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Abstract advanced data analysis and mining. Performing basic opera-

This paper offers #ocal distributed algorithm for multivari- tions like regression is very challenging in a P2P network be
ate regression in large peer-to-peer environments. The @USe of the large number of data sources, the asynchronous
gorithm is designed for distributed inferencing, data corf@ture of the P2P networks, and dynamic nature of the data.
paction, data modeling and classification tasks in many This paper offers a local distributed algorithm for per-
emerging peer-to-peer applications for bioinformatics; aforming multivariate regression and monitoring the quel
tronomy, social networking, sensor networks and web mifit & P2P network. The approach is scalable, decentralized,
ing. Computing a global regression model from data ava@synchronous, and inherently based on in-network computa-
able at the different peer-nodes using a traditional centron. The algorithmic framework is local, in the sense that
ized algorithm for regression can be very costly and imprd&€ computation and communication load at each node is in-
tical because of the large number of data sources, the aﬂ@pendent of the size or the number of nodes of the network.
chronous nature of the peer-to-peer networks, and dyna {is is very important for the scalability of the algorithm i
nature of the data/network. This paper proposes a two-stafge P2P networks. The proposed methodology takes a two-
approach to deal with this problem. First, it offers an effitci SteP approach for building and maintaining MR models in
local distributed algorithm that monitors the “quality” tife P2P networks. The first step in our algorithm is thenitor-
current regression model. If the model is outdated, it us8§ Phasén which, given an estimate of the MR model to all
this algorithm as a feedback mechanism for rebuilding tHee Peers, they asynchronously track any change between the
model. The local nature of the monitoring algorithm guarafilodel and the global data using a provably correct local al-
tees low monitoring cost. Experimental results presenteddorithm. The second step, known as teenputation phase

this paper strongly support the theoretical claims. uses the monitoring algorithm as a feedback loop for trig-
gering a new round of MR model-building if necessary. The
1 Introduction algorithm guarantees that as long as the MR model correctly

Multivariate Regression (MR) is a powerful statistical anr&presents the data, little ‘?Om.p“““g anq communicatien re
: ) S . sources are spent for monitoring the environment. When the
machine learning tool that is widely used for predictiomszl : . o
e . _ . __data undergoes a change in the underlying distribution and
sification, and data compression. Multivariate regresgon : :
i . .the MR model no longer represents it, the feedback loop in-
relatively well understood given a sample of the data (i

ut variables and corresponding target output values) Tgates this and the model is rebuilt. Moreover, we also show
P! . P g targ put v; at at all the data need not be centralized to recompute the MR
single location. However, there are many emerging scenar-

ios where data is distributed over a network of machin coefficients. We can do in-network aggregation for finding

Peer-to-Peer (P2P) networks offer one such example. §§ ; thereby using far less resources than brute force cen-

systems such as Gnutella, BitTorrents, e-Mule, Kazaa, ‘E?i!(')f,";‘:?”- The specific contributions of this paper are as

Freenet are increasingly becoming popular for many appflJ-
cations that go beyond downloading music without payinge To the best of the authors’ knowledge this is one of the
for it. Examples include P2P systems for network storage, first attempts on developing a completely asynchronous
web caching, searching and indexing of relevant documents and local algorithm for doing multi-variate regression
and distributed network-threat analysis. The next genera- in P2P networks which can seamlessly handle changes
tion of advanced P2P applications for bioinformatiesd in the data and network.

client-side web mining [20][9)] are likely to need support fo e Besides this, we have also presented a highly efficient

and local algorithm for tracking the L2 norm of the
Thitp://smweb.bcgsc.bc.ca/chinook/index.html global average vector.



e Most of the previous work in the literature focusesgression model. Therefore, such an algorithm will enable
on linear regression in distributed environments. Otire user to monitor regression models using low resources.
technique can be applied for any type of multivariate
regression. 2.2 Related Work The work presented in this paper is re-

lated to two main bodies of literature - multivariate regres

The rest of the paper is organized as follows. Relat&ipn and computation in large distributed environments.
background material is presented in Section 2. Section 3
introduces the notations and problem definition. Sectigr?-1 Distributed Multi-variate Regression: The prob-
4 presents the MR monitoring algorithm, while Section lem of distributed multivariate regression has been adees
discusses the MR computation problem. Section 6 defif¥smany researchers till date. Hershberger et al. [15] con-
local algorithms and analyzes the local behavior of o§idered the problem of performing global MR in a vertically
algorithm. Experimental results are presented in SectionPfrtitioned data distribution scenario. The authors psepo

Finally, Section 8 concludes this paper. a wavelet transform of the data such that, after the transfor
mation, effect of the cross terms can be dealt with easily.
2 Background The local MR models are then transported to the central site

