K-Means Clustering Over a Large, Dynamic Network*

Souptik Datta

Abstract

This paper presents an algorithm for K-means clustering
of data distributed over a large, dynamic network. The
network is not assumed to contain any special server
nodes (a peer-to-peer network) and is not assumed to
be stable either with respect to the topology or the
data held by nodes. The algorithm requires only local
communication and synchronization at each iteration:
nodes communicate and synchronize only with their
topologically neighboring nodes. Due to the growing
prevalence of peer-to-peer and mobile/wireless sensor
networks, data analysis in large, dynamic networks is
likely to garner increasing importance in the near future.
To our knowledge, our algorithm represents the first
K-means algorithm (a common data analysis/mining
technique) to be developed for a large dynamic network.

We tested our algorithm in a simulated environment
of up to 1000 nodes on synthetic data. We examine its
behavior in a static environment (no data or network
change) and a dynamic environment. Empirical results
show the algorithm demonstrates good accuracy (in
both the static and dynamic environment) in that
the cluster labels produced are very similar to those
produced by K-means run on centralized data.
Keywords: Peer-to-peer (P2P), K-means clustering,
dynamic networks.

1 Introduction

K-means clustering [11] is a well-known and well-studied
exploratory data analysis technique. The standard
version assumes that all data is available at a single
location. However, important applications exist for
which data sources are distributed over a large, dynamic
network containing no special server or router nodes.
Henceforth, we use the term “P2P network” with the
meaning described in the previous sentence (note that,
we group mobile/wireless sensor networks under the
same heading). P2P networks are, by definition, highly
decentralized and dynamic (and in practise very large).
Therefore, collecting the data at a central location

~ *Primary affiliation of all authors: Department of Computer

Science and Electrical Engineering, University of Maryland, Bal-

timore County USA, {souptikl,cgiannel,hillol}@cs.umbc.edu
 Also affiliated with AGNIK LLC, Columbia, MD USA.

Chris Giannella

Hillol Kargupta

before clustering is not an attractive option. Ideally,
a distributed algorithm in this setting should (1) not
require global synchronization, (2) be communication-
efficient, (3) be resilient to network or data change.
Next we give two brief examples motivating the use of
K-means clustering in large dynamic networks.

Example: Consider a P2P file-sharing network
[2]. These networks allow users to freely join, provided
they allow files to be stored on their computers. In
return they are allowed to search and down-load files.
Due to the ad-hoc nature of the network and lack of
centralized control, searching for files efficiently is a
major challenge. A global clustering of the files allows
individual peers to produce a compact summary of their
files held and communicate these to other peers. These
summaries are used by other peers to more effectively
route search queries [8], [17].

Example: Consider a sensor network consisting
of a large number of light-weight, wireless, battery-
powered sensors for environment monitoring [1]. As-
sume each sensor is measuring the same variables. Clus-
tering all the data in a given region of the network over
a fixed time window can offer valuable information con-
cerning environmental phenomena e.g. can identify out-
liers. Since the power required for wireless communica-
tion goes up with the square of distance, nodes only
should communicate with others in a small radius (im-
mediate neighbors). The inherent instability of the net-
work makes synchronization of all nodes in the desired
region undesirable. Thus, a K-means clustering algo-
rithm in this example ought to work in a locally syn-
chronous manner i.e. nodes only synchronize with their
immediate neighbors.

This paper addresses the problem of K-means clus-
tering of data distributed over a large, dynamic P2P
network. We present an algorithm, P2P K-Means, for
which nodes only require local synchronization. While
we are not able to provide formal convergence and ac-
curacyl guarantees, our experiments show that conver-
gence is always reached quickly and the accuracy is quite

TAccuracy is defined in terms of the similarity between the

cluster labels produced by P2P K-means and those produced by
K-means on centralized data. Accuracy is not defined with respect
to any intrinsic cluster labeling of the dataset; we do not assume
any such labeling exists.

good and resilient to network change. To our knowledge,
P2P K-means represents the first K-means clustering al-
gorithm to operate in a locally synchronous fashion and
handle dynamic networks and data.

Section 2 describes further motivation (P2P file-
sharing) and related work. Section 3 describes the P2P
K-means algorithm. Section 4 describes the experimen-
tal setup (simulator and data generator). Section 5 de-
scribes the experiments conducted and their results. Fi-
nally, Section 6 concludes the paper.

2 Further Motivation and Related Work

2.1 Further Motivation To further motivate the
problem of K-means clustering in large scale distributed
networks, we describe in greater detail the example of
P2P file sharing given in the previous example [17]. In
this system, each peer holds a collection of images. A
user of the system will initiate a search query through
her peer. A query is an image and the goal is to return
the £ most similar images to the user’s peer.

The approach in [17] provides each peer with a
compact summary of the contents of each other peer.
Using this the user’s peer ranks the other peers in terms
of how likely they are to contain images close to the
query. Finally, the peer sends the user’s query to other
peers from highest rank to lowest. While [17] did not
offer any mechanism to cut the search short of sending
the query to all peers, they report experiments showing
that most of the £ nearest neighbors tend to be reported
among the high ranked peers.

To construct the summary structure at each peer,
a distributed K-means clustering is performed over all
images in the network. At the end each peer receives the
correct? global centroids. The summary structure for
each peer is a histogram of its local images with respect
to the centroids. The distributed K-means algorithm
is globally synchronous and works as follows [8]. At
each iteration, an initiator peer starts a probe and echo
process involving all other peers. This process creates a
spanning tree with probes going along edges away from
the initiator and echos returning to the initiator. The
probes carry the starting centroids for the iteration to
all peers. The echos perform a global sum reduction
of each peer’s local centroids and cluster counts around
the starting centroids. Eventually, the initiator peer will
produce the sum of all peers’ local centroids and cluster
counts and compute the new centroids for that iteration.
After the final iteration, the initiator broadcasts the
final centroids to all peers.

