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Abstract

This paper offers alocal distributed algorithm for multivari-
ate regression in large peer-to-peer environments. The al-
gorithm is designed for distributed inferencing, data com-
paction, data modeling and classification tasks in many
emerging peer-to-peer applications for bioinformatics, as-
tronomy, social networking, sensor networks and web min-
ing. Computing a global regression model from data avail-
able at the different peer-nodes using a traditional central-
ized algorithm for regression can be very costly and imprac-
tical because of the large number of data sources, the asyn-
chronous nature of the peer-to-peer networks, and dynamic
nature of the data/network. This paper proposes a two-step
approach to deal with this problem. First, it offers an efficient
local distributed algorithm that monitors the “quality” ofthe
current regression model. If the model is outdated, it uses
this algorithm as a feedback mechanism for rebuilding the
model. The local nature of the monitoring algorithm guaran-
tees low monitoring cost. Experimental results presented in
this paper strongly support the theoretical claims.

1 Introduction

Multivariate Regression (MR) is a powerful statistical and
machine learning tool that is widely used for prediction, clas-
sification, and data compression. Multivariate regressionis
relatively well understood given a sample of the data (in-
put variables and corresponding target output values) at a
single location. However, there are many emerging scenar-
ios where data is distributed over a network of machines.
Peer-to-Peer (P2P) networks offer one such example. P2P
systems such as Gnutella, BitTorrents, e-Mule, Kazaa, and
Freenet are increasingly becoming popular for many appli-
cations that go beyond downloading music without paying
for it. Examples include P2P systems for network storage,
web caching, searching and indexing of relevant documents
and distributed network-threat analysis. The next genera-
tion of advanced P2P applications for bioinformatics1 and
client-side web mining [20][9] are likely to need support for

1http://smweb.bcgsc.bc.ca/chinook/index.html

advanced data analysis and mining. Performing basic opera-
tions like regression is very challenging in a P2P network be-
cause of the large number of data sources, the asynchronous
nature of the P2P networks, and dynamic nature of the data.

This paper offers a local distributed algorithm for per-
forming multivariate regression and monitoring the model
in a P2P network. The approach is scalable, decentralized,
asynchronous, and inherently based on in-network computa-
tion. The algorithmic framework is local, in the sense that
the computation and communication load at each node is in-
dependent of the size or the number of nodes of the network.
This is very important for the scalability of the algorithm in
large P2P networks. The proposed methodology takes a two-
step approach for building and maintaining MR models in
P2P networks. The first step in our algorithm is themonitor-
ing phasein which, given an estimate of the MR model to all
the peers, they asynchronously track any change between the
model and the global data using a provably correct local al-
gorithm. The second step, known as thecomputation phase,
uses the monitoring algorithm as a feedback loop for trig-
gering a new round of MR model-building if necessary. The
algorithm guarantees that as long as the MR model correctly
represents the data, little computing and communication re-
sources are spent for monitoring the environment. When the
data undergoes a change in the underlying distribution and
the MR model no longer represents it, the feedback loop in-
dicates this and the model is rebuilt. Moreover, we also show
that all the data need not be centralized to recompute the MR
coefficients. We can do in-network aggregation for finding
them; thereby using far less resources than brute force cen-
tralization. The specific contributions of this paper are as
follows:

• To the best of the authors’ knowledge this is one of the
first attempts on developing a completely asynchronous
and local algorithm for doing multi-variate regression
in P2P networks which can seamlessly handle changes
in the data and network.

• Besides this, we have also presented a highly efficient
and local algorithm for tracking the L2 norm of the
global average vector.



• Most of the previous work in the literature focuses
on linear regression in distributed environments. Our
technique can be applied for any type of multivariate
regression.

The rest of the paper is organized as follows. Related
background material is presented in Section 2. Section 3
introduces the notations and problem definition. Section
4 presents the MR monitoring algorithm, while Section 5
discusses the MR computation problem. Section 6 defines
local algorithms and analyzes the local behavior of our
algorithm. Experimental results are presented in Section 7.
Finally, Section 8 concludes this paper.

2 Background

This section provides the necessary background material.

2.1 Approach Statistical models can be built and updated
from distributed data in various ways. Theperiodicapproach
is to simply rebuild the model from time to time. The
incrementalapproach is to update the model whenever the
data changes. Lastly, thereactiveapproach, what we propose
here, is to monitor the change, and rebuild the model only
when it no longer suits the data. Theperiodic approach
can be highly inefficient since, there is the risk of wasting
resources even if the data is stationary and also the of risk
model inaccuracy if the updating is delayed.Incremental
algorithms are very efficient; however their major drawback
is that a separate algorithm needs to be handcrafted for
every problem. Data drivenreactivealgorithms are efficient,
simple and can accommodate a wide variety of function
computation.

The work presented in this paper considers building
and updating regression models from data distributed over
a P2P network where each peer contains a subset of the
data tuples. In the distributed data mining literature, this is
usually called the horizontally partitioned or homogeneously
distributed data scenario. Building a global regression model
(defined on the union of all the data of all the peers) in large-
scale networks and maintaining it is a vital task. Consider
a network where there are a number of nodes (by node we
mean peers, sensors, grid components etc.) and each node
gets a stream of tuples (can be sensor readings, music files
etc.) every few seconds thereby generating huge volume of
data. We may wish to build a regression model on the global
data to (1) compactly represent the data and (2) predict the
value of a target variable. This is difficult since the data is
distributed and more so because it is dynamic. Centralization
obviously does not work because the data may change at
a faster rate than the rate at which it can be centralized.
Local algorithms are an excellent choice in such scenarios
since they are highly scalable and guarantee that once the
computation terminates, each node will have the correct

regression model. Therefore, such an algorithm will enable
the user to monitor regression models using low resources.

