8. Figure 8 also shows the actual population
percentile of orderp. As is evident from these results, the
threshold found through random sampling and order statistics
theory is above the actual population percentile. Therefore any
scalar product greater than this threshold can be recognized as
among the top-p percentile population with high confidence.
Community Formation: Once the threshold is detected, the
next step is to form the communities. The size of the network
was fixed to be100. Table I shows the average number of
members found by a community initiator with respect to
different TTL values using the community expansion scheme.
The table also shows the number of messages per peer. Since
it remains a constant, we expect good scalability of our
algorithm.

Table II presents the number of community members formed

13

TABLE II

AVERAGE NUMBER OF COMMUNITY MEMBERS FOUND BY THE INITIATOR

WITH INCREASING NUMBER OF NODES.

#nodes Friends/peer Messages/peer

100 10 30
500 25 30
1000 23 30
2000 33 34

Fig. 9. Snapshot of a peer’s profile.

for different network sizes. Here also since the number of
messages per peer remains a constant, the algorithm is highly
scalable.

X. D ISCUSSION

In this section we compare the communication complexity
of our algorithm with some existing distributed inner product
computation techniques. One of the most widely used methods
is random projection. Considering a vector of dimensionri×1
at each site and a network of sizeS, the communication com-
plexity of random projection method for finding the pairwise
inner products is

(

S
2

)

× k = O(S2k), where k × ri, is a
random matrix such thatk < ri. Under a similar setting, the
communication complexity of our algorithm isO(n×log(S)+
n × ri) where n is the number of ordinal samples required
(which in most cases is very small). The dominating factor for
P2P networks is the sizeS; hence our algorithm scales well
compared to the random projection method even ifri is of the
order ofS. Egecioglu et al. [38] propose a technique in which
the inner product can be computed using only two floating
point numbers. Although this technique is very efficient, it
is still a two-party protocol, and it cannot identify top inner
products in a population distributed over many places without
communicating with all the parties. However, we can adopt
these efficient inner product protocols in our ordinal and
cardinal approximation framework and achieve more efficient
and effective solutions.

XI. CONCLUSIONS

In this paper we have developed a distributed algorithm for
efficiently identifying top-l inner products from horizontally
partitioned data. To achieve low communication overhead, we
use an order statistics-based approach together with cardinal
sampling. Ordinal statistics provides a general frameworkfor

estimating distribution free confidence intervals for population
percentiles. Cardinal sampling helps to combine the inner
product values that are distributed among the peers. Exper-
imental results substantiate our claims regarding accuracy and
message complexity of our algorithm.

Besides having direct algorithmic contributions, this paper
suggests and adopts an important concept in large distributed
computing systems –local approximate algorithms. Local
algorithms are natural candidates for applications in large
dynamic networks because of their good scalability. Local
algorithms can beexact or approximate. However, the class
of exact local algorithms that currently exist in the literature
work for simple primitives such as average and L2-norm. For
solving more complicated distributed problems, researchers
have developed approximate solutions. The ordinal analysis
technique developed in this paper belongs to this genre of ap-
proximate local algorithms. As demonstrated by the simulation
results, our algorithm performs well both in terms of accuracy
of results and communication intensity. In future, we hope to
use this algorithm for solving real-life challenges in distributed
settings such as the internet and sensor networks.

ACKNOWLEDGEMENTS

This research is supported by the United States National
Science Foundation CAREER award IIS-0093353 and NASA
Grant NNX07AV70G. The authors would also like to thank
Phoung Nguyen, Chris Giannella and the anonymous review-
ers for their valuable comments.

REFERENCES

[1] C. Giannella, K. Liu, T. Olsen, and H. Kargupta, “Communication Effi-
cient Construction of Deicision Trees Over Heterogeneously Distributed
Data,” in Proceedings of ICDM’04, Brighton, UK, 2004, pp. 67–74.

[2] K. Liu, H. Kargupta, and J. Ryan, “Random Projection-Based Mul-
tiplicative Data Perturbation for Privacy Preserving Distributed Data
Mining,” IEEE Transactions on Knowledge and Data Engineering,
vol. 18, no. 1, pp. 92–106, 2006.

[3] K. Liu, K. Bhaduri, K. Das, P. Nguyen, and H. Kargupta, “Client-side
Web Mining for Community Formation in Peer-to-Peer Environments,”
in Proceedings of WebKDD’06, Philadelphia, Pennsylvania, 2006.

[4] B. Babcock and C. Olston, “Distributed Top-k monitoring,” in Proceed-
ings of SIGMOD’03, California, 2003, pp. 28–39.