2Correct in the sense that the peers receive the same centroids
that would have resulted from applying K-means on the data after
centralizing it.

2.2 Related Work The algorithm of Eisenhardt et
al. [8] described earlier is similar to ours in that we both
only transmit centroids rather than data to reduce the
communication load. However, their algorithm requires
a complete global synchronization at each iteration,
while ours does not require global synchronization at
any time. As a result our algorithm is better suited
to a dynamic environment. On the other hand, their
algorithm is guaranteed to produce exact results (i.e.
same as K-means on centralized data), while ours
produces an approximation. Bandyopadhyay et al. [3]
develop a non-locally synchronized K-means algorithm
in a P2P network but use random sampling of the
network to reduce message load. Their algorithm
is similar to ours in that an approximate result is
produced. On the other hand, we only require local
synchronization and only require nodes to communicate
with their immediate neighbors.

Distributed clustering has been addressed recently
in the Distributed Data Mining (DDM) community. For
a survey of clustering techniques in DDM see [12] and
[3]. In particular, some work has been done on parallel
implementations of K-means. Dhillon and Modha [7] di-
vide the dataset into p same-sized blocks, then, on each
iteration, each of the p processors updates its current
centroids based on its block. The processors broadcast
their centroids and cluster counts. Once a processor has
received all the centroids from other processors it forms
the global centroids by weighted averaging. Each pro-
cessor proceeds on to the next iteration. Forman and
Zhang [9] take a similar approach, but extend it to K-
harmonic means. Note that the methods of [7] and [9]
both start by partitioning then distributing a central-
ized dataset over many sites. This is different than the
setting we consider: the data is never located in one cen-
tral repository, it is inherently distributed. However, we
directly employ their idea of sending around centroids
and updating based on weighted averaging.

Very recently, researchers have started to consider
data analysis in large-scale dynamic networks. Here the
goal is to carry-out data analysis using techniques which
are highly asynchronous, scalable, and robust to net-
work changes. Due to the fact that efficient data analy-
sis algorithms can often be developed based on efficient
primitives, some researchers have developed several dif-
ferent approaches for computing basic operations (e.g.
average, sum, max, random sampling) on dynamic net-
works. Kempe et al. [13] and Boyd et al [5] investi-
gate gossip based randomized algorithms. Jelasity and
Eiben [14] develop the “newscast model” as part of the
DREAM project. Both of the above approaches use an
epidemic model of computation. Bawa, Gionis, Garcia-
Molina, and Motwani, have developed [4] an approach

in which similar primitives are evaluated to within an
error margin. Wolff et al. [18] develop a local algo-
rithm for majority voting. Finally, some work has gone
into more complex data mining tasks: association rule
mining [18], facility location [15] (both based on local
majority voting), genetic algorithms [6].

Related to the previous paragraph, vigorous on-
going research is being conducted on data analysis in
wireless sensor networks. These algorithms must min-
imize communication (to reduce power consumption)
and ought to be robust to network failure. An example
of a paper in this area is [10] by Greenwald and Khanna.
Here the authors develop communication efficient algo-
rithms for approximating the rt* ranked number in an
order list. See the references therein for further works
on data analysis in sensor networks.

3 The Algorithm

Below we describe our P2P K-means algorithm. The
goal of the algorithm is for each node to converge on
a set of centroids that are as close as possible to the
centroids that would have been produced if the data
from all nodes was first centralizing, then K-means was
run. In Subsections 3.1 and 3.2 (the next two), we
discuss the algorithm in the case of a static environment
— data and network do not change. In Subsection 3.3,
we describe modifications needed to handle a dynamic
environment — data and network change.

Definitions and Assumptions: Let
Ni,N3,...,N, denote the nodes in the system
each with data set X*¢. The global dataset is denoted
as X which equals |JI_, X* (in the distributed data
mining literature, this is referred to as horizontally
partitioned data). Let Neigh(denote the set of nodes
to which N; is directly connected at a given time
i.e. the immediate neighbors of N;. We assume that
each node can reliably compute Neigh(® at any given
time. As a consequence, for example, each node can
determine if the link to any of its immediate neighbors
from a previous time has gone down.

3.1 The Algorithm: Static Environment The
algorithm is initiated at a single node, say N;. This
node generates an initial set of centroids {UJ(}I) 1 <
j < K} randomly along with a termination threshold
~v > 0 (user-defined), sends these to all of its immediate
neighbors Neigh("), and begins iteration one. When a
node receives the initial centroids and 7 for the first
time, it sends them to the remainder of its immediate
neighbors and begins iteration one (further receipts of
the initial centroids are ignored). Eventually all nodes
will enter iteration one with the same initial centroids
and termination threshold +.

The P2P K-means algorithm, in summary, carries
out repeated iterations of a modified K-means at each
node N;. At each iteration £, N; collects from its
immediate neighbors all the centroids and their cluster
counts for iteration £. These, along with the local data
of N;, are used to produce the centroids for the next
iteration. If these new centroids differ substantially
from the old ones, then N; goes on to the next iteration.
Otherwise, it enters a “terminated” state (the meaning
of this state is described later).

A formal description of the P2P K-means algorithm
in a static environment is described in Algorithm 1.
Informally, the algorithm proceeds as follows.