2.2 Related Work The work presented in this paper is re-
lated to two main bodies of literature - multivariate regres-
sion and computation in large distributed environments.

2.2.1 Distributed Multi-variate Regression: The prob-
lem of distributed multivariate regression has been addressed
by many researchers till date. Hershberger et al. [15] con-
sidered the problem of performing global MR in a vertically
partitioned data distribution scenario. The authors propose
a wavelet transform of the data such that, after the transfor-
mation, effect of the cross terms can be dealt with easily.
The local MR models are then transported to the central site
and combined to form the global MR model. Such synchro-
nized techniques will not scale in large, asynchronous sys-
tems such as modern P2P networks.

Similarly, Mukherjee et al. [22] presents a framework
for performing linear regression in heterogeneously parti-
tioned distributed data using variational approximation tech-
nique. In their model, each peer or node has a single variable
and the task is to induce the linear model of all these vari-
ables. The proposed technique is very communication effi-
cient. The entire process, for example, takes a constant num-
ber of messages per peer. However, the major drawback is
that the algorithm is synchronized – any node needs to wait
from the data/statistics from all the other nodes in the net-
work. Moreover, the algorithm is not suitable for dynamic
environments requiring it to be run from scratch if the data
or topology changes.

Many researchers have looked into the problem of do-
ing distributed MR using distributed kernel regression tech-
niques such as Guestrin et al. [14] and Predd et al. [24]. The
algorithm presented by Guestrin et al. [14] performs linear
regression in a network of sensors using in-network process-
ing of messages. Instead of transmitting the raw data, the
proposed technique transmits constraints only, thereby re-
ducing the communication complexity drastically. Similar
to the work proposed here, their work also uses local rules to
prune messages. However the major drawback is that their
algorithm is not suitable for dynamic data. It will be very
costly if the data changes since, as the authors point out, that
two passes are required over the entire network to make sure
that the effect of the measurements of each node are propa-
gated to every other node. Moreover, contrary to the broad
class of problems that we can solve using our technique, their
technique is only applicable for solving the linear regression
problem.

Meta-learning is an interesting class of algorithms typi-
cally used for supervised learning. In a meta learning, such
as bagging [7] or boosting [13] many models are induced
from different partitions of the data and these “weak” models



are combined using a second level algorithm which can be
as simple as taking the average output of the models for any
new sample. Such a technique is suitable for inducing mod-
els from distributed data as proposed by Stolfo et al. [26].
The basic idea is to learn a model at each site locally (no
communication at all) and then, when a new sample comes,
predict the output by simply taking an average of the local
outputs. Xing et al. [29] present such a framework for doing
regression in heterogenous datasets. However, these tech-
niques perform poorly as the number of such data partitions
increase to millions – as in typical P2P systems.

2.2.2 Computation in large distributed (P2P) systems:
Computation for P2P networks span three main areas: (1)
best effort heuristics, (2) gossip based computations, (3)
broadcast-based systems and (4) local algorithms. For a
detailed survey interested readers can refer to [10].

Algorithms using best effort heuristics have been devel-
oped for large distributed systems. The P2Pk-Means algo-
rithm by Banyopadhyay et al. [2] is one such example. Typi-
cally for such algorithms, a peer collects some samples from
its own data and its neighbors and builds a model on this
sample. While it works well in some cases such as [2], no
general accuracy guarantees can be provided for such algo-
rithms.

Gossip algorithms rely on the properties of random sam-
ples to provide probabilistic guarantees on the accuracy of
the results. Researchers have developed different approaches
for performing basic operations (e.g. average, sum, max,
random sampling) on P2P networks using gossip techniques.
Kempeet al. [17] and Boydet al. [5] present such primi-
tives. In gossip protocols, a peer exchanges data or statistics
with a random peer. However, they can still be quite costly
– requiring hundreds of messages per peer for the computa-
tion of just one statistic. Another closely related technique
is to use deterministic gossip or flooding. In flooding, every
peer floods/broadcasts the data and therefore, eventually the
data/statistic is propagated through the entire network. Here
again the major drawback is scalability and dynamicity.

Communication-efficient broadcast-based algorithms
have been also developed for large clusters such as the one
developed by Sharfman et al. [25]. Since these algorithms
rely on broadcasts as their mode of communication, the cost
quickly increases with increasing system size.

Local algorithms are a good choice for data mining in
P2P networks since in a local algorithm, the result is gener-
ally computed by communicating with a handful of nearby
neighbors. Local algorithms rely on data dependent condi-
tions which we refer to as local rules, to stop propagating
messages. This means that if the data distribution does not
change, the communication overhead is very low. On the
other hand, the local rules are violated when the distribution
changes. While on one hand, local algorithms are highly

efficient (and hence scalable), on the other hand they guar-
antee eventual convergence to theexactresult (equal to that
which would be computed given the entire data). This fea-
ture makes local algorithms exceptionally suitable for P2P
networks as well as to wireless sensor networks.

Local algorithms were first introduced in the context
of graph theory by Afek et al. [1] and Linial [19]. More
recently, local algorithms have been developed for several
data mining problems: association rule mining [28], facility
location [18], outliers detection [6], and meta-classification
[21]. Lately, several efforts were made at the description of
local algorithm complexity [4].