[5] H. A. David, Order Statistics. John Wiley and Sons, Inc., 1970.
[6] W. Hoeffding, “Probability for Sums of Bounded Random Variables,”

Journal of the American Statistical Association, no. 58, pp. 13–30, 1963.
[7] H. Kargupta and K. Sivakumar,Existential Pleasures of Distributed

Data Mining. Data Mining: Next Generation Challenges and Future
Directions. AAAI/MIT press, 2004.

[8] H. Kargupta and P. Chan, Eds.,Advances in Distributed and Parallel
Knowledge Discovery. MIT Press, 2000.

[9] R. I. Arriaga and S. Vempala, “An Algorithmic Theory of Learning:
Robust Concepts and Random Projection,” inProceedings of FOCS’99,
New York, 1999, pp. 616–623.

[10] R. Wolff and A. Schuster, “Association Rule Mining in Peer-to-Peer
Systems,”IEEE Trasnsactions on Systems, Man and, Cybernetics Part
B: Cybernetics, vol. 34, no. 6, pp. 2426–2438, 2004.

[11] R. Fagin, “Combining Fuzzy Information from Multiple Systems,” in
Proceedings of SIGMOD’96, Montreal, Canada, 1996, pp. 216–226.

[12] W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden, “Progressive
Distributed Top-k Retrieval in Peer-to-Peer Networks,” inProceedings
of ICDE’05, Tokyo, Japan, 2005, pp. 174–185.

[13] F. Cuenca-Acuna, C. Peery, R. Martin, and T. Nguyen, “PlanetP: Using
Gossiping to Build Content Addressable Peer-to-Peer Information Shar-
ing Communities,” inProceedings of HPDC’03, Seattle, Washington,
2003, pp. 236–249.

14

[14] S. Datta, C. Giannella, and H. Kargupta, “K-Means Clustering over
Large, Dynamic Networks,” inProceedings of SDM’06, Maryland, 2006,
pp. 153–164.

[15] R. Wolff, K. Bhaduri, and H. Kargupta, “Local L2 Thresholding Based
Data Mining in Peer-to-Peer Systems,” inProceedings of SDM’06,
Maryland, 2006, pp. 430–441.

[16] S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kargupta,
“Distributed Data Mining in Peer-to-Peer Networks,”IEEE Internet
Computing Special Issue on Distributed Data Mining, vol. 10, no. 4,
pp. 18–26, 2006.

[17] K. Tumer and J. Ghosh, “Robust Combining of Disparate Classifiers
through Order Statistics,”Pattern Analysis and Applications, vol. 5, pp.
189–200, 2001.

[18] M. B. Greenwald and S. Khanna, “Power-Conserving Computation of
Order-Statistics over Sensor Networks,” inProceedings of PODS’04,
Paris, France, 2004, pp. 275–285.

[19] Y.-C. Ho, C. G. Cassandras, C.-H. Chen, and L. Dai, “Ordinal Optimiza-
tion and Simulation,”Journal of Operations Research Society, vol. 51,
pp. 490–500, 2000.

[20] L. Lovász, “Random Walks on Graphs: A Survey,”Combinatorics,
vol. 2, no. 80, pp. 1–46, 1993.

[21] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.Teller,
and E. Teller, “Equations of State Calculations by Fast Computing
Machines,”Journal of Chemical Physics, vol. 21, pp. 1087–1092, 1953.

[22] W. Hastings., “Monte Carlo Sampling Methods Using Markov Chains
and Their Applications,”Biometrika, vol. 57, pp. 97–109, 1970.

[23] S. Datta and H. Kargupta, “Uniform Data Sampling from a Peer-to-Peer
Network,” in Proceedings of ICDCS’02, Toronto, Ontario, 2007, p. 50.

[24] A. Awan, R. A. Ferreira, S. Jagannathan, and A. Grama, “Distributed
Uniform Sampling in Unstructured Peer-to-Peer Networks,” in Proceed-
ings of HICSS’06, Kauai, Hawaii, 2006.

[25] P. Orponen and S. E. Schaeffer, “Efficient Algorithms forSampling and
Clustering of Large Nonuniform Networks,” arXiv.org e-Print archive,
Tech. Rep. cond-mat/0406048, 2004.

[26] S. Mane, S. Mopuru, K. Mehra, and J. Srivastava, “Network Size
Estimation In A Peer-to-Peer Network,” University of Minnesota, MN,
Tech. Rep. 05-030, September 2005.

[27] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani, “Estimating
Aggregates on a Peer-to-Peer Network,” April 2003, Stanford University.

[28] A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: AnApproach
to Universal Topology Generation,” inProceedings of MASCOTS’01,
Ohio, 2001.

[29] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A Measurement Study of
Peer-to-Peer File Sharing Systems,” inProceedings of MMCN’02, San
Jose, CA, J 2002, pp. 156–170.