Let Ve(’) = {v](.fz:l < j < K} be the centroids
held by node N; at the beginning of iteration . Let
{wgfz, :1 < j < K} be the centroids which result
from one iteration of K-means carried out on X; over
VL,(’). Let ji(wﬁ) denote the cluster count of wgfz i.e.
(4)
N,

the number of tuples in X; for which w;, is closer?

than any other w,(;,)e, h # j. These are called the local
centroids and cluster counts of N; at iteration £. The
local centroids and counts, {(w%,ﬁ(wgg)) :1<j <K},
are stored in the history table of N; whose function will
be explained shortly.

Node N; sends a message, (i,£), (called a poll
message) to each of its immediate neighbors. This
message serves as a request for all the neighbors to
respond with their local centroids and cluster counts
for iteration £. Once all neighbors have responded
(see Subsection 3.3 for details on the case where the
, i
to produce ”3(2 +1» the j** centroid at the start of
iteration £+ 1. The update is a weighted average of the
local centroids and counts received from all immediate
neighbors (for their iteration £)*. The precise update
formula is found in step 5 of the first part of Algorithm
1. If the maximum distance between the centroids of
N; at the start and end of iteration £ is larger than a
user-defined parameter, v, then N; goes on to iteration
£+ 1. Otherwise it enters the terminated state. From
here, N; no longer updates its centroids or sends polling
messages, but continues to respond to polling messages.
Next we describe how N; responds to polling messages
while not in the terminated state. Following that, we
describe its response while in the terminated state.

Suppose N; receives a poll message (k,£) during
iteration ¢ while not in the terminated state. The

neighbors change), N; updates its j* centroid, v

3Tn our experiments, we used the Euclidean distance.

4If the underlying network topology is a complete graph, then
the centroids produced by N; at the end of iteration £ will be
exactly the same as those produced by K-means on centralized

data at the end of iteration £.

message came from node Ny, during its iteration i. N;
must determine how to respond. If ¢ < /¢, then the
history table of IV; contains its local centroids and their
cluster counts for iteration /. Hence, N;, sends these
immediately in a response message to Ny. If £ > £, then
the history table of N; does not contain local centroids
for iteration £. So, poll message (k,£) is placed in the
poll table of N;. If { = ¢, then N; checks if its history
table contains local centroids and their cluster counts for
iteration £. If so, these are sent to Ny. If not, (k,£) is
placed in the poll table. Finally, N; must also check its
poll table during iteration £. This is done immediately
after producing the local centroids and their cluster
counts. For all poll messages (k1,?), , (km,¢,) in
the table, N; sends its local centroids and their cluster
counts for iteration £ in a response message to each Ny,
and removes these poll messages from its poll table.

Suppose N; receives a polling message (k, #) during
iteration ¢ while in the terminated state. If ¢ < 4,
then N; responds exactly as it would while not in the
terminated state. If £ > £, then NN; sends its local
centroids and their counts for iteration £ in a response
message to Ny.

Algorithm 1: Static P2P K-means

Assumptions: Each node N; begins the algorithm
with X? (local data), ¥ > O (termination threshold),
and V) = {vj(g :1 < j < K} (the initial centroids, the
same for each node).

Definitions: A poll message, { k,{), received by node
N; means that N, requests the local centroids and
counts of N; at iteration /. A response message, {
k,{(aj,b;) : 1 < j < K}) received by N; means that
{(a], b;) : 1 < j < K} are the local centroids and counts
for N}, (sent in response to a previous poll message, so
the iteration number is implicit).

Upon the start of iteration ¢, N; does:

/* Carry out one round of K-means on local data X°
using VZ('), steps 1 - 2.%/.

1. For each tuple z € X?, find 1 < j(z) < K, such

(9

that centroid v; () . € Vé(i) is closer to x than any other

v,(:)l € (V, ® \{v](w) 1) Le. j(z) is the cluster label of
z at iteration /.
2. For each 1 < j < K, let Z(j) denote the set of tuples

in X with cluster label j, let w(’) denote the average
of Z(j), and let ﬁ(wm) denote |Z()|

{(w H,ﬁ((’))) : 1 < j < K} is stored in the history
table of N .

The collection

/* Process the poll table,
unprocessed poll messages.*/
3. For all messages (ky,£), -- -,

step 3 — it contains all

(km, £) in the poll table

of N;, send response message, (i, {(w ”,ﬁ()) 11 <
Jj < K}), to each Ni;. Remove these messages from
the poll table.

4. Send a poll message, (i,£), to each node Nj €
Neigh'®. Let Wait denote the set of all nodes from
which N; is waiting for a response.®

5. N; waits until, for each N, € Wait?, a response
message (k, {(w; (k) ((k))) :1<j < K})is received.

Node N; updates 1ts jt* centroid as a weighted average:

(k) (k)
@ ENkE(Wa’it(i)U{Ni}) Wi e ﬁ(wj,f)
Y41 = |

(k)
ZNkE(Waz't(i)U{Ni}) ﬂ(wj,l)
6. If max{||vﬂ —v](’z+1|| :1<j <K} >, then node
N; goes on to iteration £ + 1. Otherwise it enters the
terminated state.

Upon receipt of a poll message (k,g), N; does:
1. Ifi < ¢, then recover the local centroids and
cluster counts for iteration ¢ from the history table of
N; and send them in a response message to Ng, (4,
{3 D) 1<j < K}).
2. If E = 12 and N; is not in the terminated state, do
2a. If the local centroids for iteration £ are in
the history table of N;, then recover and send
them in a response message to Nj.
2b. Else, add (k, £) to the poll table of N;.
3. If ¢ > £ and N; is not in the terminated state, then
add (k, £) to the poll table of N;.
4. If ¢ > (and N; is in the terminated state, then
recover the local centroids and counts for iteration £
from the history table of N; and send them in a response
message to Ny.