. . . ._and combined to form the global MR model. Such synchro-
This section provides the necessary background material. . . : .
nized techniques will not scale in large, asynchronous sys-

- . tems such as modern P2P networks.
2.1 Approach Statistical models can be built and updateg Similarly, Mukherjee et al. [22] presents a framework

from distributed data in various ways. Theriodicapproach ; . S .
for performing linear regression in heterogeneously parti

IS to simply rebuild the model from time to time. Th%oned distributed data using variational approximatiecht
incrementalapproach is to update the model whenever the : . .
nigue. In their model, each peer or node has a single variable

data changes. Lastly, tneactiveapproach, what we propose nd the task is to induce the linear model of all these vari-

here, is to monitor the change, and rebuild the model Orﬁ%les The proposed technique is very communication effi-
when it no longer suits the data. Tlperiodic approach ’ prop q Y

can be highly inefficient since, there is the risk of wasti cient. The entire process, for example, takes a constart num

resources even if the data is stationary and also the of rjsK of messages per peer. However, the major drawback is
. . tationary {R&t the algorithm is synchronized — any node needs to wait
model inaccuracy if the updating is delayethcremental

. L . . f[<om the data/statistics from all the other nodes in the net-
algorithms are very efficient; however their major drawbac . . . :
ork. Moreover, the algorithm is not suitable for dynamic

is that a separate algorithm needs to be handcrafted o

, : . . environments requiring it to be run from scratch if the data
every problem. Data drivereactivealgorithms are efficient,
or topology changes.

simple and can accommodate a wide variety of function Many researchers have looked into the problem of do-

computation. ing distributed MR using distributed kernel regressiorhtec

The work presen_ted in this paper con5|_der_s buildin ques such as Guestrin et al. [14] and Predd et al. [24]. The
and updating regression models from data distributed ov : ; ;
orithm presented by Guestrin et al. [14] performs linear

a P2P network where each peer contains a subset of o o
regression in a network of sensors using in-network process

data tuples. In the distributed data mining literatures tbi . o
. . ing of messages. Instead of transmitting the raw data, the

usually called the horizontally partitioned or homogersgu ; . .
proposed technique transmits constraints only, thereby re

distributed data scenario. Building a global regressiodeho ducing the communication complexity drastically. Similar

(defined on the union of all the data of all the peers) in large- .
T . .10 the work proposed here, their work also uses local rules to
scale networks and maintaining it is a vital task. Consider : : :
rune messages. However the major drawback is that their
a network where there are a number of nodes (by node Wwe - . . . .
a%orlthm is not suitable for dynamic data. It will be very

mean peers, sensors, grid components etc.) and each g s‘ﬁy if the data changes since, as the authors point att, th

gets a stream of tuples (can be sensor readings, music files : :
) tw? passes are required over the entire network to make sure
etc.) every few seconds thereby generating huge volumet 0

data. We may wish to build a regression model on the globg?t the effect of the measurements of each node are propa-

data to (1) compactly represent the data and (2) predict aeted to every other node. Moreover,_ contrary to t_he broa(_j
’ A : class of problems that we can solve using our technique, thei
value of a target variable. This is difficult since the data Js

distributed and more so because itis dynamic. Centradizati icg?é?#e is only applicable for solving the linear regress

obviously does not work because the data may changé)a Meta-learning is an interesting class of algorithms typi-

a faster rate than the rate at which it can be centralized . . )
cally used for supervised learning. In a meta learning, such

Local algorithms are an excellent choice in such scenarlos : . .
: . bagging [7] or boosting [13] many models are induced
since they are highly scalable and guarantee that once the "~ - N "

" 4 . from different partitions of the data and these “weak” madel
computation terminates, each node will have the correc



are combined using a second level algorithm which can éf#ficient (and hence scalable), on the other hand they guar-
as simple as taking the average output of the models for amtee eventual convergence to thectresult (equal to that
new sample. Such a technique is suitable for inducing madhich would be computed given the entire data). This fea-
els from distributed data as proposed by Stolfo et al. [2&lire makes local algorithms exceptionally suitable for P2P
The basic idea is to learn a model at each site locally (networks as well as to wireless sensor networks.
communication at all) and then, when a new sample comes, Local algorithms were first introduced in the context
predict the output by simply taking an average of the locaf graph theory by Afek et al. [1] and Linial [19]. More
outputs. Xing et al. [29] present such a framework for doirrgcently, local algorithms have been developed for several
regression in heterogenous datasets. However, these teelta mining problems: association rule mining [28], fagili
nigques perform poorly as the number of such data partitidiesation [18], outliers detection [6], and meta-classiiiza
increase to millions — as in typical P2P systems. [21]. Lately, several efforts were made at the descriptibn o
local algorithm complexity [4].
2.2.2 Computation in large distributed (P2P) systems:
Computation for P2P networks span three main areas: 81) Notations and Problem Definition

best effort heuristics, (2) gossip based computations, €3) Notations Let V = {P,...,P,} be a set of peers
broadcast-based systems and (4) local algorithms. Fogghnected to one another via an underlying commu-
detailed survey interested readers can refer to [10]. nication infrastructure such that the set &'s neigh-