3 Notations and Problem Definition

3.1 Notations Let V = {P1, . . . , Pn} be a set of peers
connected to one another via an underlying commu-
nication infrastructure such that the set ofPi’s neigh-
bors, Ni, is known to Pi. Additionally, for a given
time window t, Pi is given a stream of data vectors
in R
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andf is a function fromR

d−1 → R.

Every data point can be viewed as an input and output pair.
Peers communicate with one another by sending sets of

input vectors (or statistics thereof, as defined below). Let
Xi,j denote the last set of vectors sent by peerPi to Pj .
Assuming reliable messaging, once a message is delivered
bothPi andPj knowXi,j andXj,i. Now we define four sets
of vectors which are crucial to our algorithm.

DEFINITION 3.1. (Knowledge) Theknowledgeof Pi is the
union ofSi,t with Xj,i for all Pj ∈ Ni and is denoted by

Ki = Si,t ∪
⋃

Pj∈Ni

Xj,i.

DEFINITION 3.2. (Agreement) The agreementof Pi and
any of its neighborsPj isAi,j = Xi,j ∪Xj,i.

DEFINITION 3.3. (Withheld knowledge) The withheld
knowledge of Pi with respect to a neighborPj is the
subtraction of the twoi.e.Wi,j = Ki \ Ai,j .

DEFINITION 3.4. (Global knowledge) The global knowl-
edge is the set of all inputs at timet and is denoted by
Gt =

⋃

i=1,...,n

Si,t.

Since these vector sets can be arbitrarily large, we define
two sufficient statistics on these sets which the peers will
use to communicate: (1) theaverage vectorwhich is the
average of all the vectors in the respective sets (e.g. for



Si,t it is
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−−→
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Gt), and (2) thesizesof the sets denoted by|Si,t|,

|Xi,j |, |Xj,i|, |Ki|, |Ai,j |, |Wi,j |, and |Gt|. If we assume
that communication always takes place in an overlay tree
topology, we can write the following expressions for the
sizes of the sets:
1. |Ai,j | = |Xi,j |+ |Xj,i|

2. |Ki| = |Si,t|+
∑

Pj∈Ni

|Xj,i|, and

3. |Wi,j | = |Ki| − |Ai,j |. Similarly for the average vectors
we can write,
1.
−−→
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−−→
Xj,i
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−→
Ki −

|Ai,j |
|Wi,j |

−−→
Ai,j

Note that, for any peer, any of these vectors can be
computed based solely on its local data and what it gets from
its immediate neighbors. This, makes the communication of
the algorithm localized. We are interested in computing a
regression model defined onGt.

Next we define the cover of a domain.

DEFINITION 3.5. (Convex cover) Thecoverof a domain is
a set of non-overlapping convex regionsCδ = {R1, R2, . . . }
such that the function defined onGt is invariant inside any
Ri.

As an example, Figure 1 shows a possibleCδ with
the convex regions as the circle itself and the half-spaces
defined by the tangent lines. We will illustrate this in greater
details in Section 4. The areas uncovered byCδ denotetie
regions. For simplicity, we assume that the network topology
forms a tree. Note that, as shown in [3], such a tree can
be efficiently constructed and maintained using variationsof
Bellman-Ford algorithms [12, 16].

3.2 Problem Definition In MR, the task is to learn a
function f̂(−→x ) which “best” approximatesf(−→x ) according
to some measure such as least square. Now depending on the
representation chosen for̂f(−→x ), various types of regression
models (linear or nonlinear) can be developed. We leave this
type specification as part of the problem statement for our
algorithm, rather than an assumption.

In MR, for each data point−→x , the error between̂f(−→x )

and f(−→x ) can be computed as
[
f(−→x )− f̂(−→x )

]2

. In our

scenario, since this error value is distributed across the peers,

a good estimate of the global error isAvg
[
f(−→x )− f̂(−→x )

]2

.

There exist several methods for measuring how suitable a
model is for the data under consideration. We have used
the L2-norm distance between the current network data and

the model as a quality metric for the model built. Given
a dynamic environment, our goal is to maintain a correct
f̂(−→x ) at each peer at any time.

Problem 1. [MR Problem] Given a time varying dataset
Si,t, a user-defined thresholdǫ and f̂(−→x ) to all the peers,
the MR problem is to maintain a correct̂f(−→x ) at each peer

such that, at any time t,

∣∣∣∣

∣∣∣∣Avg
[
f(−→x )− f̂(−→x )

]2
∣∣∣∣

∣∣∣∣ < ǫ.

For ease of explanation, we decompose this task
into two subtasks. First, given a representation off̂(−→x )
to all the peers, we want to raise an alarm whenever∣∣∣∣

∣∣∣∣Avg
[
f(−→x )− f̂(−→x )

]2
∣∣∣∣

∣∣∣∣ > ǫ, whereǫ is a user-defined

threshold. This is themodel monitoring problem. Secondly,
if f̂(−→x ) no longer representsf (−→x ), we sample from the
network (or even better do an in-network aggregation) to
find an updated̂f(−→x ). This is themodel computation prob-
lem. Mathematically, the subproblems can be formalized as
follows.

Problem 2.[Monitoring Problem ] Given Si,t, and f̂(−→x )
to all the peers, the monitoring problem is to output 0 if∣∣∣∣

∣∣∣∣Avg
[
f(−→x )− f̂(−→x )

]2
∣∣∣∣

∣∣∣∣ < ǫ, and 1 otherwise, at any time

t.