3.2 Space and Communication Cost Analysis:
Static Environment In this subsection, we calculate
the space and communication cost of P2P K-means
assuming that all nodes have reached the terminated
state and I denotes the maximum number of iterations
carried out by any node. Let L denote maz{|Neigh(®| :
1<i<n}

5In a purely static environment, there is no need to introduce
the additional Wait(®) notation since Wait(®) equals Neigh(9).
In a dynamic environment, Wait® does not necessarily equal
Neigh() as, for example, some nodes in Niegh(?) may go down.
The additional notation is included here to ease subsequent dis-
cussion of the modifications needed for the dynamic environment.

At any given node N;, the space required is propor-
tional to the size of IV;’s history and poll tables. Clearly
the history table is of size O(IK) since the local cen-
troids and their cluster counts are added for each itera-
tion. The poll table is of size O(IL), since each of N;’s
neighbors sends one poll messages per iteration, thus, a
maximum of I per neighbor. Therefore, the total space
is O(I(K + L)). The number of messages (4 byte num-
bers) transmitted by N; is O(ILK). This is because
N; sends a poll message (size O(1)) to each neighbor at
each iteration (O(IL) in total). On top of this, N; sends
a response of size O(K) for each entry of the O(IL) en-
tries in its poll table (O(I LK) in total). Therefore, total
number of messages is O(IL + ILK).

Hence the total amount of space and communica-
tion over all nodes is O(nI(K + L)) and O(nILK), re-
spectively.

3.3 The Algorithm: Dynamic Environment
Now we describe how the static environment algorithm
can be modified to address a dynamic environment.

Node failure or topology change: If a node leaves
the network, its immediately neighboring nodes will
discover this (by monitoring Neigh). Likewise, if an
edge goes down, the two nodes involved will detect the
change to their immediate neighborhood. Each node,
N;, which lost an immediate neighbor, Ny, will remove
Ny, from Wait® and remove any poll messages from N
from its poll table. Thus, N; henceforth refrains from
waiting on poll requests from N}, in step 5 of the first
part of Algorithm 1.

If a new edges come up, all associated nodes will
discover this and, therefore, detect new immediate
neighbors. A simple way to augment P2P K-means is to
have all associated nodes wait until their next iteration
before considering the new immediate neighbors.

Node addition: If a new node, N;, joins the network,
a more complicated set of modifications is needed.
N; will need to synchronize itself with its immediate
neighbors. A simple way to do this is as follows.

1. N; polls its immediate neighbors N € Neigh(®
and each returns its current iteration £;.5

2. N; sets its iteration number to £ = min{fl : N}, €
Neigh®}, and its centroids as follows. Choose
Ny € Neigh') whose iteration number is £ (break
ties arbitrarily). Send a poll request, (i,£), to Ny
which, in turn, responds with its centroids at the
start of iteration £, Vf(k). For all 1 < j < K, N;

sets U](? to UJ(-,]?.

SIf Nj, goes down before sending a response, N; detects this
(by monitoring Neigh()) and refrains from waiting on Nj.

3. N; begins iteration £ as described in Algorithm 1.

All immediate neighbors of N; which are not in
the terminated state would simply wait until their
next iteration before polling N;. However, immediate
neighbors N}, that were in the terminated state ought
to consider becoming active again. To do this, Ny polls
N; for its local centroids and cluster counts at its latest
iteration. N computes an update of its centroids and
if the resulting centroids have changed significantly, Ny
becomes active again and sends a message to all its
immediate neighbors. If any of these neighbors are in
the terminated state, they follow the same procedure to
determine if they should become active.

Data change: If the data at a node N; changes
and N; is not in the terminated state, its behavior
need not change. If N; is in the terminated state,
it must determine whether or not to become active
again. To do this, IV; recomputes its local centroids
and cluster counts and polls its immediate neighbors
for their local centroids and cluster counts (at their
latest iteration). Then N; updates its centroids and
if the resulting centroids have changed significantly, NV;
becomes active again.

In either case, though, N; sends a message to
all its immediate neighbors indicating a data change.
Neighbors not in the terminated state, can ignore
the message. Neighbors in the terminated state will
determine whether to become active using the same
technique as described above in the “Node addition”
case.

3.4 Comments

1. No node has an explicit condition under which all
activity stops. However, if all nodes have entered
the terminated state, all communication ceases i.e.
the algorithm has terminated.

2. The algorithm does not require global synchroniza-
tion in the sense that all nodes in the network must
be on the same iteration. However, the algorithm
is not completely asynchronous in the sense that
any node can be on any iteration with respect to
any other node. Local synchronization is required
in the following sense. Since a node must wait
for responses from its immediate neighbors (unless
they go down), it cannot move more that one it-
eration beyond them. Hence the difference in iter-
ation number between two nodes is always upper
bounded by the number of network links between
the two nodes.

3. Proving convergence of P2P K-means or bounding
its accuracy appears to be a quite hard problem.

However, in experiments the algorithm always con-
verges quickly with quite high accuracy.

4. We point out a connection between Algorithm 1
(static P2P K-means) and Lamport’s work on the
ordering of events in a distributed system [16]. He
argues that an event a at a node N; can be said
to have happened before (in a global sense) event
b at node N, if N; sent a message after a that
was received by N, before b. This is analogous
to the centroid update phase in Algorithm 1 (step
5). A node wants its centroid update at iteration
£ to happen after all neighbors produce their local
centroids.

4 Experimental Setup

We studied the behavior of P2P K-means in a simulated
environment on a single machine. Before reporting the
results, we first describe the simulator (Subsection 4.1)
and the data used (Subsection 4.2).