[30] “DDMT,” http://www.umbc.edu/ddm/wiki/software/DDMT/.
[31] A. H. Maslow, Motivation and Personality, 3rd ed. HarperCollins

Publishers, January 1987.
[32] S. Castano and S. Montanelli, “Semantic Self-Formation of Communi-

ties of Peers,” inProceedings of ESWC’05, Heraklion, Greece, 2005.
[33] N. Noy, “Semantic Integration: A Survey of Ontology-based Ap-

proaches,”ACM SIGMOD Record, vol. 33, no. 4, pp. 65–70, 2004.
[34] M. Khambatti, K. D. Ryu, and P. Dasgupta, “Efficient Discovery of

Implicitly Formed Peer-to-Peer Communities,”International Journal of
Parallel and Distributed Systems and Networks, vol. 5, no. 4, pp. 155–
164, 2002.

[35] Y. Wang and J. Vassileva, “Trust-Based Community Formation in Peer-
to-Peer File Sharing Networks,” inProceedings of WI’04, Beijing,
China, 2004, pp. 341–338.

[36] J. P. Scott,Social Network Analysis: A Handbook, 2nd ed. Sage
Publications Ltd., March 2000.

[37] J. Trajkova and S. Gauch, “Improving Ontology-Based User Profiles,”
in Proceedings of RIAO, Vaucluse, France, 2004, pp. 380–389.

[38] Ömer Egecioglu and H. Ferhatosmanoglu, “Dimensionality Reduction
and Similarity Computation by Inner Product Approximations,”in
Proceedings of CIKM’00, New York, 2000, pp. 219–226.

Kamalika Das received her B.Tech degree in Com-
puter Science and Engineering from Kalyani Univer-
sity, India, in 2003 and her MS degree in Computer
Science from University of Maryland Baltimore
County, in 2005. Since then, she has been a PhD
student at the same university, working in the area
of distributed data mining. Her research interests
include privacy preserving data mining, web mining
and P2P data mining. More information about her
can be found at http://www.csee.umbc.edu/˜ kdas1.

Kanishka Bhaduri received his B.E. in Computer
Science and Engineering from Jadavpur University,
India. Currently he is doing his PhD at Univer-
sity of Maryland Baltimore County. His research
interests include distributed and P2P data min-
ing, data stream mining, and statistical data min-
ing. More information about him can be found at
http://www.csee.umbc.edu/˜ kanishk1.

Kun Liu is a member of the Intelligent Infor-
mation Systems group at IBM Almaden Research
Center. He received his Ph.D. in Computer Science
from University of Maryland Baltimore County in
2007. His main research interests include privacy
preserving data mining, distributed data mining and
web mining. His paper client-side web mining for
community formation in P2P environments with
privacy constraints was selected as the most inter-
esting paper of WebKDD’06. Kun regularly serves
as a reviewer and/or external reviewer for SDM,

KDD, ICDM conferences and TKDE journals. He is also in the organizing
committee for the 2002 and 2007 NSF Workshop/Symposium on Next
Generation of Data Mining. More information about him can be found at
http://www.csee.umbc.edu/˜ kunliu1.

Hillol Kargupta is an Associate Professor at the De-
partment of Computer Science and Electrical Engi-
neering, University of Maryland Baltimore County.
He received his Ph.D. in Computer Science from
University of Illinois at Urbana-Champaign in 1996.
He is also a co-founder of AGNIK LLC, a ubiquitous
data intelligence company. His research interests
include distributed data mining, data mining in
ubiquitous environment, and privacy-preserving data
mining. Dr. Kargupta won a US National Science
Foundation CAREER award in 2001 for his research

on ubiquitous and distributed data mining. He, along with hiscoauthors,
received the best paper award at the 2003 IEEE InternationalConference on
Data Mining for a paper on privacy-preserving data mining. Hewon the 2000
TRW Foundation Award, the 1997 Los Alamos Award for Outstanding Techni-
cal Achievement, 1996 SIAM Annual Best Student Paper Award. His research
has been funded by the US National Science Foundation, US AirForce,
Department of Homeland Security, NASA, and various other organizations.
He has published more than 90 peer-reviewed articles in journals, conferences,
and books. He has coedited two books: Advances in Distributed and Parallel
Knowledge Discovery, AAAI/MIT Press, and Data Mining: NextGeneration
Challenges and Future Directions, AAAI/MIT Press. He is an associate editor
of the IEEE Transactions on Knowledge and Data Engineering,the IEEE
Transactions on Systems, Man, and Cybernetics, Part B, and the Statistical
Analysis and Data Mining Journal. He regularly serves on theorganizing
and program committees of many data mining conferences. More information
about him can be found at http://www.csee.umbc.edu/˜ hillol. He is a senior
member of the IEEE.