Problem 3.[Computation Problem] Given a sample of the
data from the network, the model computation problem is to
find a newf̂(−→x ).

4 Step 1: Monitoring Regression Model

In MR monitoring problem, each peer is given a dataset
Si,t and an estimatef̂(−→x ). Our goal is to monitor∣∣∣∣

∣∣∣∣Avg
[
f(−→x )− f̂(−→x )

]2
∣∣∣∣

∣∣∣∣.

The problem now is to monitor the L2 norm of the
average error. Although the error is a single number instead
of a vector, we can easily define a vector inR

2 with the
second component 0. We present here a local algorithm
which monitors the regression coefficients using the L2
norm of the average error vector. A preliminary L2 norm
monitoring algorithm was also dealt in our previous paper
[27] in the context ofk-means clustering. The algorithm

outputs 0 if
∣∣∣
∣∣∣
−→
Gt

∣∣∣
∣∣∣ < ǫ and 1 otherwise. The algorithm

presented in [27] is prone to noise in the data since it
communicates all the data for every data change. In this
paper, we take care of that problem by applying a different
condition for sending messages and ensuring that all data is
not sent whenever a peer communicates. Rather, we keep



some data (in the form of witheld knowledge) so that if the
data changes later, the change is less noisy. We discuss this
in more details later. Interested readers can compare the
communication graph of the two algorithms by looking at
Figure 3(b) in this paper and Figure 2(c) in [27]. Moreover
we tune the algorithm to make it suitable for regression.
Thus, we feel that this is a significant contribution in its own
right.

The regression monitoring algorithm guarantees even-
tual correctness, which means that once computation termi-
nates, each peer computes the correct result as compared to
a centralized setting. In a termination state, no messages tra-
verse the network, and hence a peer can decide solely based
on
−→
Ki,
−−→
Ai,j , and

−−→
Wi,j , if

−→
Gt resides inside a specific con-

vex regionRi ∈ Cδ. The following theorem formalizes the
termination states of our monitoring algorithm.

THEOREM 4.1. [Convex Stopping Rule] Let P1, . . . , Pn

be a set of peers connected to each other over a spanning
treeG (V,E). LetGt,Ki,Ai,j , andWi,j be as defined in the
previous section. LetR be a convex region inCδ. If at timet

no messages traverse the network, and for eachPi,
−→
Ki ∈ R

and for everyPj ∈ Ni,
−−→
Ai,j ∈ R and either

−−→
Wi,j ∈ R or

Wi,j = ∅, then
−→
Gt ∈ R.

Proof (SKETCH): We omit the formal proof here due to
shortage of space. Simply speaking, the theorem can be
proved by taking any two arbitrary peers and exchanging all
of their withheld knowledge. We call this as the unification
step. After unifying all the peers it can be shown that
−→
G t ∈ R.

The significance of Theorem 4.1 is that under the condi-
tion describedPi can stop sending messages to its neighbors

and output
∣∣∣
∣∣∣
−→
Ki

∣∣∣
∣∣∣. The idea is to ensure that

−→
Ki and

−→
Gt finally

reside in the same convex region. If the result of the theorem
holds for every peer, then Theorem 4.1 guarantees this is the
correct solution; else, there must either be a message in tran-
sit, or some peerPk for whom the condition does not hold.
Then eitherPk will send a message which will change its
output or the message will be received, leading to a change
in
−→
Kk eventually. Thus eventual correctness is guaranteed.

In order for the monitoring algorithm to track the global
average error, we need to specify the input to the algo-
rithm and the coverCδ. For the input, every data point

[−→x , f(−→x )] ∈ Si,t is mapped to

([
f(−→x )− f̂(−→x )

]2

, 0

)
.

With abuse of notations, henceforth we will refer to this
as Si,t. Since this transformation makes every point in
Si,t ∈ R

2, the coverCδ is as shown in Figure 1. It consists
of the following regions - the inside of theǫ-circle (Rc) and
the half-spaces (Rh1

, Rh2
, ...) defined by each of these tan-

gent lines (and hence unit vectors). The angle between each
of these unit vectors is2π

d
, whered is the number of tangent

B

C

D

A

Figure 1: (A) the area inside anǫ circle (B) A random vector
(C) A tangent defining a half-space (D) The areas between
the circle and the union of half-spaces are the tie areas.

lines chosen. Note that, the region in which the output is 0 is
Rc which is convex by itself. The output is 1 inside any of
these half-planes. Therefore for each region inCδ, Theorem
4.1 can be applied.

ALGORITHM 4.1. Monitoring Regression Model
Input : ǫ, Cδ, Si,t, Ni andL.