4.1 Simulator Our simulation consists of two parts:
the network topology with edge delays; the message
passing and local computation behavior. For the net-
work topology and delays, we have used an Internet
topology generator developed elsewhere, BRITE". It
produces a weighted graph with edge weights repre-
senting communication delays (in mSeconds). We have
used flat level “Autonomous System” (AS) with Wax-
man model to simulate the network in BRITE, where
two nodes u and v are connected with a probability
P(u,v) = ae4@)/BL where a =0.15 and B = 0.2.
An “incremental growth” version of the Waxman model
with random node placement is used during topology
construction. A new node surveys the existing nodes
in the graph in each step and connects to m (= 2) of
them with the said probability. Other parameters® used
are HS = 1000, LS = 100 (size of the plane), constant
bandwidth distribution with Max BW = 1024, and Min
BW = 10.

For the message passing and local computation
behavior, we built our own simulator from scratch that
simulates a distributed dynamic network environment
with large number of nodes. For monitoring the whole
network, we designed the simulator in a way that it
operates with respect to a common global clock. Note
that, the existence of the global clock does not call
for any sort of synchronization of computations of the
nodes. The whole network just updates its state at each
global clock tick.

www.cs.bu.edu/brite

8Refer to BRITE documentation for details.

Since the simulator operates on the above global
clock ticks rather than wall clock time, the BRITE
map edge delays must be converted from mSeconds to
number of clock ticks. To do this, we assume a clock tick
in 500 mSeconds and round edge delays to the nearest
multiple of 500 mSeconds. Transmission of a message
is simulated by decrementing its number of ticks to
arrival at each global clock tick. If the message has
arrived, it is copied into a buffer associated with the
arrival node. We assume that network communication
dominates local computation (a reasonable assumption
if the local datasets are small). Thus, local computation
time is not considered in the simulation. In one clock
tick, each node is able to carry out one round of K-means
producing local centroids and cluster counts and send
polling requests to all neighbors. The remainder of the
iteration will require more clock ticks until all responses
have arrived. Once all responses have arrived, the
node updates its old centroids without any additional
ticks and, moreover, processing poll requests from other
nodes does not incur any additional clock ticks.

4.2 Data Generation All of the data used for our
experiments was 10-dimensional data sampled indepen-
dently from a mixture of 10 Gaussian distributions and
a uniform distribution. Each point in the dataset has
a fixed probability of being generated from the uni-
form random distribution, or any of the 10 predefined
Gaussian distributions. Throughout most experiments,
the means and covariances of the Gaussian distributions
are fixed (unless otherwise indicated). Figure 1 depicts
a 78200 point, 2D dataset generated without the uni-
form distribution. However, in all our experiments, the
generator included a uniform distribution (noise) as de-
scribed above. Note that this is just a representative 2-
dimensional dataset used here for visualization, the orig-
inal data used in all the experiment is a 10-dimensional
data.

5 Results

We varied the number of nodes up to 1000. In all ex-
periments, -y, the termination parameter, is set to 0.01.
We also start the simulations with each node having the
same initial centroids to start with, thereby ignoring the
initial propagation delay. Average immediate neighbor-
hood size is 4 per node. The number of clusters (K) in
all simulations is set to 8.

5.1 Static Environment We first tested our algo-
rithm in a static environment — no data or network
changes. We conducted experiments with the number
of nodes increasing up to 1000 making sure that the to-
tal number of points divided by the number of nodes

40

201 g 4

20 -10 0 10 20 30 40

Figure 1: A 78200 point dataset generated from a
mixture of 10 Gaussian distributions.

remained constant for experiments with both the uni-
formly and non-uniformly distributed data. In this way,
we can observe the effect of increasing the size of the net-
work without the number of points per node becoming a
confounding factor. For v nodes, first a dataset contain-
ing 649v points was generated, X. Then these points
were assigned to nodes in one of two ways: uniform as-
signment all nodes get the same number of points, non-
uniform assignment the number of points per node fol-
lows a Zipfian distribution with parameter 0.8 (with the
constraint that each node will contain at least K = 10
points).

Experiments are conducted by first running a cen-
tralized K-means on X. Then P2P K-means is run on X
when assigned uniformly over nodes and when assigned
non-uniformly. The initial centroids in all cases are the
same.

We seek to answer the following questions.

e Does our algorithm incur a large error in terms
of assigning points to different clusters than a
centralized K-means?

e Does our algorithm scale well with the size of the
network in terms of communication cost and error?

5.1.1 Accuracy We measure accuracy of P2P K-
means by comparing the final cluster assignments at
each node to the final cluster assignments from the cen-
tralized K-means. Note, we do not measure accuracy
in terms of any intrinsic cluster labeling of the global
dataset X. We do not assume any such labeling ex-
ists. We measure accuracy as the difference between
the cluster assignments produced by P2P K-means and

those produced by K-means run on X after centraliza-
tion. When we refer to the “cluster membership” of
a given point, we mean the cluster to which the point
was assigned by a specified algorithm (K-means run on
centralized data or P2P K-means).

The initial centroids are labeled 1,..., K (the same
centroids for each node and for the centralized K-
means). For each x € X, let Leenti(z) denote the
label (cluster membership) of the cluster to which z is
assigned at the end of the centralized K-means. Assume
x appears at node N; i.e. £ € X, Let Ly, (x) denote
the label of the cluster at N; to which z is assigned once
the node reaches the termination state after execution
of P2P K-means. We define percentage membership
mismatch (PMM) over a node i as

100|{.’L’ €)(Z : Lcent(x) ;é L;)2p(x)}|]

PMM! = :
| X

Let Avg(PM M) denote the average percentage mem-
bership mismatch over all nodes i.e. Ly PMM? iy
ilarly, let STD(PM M) denote the standard deviation
in the average percentage membership mismatch.

Once all peers have reached a termination state
we measure Avg(PPM) and STD(PPM). Figure 2
depicts accuracy as the number of nodes increases from
100 to 1000. For uniform node assignment, the average
PMM (“Avg(PMM) U”) does not exceed 3% and,
including three standard deviations, does not exceed
5.4%. For non-uniform node assignment, the average
PMM (“Avg(PMM) NU”)does not exceed 3.1% and,
including three standard deviations, does not exceed
6%. Hence, the error incurred by our algorithm is quite
low.

Moreover, the accuracy appears more or less flat
with respect to the number of sites implying our algo-
rithm enjoys excellent accuracy scalability with respect
to network size.

Finally, the assignment of data to nodes (uniform
vs. non-uniform) has only a small affect on accuracy
(a slight decrease for non-uniform, as expected). As we
see in the figure, the PMM values for data uniformly
distributed and distributed following a Zipfian distribu-
tion with parameter 0.8 are very close to each other.
Experiments with a smaller Zipfian parameter (we ex-
perimented with Zipfian parameter = 0.5 as well) shows
even closer PMM values.

5.1.2 Communication Complexity We measure
the communication complexity of P2P K-means by
counting the number of bytes passed during the simula-
tion. Let Comm’® denote the total number of bytes re-
ceived by node i during the entire run of P2P K-means.

Scalability: Avg and SD of PMM
35 T T T

T
‘Avg PMM(U)
—+— Avg PMM(NU)
I SD PMM(U)
C—IsppPMM(NY) | |

T W

~—Percentage-—>

0 100 200 300 400 700 800 900 1000

E 0
~-Number of Nodes-->

Figure 2: Variation of the average and standard devia-
tion of PMM with the number of nodes in the network.

x10" Scalability of Average and SD of Communication Cost in Bytes.
T T T T T T T

Avg Bytes(U)
o —+— Avg Bytes(NU)
[<0 Bytes(u)

[_sD Bytes(nu)

~-Bytes-->

0 100 200 300 400 500 600 700 800 900 1000
~-Number of Nodes—->

Figure 3: Variation in the average and standard devi-
ation of communication cost with number of nodes in
the network.

Let Avg(Comm) denote the average number of bytes

received i.e. =190 and let ST D(Comm) denote
the standard deviation.

Figure 3 depicts the communication cost incurred
by the algorithm. The number of bytes received per
node increases slightly with increase in number of sites
for uniform assignment of points to sites. For non-
uniform assignment, a sharper increase is observed. The
trend appears linear in both cases with small slope

(good communication cost scaling).

5.2 Dynamic Data, Dynamic Network We also
tested our algorithm in a dynamic environment — both
data and network changes. We assume that changes
occur every 7 global clock ticks. We consider both a
stationary and non-stationary distribution case. In the

former, old data is replaced by new data sampled from
the same distribution. In the later, each time the new
data is sampled from a different distribution.

Next we describe our experimental procedure. Ini-
tially, a network is generated followed by a dataset
which is assigned to nodes just as in the static case with
non-uniform point assignments (Zipfian 0.8). Next, 10
percent are chosen randomly and labeled “inactive”, the
rest are labeled “active”. The centralized K-means is
run on the aggregate data over all active nodes (using
a randomly chosen set of initial centroids). Next, P2P
K-means is run over only the active nodes (each node
uses the same set of initial centroids as the centralized
K-means).

After 7 clock ticks, the communication cost and
accuracy of P2P K-means is tallied. Next, 10 percent of
the inactive nodes are activated and the same number
of previously active nodes are deactivated randomly
from the network. For each of the newly activated
nodes, all of their dataset is replaced by new data.
In the stationary case, the new data comes from the
same distribution as of the original data. In the non-
stationary case, each time a new data generator is
used with updated Gaussian means that vary randomly
within £1 of the previously used distribution means. At
the (7 + 1)-th clock tick, 10 percent of the active nodes
are selected randomly and each of these nodes have 20
percent of their dataset replaced by the new data (in the
non-stationary case, updated Gaussian means are used
as described before). The centralized K-means is run
on the aggregate new data over all active nodes with
initial centroids the same as the final centroids from the
previous run of centralized K-means. Finally, P2P K-
means is run over only active nodes where each node
uses initial centroids the same as the final centroids at
that node from the previous run (provided the node was
active during the previous run, otherwise, the node sets
its initial centroids as described in Section 3.3).

We seek to answer the following questions.

e Does our algorithm incur a large error at the end
of any period?

e How does the accuracy and communication cost
change over time?

e What impact does increasing the network size have
on the previous two?

e What impact does stationary vs.
have on the previous two?

non-stationary

5.2.1 Accuracy Figure 4 shows the accuracy at the
end of each period (three different period lengths, 50,
100, and 200 global clock ticks) with 500 total nodes

Avg and SD of PMM for 500-node Network: Stationary Data Distribution, period=50,100,2(Avg and SD of PMM for 500-node Network: Non-Stationary Data Distribution, period=50,100,2C
6 6

I SD PMM(p=50)
1 SD PMM(p=100)
[_]SD PMM(p=200) | |
—+— Avg PMM(p=50)
—&— Avg PMM(p=100)
Avg PMM(p=200)

——Percentage——>

——Period——>

Figure 4: Variation of the average and standard devi-
ation of PMM over time (r = 50,100, and 200), 500
nodes, and stationary data distribution.

and a stationary data distribution. “Avg PMM(p=>50)"
denotes the average PMM with 7 = 50 and “SD
PMM(p=50)" denotes the standard deviation. As
evident from the figure, our algorithm achieves very
good accuracy (less than 3% average PMM) at the
end of each period. Also, the average PMM appears
relatively flat — accuracy does not change much over
time. Moreover, the curves for different time periods
are very similar showing that the frequency of data
change does not seem to affect accuracy. The standard
deviation curves show that a significant amount of
instability exists during the first period, but dampens
down quickly.