Output : 0 if
∣∣∣
∣∣∣
−→
Ki

∣∣∣
∣∣∣ < ǫ, 1 otherwise

Initialization : Initialize vectors; Call INIT()

if MessageRecvdFrom
(
Pj ,
−→
X, |X|

)
then

−−→
Xj,i ←

−→
X and|Xj,i| ← |X|

Update vectors
end if
if Si,t, Ni orKi changes or INIT()then

for all NeighborsPj do
if LastMsgSent > L time units agothen

if R = ∅ then
Set
−−→
Xi,j ←

|Ki|
−→
Ki−|Xj,i|

−−→
Xj,i

|Ki|−|Xj,i|
{/*Tie Region*/}

Set|Xi,j | ← |Ki| − |Xj,i|
end if
if
−−→
Ai,j 6∈ R or

−−→
Wi,j 6∈ R then

Set
−−→
Xi,j and|Xi,j | such that

−−→
Ai,j and

−−→
Wi,j ∈ R {/*Theorem Condition*/}

end if
MessageSentTo

(
Pj ,
−−→
Xi,j , |Xi,j |

)

LastMsgSent← CurrentTime
Update all vectors

else
Wait L time units and then check again

end if
end for

end if

Algorithm 4.1 presents the pseudo-code. The inputs
to the algorithm areSi,t, Ni, ǫ andCδ andL. Each peer

initializes its local vectors
−→
Ki,
−−→
Ai,j and

−−→
Wi,j . A peer may



(a) Initial state (b) Activated leaves (c) Activated intermediate nodes (d) Activated roots

Figure 2: Convergecast and broadcast through the differentsteps. The blue circles represent states when the peers do not
raise a flag. The purple circles represent the state when a peer has raised and alert (flag=1) and sent its data to its parent.As
soon as the peer gets data from all but one neighbor it turns yellow. Finally, the roots are denoted by red.

need to send a message if its local data changes, if it receives
a message or if the set of neighbors change. In any of
these cases, the peer checks if the condition of the theorem
holds. First peerPi finds the regionR ∈ Cδ such that
−→
Ki ∈ R (R = ∅ otherwise). IfR = ∅, then

−→
Ki is in a

tie region and hencePi has to send all its data. If, for all
Pj ∈ Ni, both

−−→
Ai,j ∈ R and

−−→
Wi,j ∈ R, Pi does nothing;

else it needs to set
−−→
Xi,j and |

−−→
Xi,j | and send those, such

that after the message is sent, the condition of the theorem
holds for this peer. As we already pointed out that if a peer
communicates all of its data, then if the data changes again
later, the change is far more noisy than the original data. So
we always set

−−→
Xi,j and|Xi,j | such that some data is retained

while still maintaining the conditions of the theorem. We
do this by checking with an exponentially decreasing set of
values of|Wi,j | until either all

−→
Ki,
−−→
Ai,j and

−−→
Wi,j ∈ R, or

|Wi,j |=0, in which case we have to send everything. Note
that other than these two cases, a peer need not send a
message since the theorem guarantees eventual correctness.
Similarly, whenever it receives a message (

−→
X and |

−→
X |), it

sets
−−→
Xj,i ←

−→
X and|

−−→
Xj,i| ← |

−→
X |. This may trigger another

round of communication since its
−→
Ki can now change.

To prevent message explosion, in our event-based sys-
tem we employ a “leaky bucket” mechanism which ensures
that no two messages are sent in a period shorter than a con-
stantL. Note that this mechanism does not enforce synchro-
nization or affect correctness; at most it might delay conver-
gence.

5 Step 2: Computing Regression Model

The regression monitoring algorithm presented in the earlier
section can be viewed as a flag which is raised by a peer

whenever

∣∣∣∣

∣∣∣∣Avg
[
f(−→x )− f̂(−→x )

]2
∣∣∣∣

∣∣∣∣ > ǫ. In this section we

discuss how the peers collaborate to find a newf̂(−→x ) using

a convergecast-broadcast technique.
The basic idea is to use theconvergecastphase to sample

data from the network to a central post and compute, based
on this sample, a neŵf(−→x ). Thebroadcastphase distributes
this f̂(−→x ) to the network. The monitoring algorithm now
monitors the quality of the result. The efficiency and cor-
rectness of the monitoring algorithm allows a very simple
sampling technique to be used – if an ill-fit model is built at
all, it will soon be detected by the local algorithm resulting
in another round of convergecast in the worst case. Another
point to note is that, in our convergecast-broadcast process,
we do not specify the root of the convergecast tree. Rather
we let the network structure (edge delays and data skewness)
decide it. This is significant since it ensures (1) decentral-
ized control, (2) load balancing, and (3) robustness against a
single point of failure.

In the convergecast phase there are two main parame-
ters. Each peer maintains a user selected alert mitigation
constant,τ and the sample size. An alert should be stable
for a given period of timeτ before the peer can send its
data, thereby preventing a possibly false alarm from prop-
agating. In order to do this, the peer relies on the underly-
ing monitoring algorithm. If the monitoring algorithm raises
a flag, the peer notes the time, and sets a timer toτ time
units. If the timer expires, or a data message is received
from one of its neighbors,Pi first checks if there is an ex-
isting alert and if it has been recordedτ or more time units
ago. If so, it counts the number of neighbors from which it
has received data messages. Once it receives data messages
from all of its neighbors, the peer computes a new regression
modelf̂(−→x ) based on the sample it received and sends it to
itself. It then moves to the broadcast phase and sendsf̂(−→x )
to all its neighbors. On the other hand, if it has received data
messages from all but one of the neighbors then it takes a
uniform sample (of user-defined size) from its own data and
the data it has received from its neighbors. It then forwards



the sample to the peer from which it has not received data
and marks its state as broadcast. The peer does nothing if it
has not received data from two or more neighbors. Note that,
at each peer, the sampling technique is such that, each data
point gets an equal chance of being included in the sampled
data set. We do this by properly weighing every data point
by size of the subtree from which the sample was received.