Figure 5 shows the accuracy under the same con-
ditions as Figure 4 except a non-stationary distribution
is used. The results are very similar in nature with
PMM values slightly higher. Interestingly, the standard
deviation is slightly lower than in the stationary data
distribution case.

To check the scalability of our algorithm, we ran ex-
periments with uniform and non-uniform node assign-
ments over a network with size varying from 100 nodes
to 1000 nodes. The period size is fixed at 100 ticks and
both a stationary and non-stationary data distributions
are used. Figure 6 shows the accuracy at the end of
eleven periods of length 100 with a stationary data dis-
tribution. “Avg PMM(U)” denotes the average PMM
over a uniform node assignment and “SD PMM(U)” de-
notes the standard deviation. It is evident that our al-
gorithm shows excellent scalability and achieves high
accuracy with respect to centralized K-means even for

I SD PMM(p=50)
[SD PMM(p=100)
[___1SD PMM(p=200)
—+— Avg PMM(p=50)
—&8— Avg PMM(p=100)
Avg PMM(p=200)

—-Percentage-—>
w

——Period-—>

Figure 5: Variation of the average and standard devi-
ation of PMM over time (7 = 50,100 and 200), 500
nodes, and non-stationary data distribution.

dynamically changing data and network irrespective of
network size. Figure 7 shows the corresponding result
when new data is coming from a non-stationary distri-
bution. The average PMM value is slightly higher com-
pared to the stationary distribution case, but scalability
of the algorithm is, once again, very good. These results
provide evidence that our algorithm’s performance is
not affected by the network size.

5.2.2 Communication Complexity We measure,
for each time period, the average number of bytes trans-
mitted over all nodes (“Avg Comm”) and the standard
deviation (“SD Comm”). Figure 8 shows the communi-
cation complexity over each time period (period lengths
50, 100, 200 global clock ticks) with 500 nodes and a
stationary data distribution. The communication cost
is initially very high during the first period, since sites
start from randomly assigned centroids at the beginning
and execute most of their total iterations during this
time, thus needing high volume of message exchange.
After that it decreases sharply and becomes roughly
constant after third period. Except for a start-up spike,
the average amount of communication per node remains
stable thereafter. The relatively high standard devia-
tions are likely due to the fact that some nodes have
many more neighbors than others.

Figure 9 shows the communication cost for a non-
stationary distribution. As was the case with the accu-
racy figures, the result is very similar to the previous
stationary distribution figure.

Scalability: Avg and SD of PMM:Stationary Data Distribution
T

35 T T T T
3
25
Avg PMM(U)
- ——+—— Avg PMM(NU)
[pe.
§
8 SD PMM(NU)
g] sormmovy
G5
1 4
05 4
)
0 100 200 300 400 500 600 700 800 900 1000

—-Number of Nodes—->

Figure 6: Variation of the average and standard devi-
ation of PMM with number of nodes in the dynamic
network: stationary data distribution, 7 = 100.

Scalabilty: Avg and SD of PMM: Non-Stationary Data Distribution
35 T T T T T T T T

—

Avg PMM(U)

——+—— Avg PMM(NU)

I so v
[sopmmow

—-Percentage-->

0 100 200 300 400

E 700 800 900 1000
—-Number of Nodes—->

Figure 7: Variation of the average and standard devi-
ation of PMM with number of nodes in the dynamic
network: Non-stationary data distribution, 7 = 100.

Avg and SD of Communication Cost for 500-node Network: Stationary Data Distribution, period=50,100,200
T

T T T T T T T T
B SD Comm(p=50)
[SD Comm(p=100)
1D Comm(p=200)
—— Avg Comm(p=50)
5000~ Bytes for period 1 —8&— Avg C 4
—o— Avg Comm(p=200)
4000 4
4
£ 3000~ \]
@
2000 I I 4
) iI (]
[% e (N
== S =
] |‘| |I | |
o |
3 4 7 1

5 8 9 10

6
——Period-—>

Figure 8: Variation of the average and standard devia-
tion of communication cost over time (periods of length
50, 100, 200); 500 sites and stationary data distribution.

Avg and SD of Communication Cost for 500-node Network: Non-Stationary Data Distribution, period=50,100,200
T T T

T T T T T
I SD Comm(p=50)
[SD Comm(p=100)
1D Comm(p=200)
—— Avg Comm(p=50)
5000~ Bytes for period 1 —8— Avg Comm(p=100)|. 4
—e— Avg Comm(p=200)
4000]
!
£ 3000 il
&
|
2000 4
1000 4
o |

--Period-->

Figure 9: Variation of the average and standard devia-
tion of communication cost over time (periods of length
50, 100, 200); 500 sites and non-stationary data distri-
bution.

6 Conclusions and Future Work

We have considered the problem of K-means clustering
on data distributed over a large, dynamic network, the
data or the network itself may change. We assume the
network to be peer-to-peer (does not have any special
servers). Centralizing all the data to a single machine to
run a centralized K-means is not an attractive option.
Ideally, the algorithm ought to (1) not require global
synchronization, (2) be communication-efficient, and (3)
be robust to network or data change.

We have described a locally synchronous algorithm
for this environment, P2P K-means. Nodes only com-
municate and synchronize with their topologically im-
mediate neighbors. We conducted experiments using
synthetic, 10D data generated from a mixture of 10
Gaussian distributions with 10% added uniform noise.
We ran P2P K-means over a simulated environment of
up to 1000 nodes.

We first considered a static environment (data and
network do not change) and measured the accuracy
(with respect to K-means run on the data once cen-
tralized) and communication cost of P2P K-means. We
observed high accuracy (less than 3% of points per node
misclassified on average) and very good scalability. We
did not observe the method of assigning data points to
nodes (uniformly vs. non-uniformly) to have significant
impact on accuracy. However, the assignment method
did have a significant impact on communication cost.
The number of bytes received per node increases slowly
with network size for uniform assignment. And, the
cost increases more sharply for non-uniform assignment
(although still appears linear).

We also conducted experiments in a dynamic envi-
ronment. We observed very good accuracy (less than
3.5% misclassified on average) which remained stable
as the network evolved. Moreover, changing the time
period or the data distribution (stationary vs. non-
stationary) did not impact accuracy significantly. In-
creasing the number of peers (from 100 to 1000) did
not appear to affect accuracy significantly providing ev-
idence that the algorithm exhibits good scalability.

In conclusion, we feel that P2P K-means exhibits
very good accuracy and is robust in the presence of
network and data change.

Acknowledgments

We thank the U.S. National Science Foundation for
support through award IIS-0329143 and CAREER
award I1S-0093353. We also thank NASA for support
through grant NAS2-37143. Finally we thank Kun Liu,
Sanghamitra Bandyopadhyay, Ujjwal Maulik, Kanishka
Bhaduri, and Ran Wolff for their valuable contributions.

References

[1]

2]

(3]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

Akyildiz 1., Su W., Sankarasubramanium Y., and
Cayirci E. Wireless Sensor Networks: A Survey.
Computer Networks, 38:393-422, 2002.
Androutsellis-Theotokis S. and Spinellis D. A Survey
of Peer-to-Peer File Sharing Technologies. =~ White
paper, Electornic Trading Research Unit (ELTRUN),
Athens University fo Economics and Business.
citeseer.ist.psu.edu/androutsellis-theoto02survey.html,
2002.

Bandyopadhyay S., Giannella C., Maulik U., Kargupta
H., Liu K., and Datta S. Clustering Distributed Data
Streams in Peer-to-Peer Environments. Information
Sciences (in press), 2006.

Bawa M., Gionis A., Garcia-Molina H., and Motwani
R. The Price of Validity in Dynamic Networks.
In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 515-526,
2004.

Boyd S., Ghosh A.; Prabhakar B., and Shah D. Gos-
sip Algorithms: Design, Analysis, and Applications.
In Proceedings of IEEE Infocom’05, volume 3, pages
1653-1664, 2005.

Clemente J., Defago X., and Satou K. Asynchronous
Peer-to-Peer Communication for Failure Resilient Dis-
tributed Genetic Algorithms. In Proceedings of the
15th IASTED International Conference on Parallel
and Distributed Computing and Systems (PDCS’03),
pages 769-773, 2003.

Dhillon I. and Modha D. A Data-clustering Algorithm
on Distributed Memory Multiprocessors. In Proceed-
ings of the KDD’99 Workshop on High Performance
Knowledge Discovery, pages 245-260, 1999.
Eisenhardt M., Muller W., and Henrich A. Classifying
Documents by Distributed P2P Clustering. In Proceed-
ings of Informatik 2003, GI Lecture Notes in Informat-
ics, Frankfort, Germany, pages 286-291, 2003.
Forman G. and Zhang B. Distributed Data Clustering
Can Be Efficient and Exact. SIGKDD Ezplorations,
2(2):34-38, 2000.

Greenwald M. and Khanna S. Power-Converving Com-
putation of Order-Statistics Over Sensor Networks. In
Proceedings of PODS’04, pages 275-285, 2004.

Han J. and Kamber M. Data Mining: Concepts
and Techniques. Morgan Kaufman Publishers, San
Francisco, CA, 2001.

Kargupta H. and Sivakumar K. Existential Pleasures
of Distributed Data Mining. In Data Mining: Next
Generation Challenges and Future Directions, edited by
H. Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha,
MIT/AAAI Press, pages 3-26, 2004.

Kempe D., Dobra A., and Gehrke J. Computing Ag-
gregate Information using Gossip. In Proceedings of the
44th IEEE Symposium on Foundations of Computer
Science (FoCS), pages 482-491, 2003.

Kowalczyk W., Jelasity M., and Eiben A. Towards
Data Mining in Large and Fully Distributed Peer-To-

[15]

[16]

[17]

(18]

Peer Overlay Networks. In Proceedings of BNAIC’03,
pages 203-210, 2003.

Krivitski D., Schuster A., and Wolff R. A Local Facil-
ity Location Algorithm for Sensor Networks. In Pro-
ceedings of the International Conference on Distributed
Computing in Sensor Systems (DCOSS), pages 368—
375, 2005.

Lamport L. Time, Clocks, and the Ordering of Events
in a Distributed System. Communications of the ACM,
21(7):558-565, 1978.

Muller W., Eisenhardt M., and Henrich A. Efficient
Content-Based P2P Image Retrieval Using Peer Con-
tent Descriptions. In Proceedings of Internet Imaging
V, pages 57-68, 2004.

Wolff R. and Schuster A. Association Rule Mining in
Peer-to-Peer Systems. IEEE Transactions on Systems,
Man and Cybernetics, Part B, 34(6):2426-2438, De-
cember 2004.