The broadcast phase is fairly straightforward. Every
peer which receives the neŵf(−→x ), restarts a new regression
monitoring algorithm with this neŵf(−→x ). It then, sends
the newf̂(−→x ) to its other neighbors and changes the status
to convergecast. There could be one situation in which a
peer receives a neŵf(−→x ) when it is already in the broadcast
phase. This is when two neighbor peers concurrently become
roots for the convergecast tree. To break this tie, we selectthe
f̂(−→x ) to propagate the root of which has a higher id. Figure
2 shows a snap-shot of the convergecast broadcast steps as it
progresses up the communication tree.

The pseudo-code is presented in Algorithm 5.1.

ALGORITHM 5.1. P2P Regression Algorithm
Input : ǫ, Cδ, Si,t, Ni, L, f̂ andτ

Output : f̂ such that

∣∣∣∣

∣∣∣∣Avg
[
f(−→x )− f̂(−→x )

]2
∣∣∣∣

∣∣∣∣ < ǫ

Initialization : Initialize vectors; Call INIT()
MsgType= MessageRecvdFrom(Pj)
if MsgType = Monitoring Msg then

Pass Message to Monitoring Algorithm
end if
if MsgType = New Model Msg {/*Broadcast*/}
then

Updatef̂
Forward newf̂ to all neighbors
Datasent=false
Restart Monitoring Algorithm with neŵf

end if
if MsgType = Dataset Msg {/*Convergecast*/} then

if Received from all but one neighborthen
flag=Output Monitoring Algorithm()
if Datasent = false andflag = 1 then

if DataAlert stable forτ timethen
D=Sample(Si,t, Recvd Dataset)
Datasent=true;
SendD to remaining neighbor

else
DataAlert=CurrentTime

end if
end if

end if
if Received from all neighborsthen

D=Sample(Si,t, Recvd Dataset)
f̂=Regression(D)
Forward newf̂ to all neighbors

Datasent=false
Restart Monitoring Algorithm with neŵf ;

end if
end if
if Si,t, Ni orKi changes or INIT()then

Run Monitoring Algorithm
flag=OutputMonitoring Algorithm()
if flag=1 andPj=IsLeaf()then

Execute the same conditions as
MsgType = Dataset Msg

end if
end if

Special case : Linear RegressionIn many cases, sampling
from the network is communication intensive. We can
find the coefficients using an in-network aggregation if we
choose to monitor a widely used regression modelviz. linear
regression (linear with respect to the parameters or the
unknown weights).

Since the dataset of each peer consists ofs d-
dimensional tuples[−→x , f(−→x )] and−→x = [x1x2 . . . xd−1], we
want to fit ad − 1 degree polynomial since the last attribute
corresponds to the output:̂f(−→x ) = a0 + a1x1 + a2x2 +
... + ad−1xd−1, whereai’s are the coefficients that need to
be estimated from the global datasetGt. We drop the cross
terms involvingxi andxj for simplicity. Using least square
technique and after simplification we get,
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⇒ Xa = Y

wherex
j
i is the value of theith attribute inGt for the jth

row andf(−→x j) is the corresponding output. Therefore for
computing the matrix (or more appropriately vector)a, we
need to evaluate the matricesX andY. This can be done in a
communication efficient manner by noticing that the entries
of these matrices are simply sums. Hence, instead of sending
the raw data in the convergecast round, peerPi can forward
a locally computed matrixXi andYi. PeerPj , on receiving
this, can forward a new matrixXj andYj by aggregating, in
a component-wise fashion, its local matrix and the received
ones. Note that the avoidance of the sampling technique
ensures that the result is exactly the same compared to a
centralized setting. Moreover, the dimensionality of the



matricesXi andYi isd.d+d.1 = O(d2). This shows that the
communication complexity is only dependent on the degree
of the polynomial or the number of attributes. Since, in most
cases, the number of attributes is much small compared to
the sample size required in the convergecast round, there can
be significant savings in terms of communication.

6 Local Algorithm

In this section we first definelocal algorithms as done by
Das et al. [9] and then prove that the algorithm that we have
developed in this paper is local.

DEFINITION 6.1. [α-neighborhood of a vertex]: LetG =
(V,E) be the graph representing the network whereV

denotes the set of nodes andE represents the edges between
the nodes. Theα-neighborhood of a vertexv ∈ V is the
collection of vertices at distanceα or less from it inG:
Γα(v, V ) = {u|dist(u, v) ≤ α}, wheredist(u, v) denotes
the length of the shortest path in betweenu and v and the
length of a path is defined as the number of edges in it.

DEFINITION 6.2. [α-local query] Let G = (V,E) be a
graph as defined in last definition. Let each nodev ∈ V

store a data setXv. Anα-local query by some vertexv is a
query whose response can be computed using some function
f(Xα(v)) whereXα(v) = {Xv|v ∈ Γα(v, V )}.

DEFINITION 6.3. [(α, γ)-local algorithm] An algorithm is
called (α, γ)-local if it never requires computation of aβ-
local query such thatβ > α and the total size of the response
to all suchα-local queries sent out by a peer is bounded by
γ. α can be a constant or a function parameterized by the
size of the network whileγ can be parameterized by both the
size of the data of a peer and the size of the network.

We call such an (α, γ)-local algorithmefficient if both
α and γ are either small constants or some slow growing
functions (sublinear) with respect to its parameters. The
following lemma, Lemma 6.1 proves that Alg. 4.1 islocal
according to this definition.

LEMMA 6.1. [Locality] The regression monitoring algo-
rithm is (O(1), O(1))-local considering static data and net-
work.

Proof (SKETCH): Considering a static network and data,
each peer communicates with its immediate neighbors only.
The query of the requesting peer can be propagated to as
many neighbors as required by the conditions of Theorem
4.1 and the data of the peer. Hence,α = constant,
independent of the size of the network.

The number of times such a communication takes place
is dependent on the data of the peer. Nevertheless it is always
a constant for each problem instance at hand (characterized

by the data of the peer), independent of the network size.
Henceγ = constant.

Therefore the regression monitoring algorithm is
(O(1), O(1))-local under the static scenario assumptions.

The high scalability of the local algorithms is due to the
fact thatα and γ are constants and is independent of the
network size.

Similarly, ignoring network delays and assuming a static
scenario, the running time of the algorithm will always be
a constant, independent of the network size. Analysis of
the communication complexity and running time of the local
algorithms for dynamic scenarios, is an open issue.

Note that the regression monitoring algorithm is eventu-
ally correct (not approximate). This means that the result to
which it converges to is the same when compared to a cen-
tralization of all the data.

7 Experimental Results

In this section we discuss the experimental setup and analyze
the performance of the P2P regression algorithm.

7.1 Experimental Setup We have implemented our algo-
rithms in the Distributed Data Mining Toolkit (DDMT) [11]
developed by the DIADIC research lab at UMBC. We use
topological information generated by theBarabasi Albert
(BA) model in BRITE [8] since it is often considered a rea-
sonable model for the internet. BA also defines delay for net-
work edges, which is the basis for our time measurement2.
On top of the network generated by BRITE, we overlay a
communication tree.

7.2 Data Generation The input data of a peer is a vector
(x1, x2, . . . , xd) ∈ R

d, where the firstd − 1 dimensions
correspond to the input variables and the last dimension
corresponds to the output. We have conducted experiments
on both linear and non-linear regression models. For the
linear model, the output is generated according toxd = a0 +
a1x1 +a2x2 + . . .+ad−1xd−1. We have used two functions
for the non-linear model: (1)x3 = a0 + a1a2x1 + a0a1x2

(multiplicative) and (2)x3 = a0 ∗ sin(a1 + a2x1) + a1 ∗
sin(a2 + a0x2) (sinusoidal). Every time a simulated peer
needs an additional data point, it chooses the values of
x1, x2, . . . xd−1, each independently in the range -100 to
+100. Then it generates the value of the target variablexd

using any of the above functions and adds a uniform noise
in the range 5 to 20% of the value of the target output. The
regression weightsa0, a1, . . . , ad−1’s are changed randomly
at controlled intervals to create an epoch change.

2Wall time is meaningless when simulating thousands of computerson
a single PC.
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Figure 3: A typical experiment is run for 10 equal length epochs. Quality and overall cost are measured across the entire
experiment – including transitional phases. The monitoring cost is measured on the last80% of every epoch, in order to
ignore transitional effects.

7.3 Measurement Metric In our experiments, the two
most important parameters for measurement are thequality
of the result and thecostof the algorithm. For the monitoring
algorithm, quality is measured in terms of the percentage
of peers which correctly compute an alert,i.e., the number

of peers which report that
∥∥∥
−→
Ki

∥∥∥ < ǫ when
∥∥∥
−→
Gt

∥∥∥ < ǫ and

similarly
∥∥∥
−→
Ki

∥∥∥ > ǫ when
∥∥∥
−→
Gt

∥∥∥ > ǫ. For the regression

computation algorithm, quality is defined as the L2 norm
distance between the solution of our algorithm and the actual
regression weights. We refer to the cost of the algorithm
as the number ofnormalized messagessent, which is the
number of messages sent by each peer per unit of leaky
bucketL. Hence, 0.1 normalized messages means that nine
out of ten times the algorithm manages to avoid sending a
message. We report both overall cost and the monitoring
cost (stationary cost), which refers to the “wasted effort”of
the algorithm. We also report, where appropriate, messages
required for convergecast and broadcast of the model.

7.4 Typical Experiments A typical experiment is shown
in Figure 3. In all the experiments, about 4% of the data of
each peer is changed every 1000 simulator ticks. Moreover,
after every 5× 105 simulator ticks, the data distribution is
changed. To start with, every peer is supplied the same re-
gression coefficients as the coefficients of the data genera-
tor. Figure 3(a) shows that for the first epoch, the quality
is very high (nearly 96%). After 5× 105 simulator ticks,
we change the weights of the generator without changing the
coefficients given to each peer. Therefore the percentage of

peers reporting
∥∥∥
−→
Ki

∥∥∥ < ǫ drops to 0. For the cost, Figure

3(b) shows that the monitoring cost is low throughout the
experiment if we ignore the transitional effects.

7.5 Results: Regression MonitoringThere are four ex-
ternal parameters which can influence the behavior of the

regression monitoring algorithm: size of local buffer|Si,t|,
the radius of the circleǫ, size of the leaky bucketL and noise
in the data. Apart from these there are also the system size
(number of peers) and dimensionality of the multivariate re-
gression problem which can affect performance. In this sec-

tion we present the quality (insidei.e.
∣∣∣
∣∣∣
−→
Gt

∣∣∣
∣∣∣ < ǫ, outside

i.e.
∣∣∣
∣∣∣
−→
Gt

∣∣∣
∣∣∣ > ǫ and overall) and cost of the algorithm w.r.t.

different parameters. Note that, unless otherwise stated,we
have used the following default values: number of peers =
1000,|Si,t| = 50, ǫ = 1.5, d = 10 andL = 500 (where the
average edge delay is about 1100 time units). As we have al-
ready stated, independent of the regression function chosen,
the underlying monitoring problem is always inR2. The re-
sults reported in this section are with respect to linear model
since it is the most widely used regression model. Results
of monitoring more complex models are reported in the next
section.

Figures 4(a) and 4(e) show the quality and cost of the
algorithm as the size of local buffer is changed. As expected,
the inside quality increases and the cost decreases as the
size of buffer increases. The outside quality is very high
throughout. This stems from the fact that, with the noise
in the data, it is easy for a peer to get flipped over when it is
checking for inside a circle. On the other hand, noise cannot
change the belief of the peer when the average is outside.
In the second set of experiments, we variedǫ from 1.0 to
2.5 (Figure 4(b) and 4(f)). Here also, the quality increases
as ǫ is increased. This is because with increasingǫ, there
is a bigger region in which to bound the global average.
This is also reflected with decreasing number of messages.
Note that, even forǫ = 1.0, the normalized messages are
around 1.6, which is far less than the theoretical maximum
of 2 (assuming two neighbors per peer). The third set of
experiments analyzes the effect of leaky bucketL. As shown
in Figure 4(c) quality does not depend onL, while Figure
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Figure 4: Behavior of the monitoring algorithm w.r.t the different algorithm parameters.

4(g) shows that the cost decreases slowly with increasing
L. Finally, Figures 4(d) and 4(h) depict the dependence of
the noise on the monitoring algorithm. Quality degrades and
cost increases with increasing noise. This is expected, since
with increasing noise a peer is more prone to random effects.
This effect can, however, be nullified by using a large buffer
or biggerǫ.

Our next experiment analyzes the scalability of the mon-
itoring algorithm w.r.t the number of peers and dimension of
the multivariate problem. As Figures 5(a) and 5(c) show,
both the quality and cost of the algorithm converge to a con-
stant as the number of peers increase. This is a typical behav-
ior of local algorithms. For any peer, since the computation
is dependent on the result from only a handful of its neigh-
bors, the overall size of the network does not degrade the
quality or cost. Similarly, Figures 5(b) and 5(d) show that
the quality or the cost does not depend on the dimension of
the multivariate problem either. This independence of the
quality and cost can be explained by noting that the under-
lying monitoring problem is inR2. Therefore for a given
problem, the system size or dimensionality of the problem
has no effect on the quality or the cost.

Overall, the results show that the monitoring algorithm
offers extremely good quality, incurs low monitoring cost
and has high scalability.

7.6 Results: Regression ModelsOur next set of experi-
ments measure the quality of the regression model computed
by our algorithm against a centralized algorithm having ac-
cess to the entire data. There are two important parameters
to be considered here – (1) the alert mitigation constant (τ )
and (2) the sample size (for non-linear regression). For com-
puting the non-linear regression coefficients, we have imple-

mented the Nelder-Mead simplex method [23].
We have conducted experiments on three datasets. Each

quality graph in Figure 6 presents two sets of error bars.
The blue square shows the L2 norm distance between the
distributed coefficients and the actual ones. Also shown in
each figure is the L2 norm distance between the coefficients
found by a centralized algorithm and the actual ones (red
diamonds). The first pair of figures, Figures 6(a) and 6(d)
show the results of computing a linear regression model. Our
aim is to measure the effect of variation of alert mitigation
periodτ on quality and cost. As shown in Figure 6(a), the
quality of our algorithm deteriorates asτ increases. This
is because, on increasingτ , a peer builds a model later
and therefore is inaccurate for a longer intermediate period.
Figure 6(d) shows that the number of data collection rounds
(blue dots) decrease from four times to twice per epoch. This
results from a decrease in the number of false alerts. Also
shown are monitoring messages (green squares).

Figures 6(b) and 6(e) analyzes the quality of our algo-
rithm while computing a non-linear multiplicative regression
modelviz. x3 = a0+a1a2x1+a0a1x2. Figure 6(b) presents
the quality as other parameterviz. sampling size is varied.
As expected, the results from the distributed and centralized
computations converge with increasing sample size. Also the
number of data collection rounds as depicted in Figure 6(e)
decrease as sample size is increased.

The third pair of figures, Figures 6(c) and 6(f) show the
same results for a sinusoidal model :x3 = a0 ∗ sin(a1 +
a2x1)+ a1 ∗ sin(a2 + a0x2). Here also the quality becomes
better and the cost decreases as the sample size is increased.

To sum everything up, the regression computation al-
gorithm offers excellent accuracy and low monitoring cost.
Also, the number of convergecast-broadcast rounds is also
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Figure 5: Scalability with respect to both number of peers and dimension of the multivariate problem.

two times per epoch on an average. We have tested our al-
gorithm on several regression functions and the results are
highly satisfactory.

8 Conclusions and Future Work

To the best of the authors’ knowledge this is one of the first
attempts on developing completely local and asynchronous
regression algorithm for P2P systems. The algorithm is
suitable for scenarios in which the data is distributed across
a large P2P network as it seamlessly handles data changes
and node failures. We have performed dynamic experiments
with random epoch changes which showed that the algorithm
is accurate, efficient and highly scalable. Such algorithms
are needed for next generation P2P applications such as P2P
bioinformatics, P2P web mining and P2P astronomy using
National Virtual Observatories. As a next step, we plan to
explore other methods of learning such as support vector
machines and decision trees.
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Figure 6: Quality and cost of computing regression coefficients for both linear and non-linear models.
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