Algorithms using best effort heuristics have been devgjors n;, is known to P,.  Additionally, for a given
oped for large distributed systems. The F2Rleans algo- time window ¢, P; is given a stream of data vectors
rithm by Banyopadhyay et al. [2] is one such example. TYgly R4, The local data of peeP; at timet is S;;, =
cally for such algorithms, a peer collects some samples fr - — —  — ’
its own data and its neighbors and builds a model on thi$ %1 f (21 )) ; (332’ S (g )) seees (fﬁé’ta (xé’t))},
sample. While it works well in some cases such as [2], no —

it : H :
general accuracy guarantees can be provided for such akjgere eachz” is a (@-1)-dimensional data point

rithms. _ _ allaty -xiqu)} and f is a function fromR%~! — R.
Gossip algorlthms r.e.ly.on the properties of random sa very data point can be viewed as an input and output pair.

ples to provide probabilistic guarantees on the accuracy of Peers communicate with one another by sending sets of

the results. Researchers have developed different agpeag, ;i vectors (or statistics thereof, as defined below). Let

for performing basic operations.g. average, sum, max,Xij denote the last set of vectors sent by péerto P;.

)

random sampling) on P2P networks using gossip techniqugssuming reliable messaging, once a message is delivered

Kempeet al. [17] and Boydet al. [S] present such primi- poi b and P, know X; ; andX, ;. Now we define four sets

tives. In gossip protocols, a peer exchanges data or &tatist \ actors which are crucial to our algorithm.

with a random peer. However, they can still be quite costly

— requiring hundreds of messages per peer for the compuriniTion 3.1. (Knowledgé Theknowledgeof P; is the

tion of just one statistic. Another closely related teclugiq ynijon of S; ; with X;; for all P; € N; and is denoted by

is to use deterministic gossip or flooding. In flooding, every _ S .U U X,

peer floods/broadcasts the data and therefore, eventbally t° “

data/statistic is propagated through the entire netwoeseH

again the major drawback is scalability and dynamicity. DEeFINITION 3.2. (Agreement The agreementof P; and
Communication-efficient broadcast-based algorithragyy of its neighbors; is A; ; = X; ; U X ;.

have been also developed for large clusters such as the one

developed by Sharfman et al. [25]. Since these algorithf&FINITION 3.3. Withheld knowledge The  withheld

rely on broadcasts as their mode of communication, the cksgpwledge of P; with respect to a neighborP; is the

quickly increases with increasing system size. subtraction of the twae. W; ; = K; \ A ;.

Local algorithms are a good choice for data mining in
P2P networks since in a local algorithm, the result is gen&EFINITION 3.4. (Global knowledge The global knowl-

ally computed by communicating with a handful of neart§d9€is the set of all inputs at time and is denoted by

neighbors. Local algorithms rely on data dependent confi-= U Sit-
tions which we refer to as local rules, to stop propagating =1,

messages. This means that if the data distribution does not
change, the communication overhead is very low. On tpv?o

other hand, the local rules are violated when the distrifouti sufficient statistics on these sets which the peers wil

. . : Lfse to communicate: (1) theverage vectowhich is the
changes. While on one hand, local algorithms are h|gh¥ . ;
average of all the vectors in the respective sets (e.g. for

P] EN;

Since these vector sets can be arbitrarily large, we define



S; ¢ itis S + = Z Z similarly ICl, Al s W”, XU, the model as a quality metric for the model built. Given

7ES eidynamlc environment, our goal is to maintain a correct
X anda) and (2) thesizesof the sets denoted by; .|, f(@') at each peer at any time.
|X7]| | X,ils 1Cals A, Wi ], and |Gy, If we assume
that communication always takes place in an overlay tregoblem 1. [MR Problem] Given a time varying dataset
topology, we can write the following expressions for th§:,, a user-defined thresholdand f(7 ') to all the peers,
sizes of the sets: the MR problem is to maintain a correﬁ( ) at each peer

1. |A7]|_|XL]|+| z| Avg[f(?)—f(?)}2

2.1Ki| = Sia| + > |X;4l, and
For ease of explanation, we decompose this task

‘Sz tl

such that, at any time+ ‘ <e.

Pj;eN;

\:/3ve|z\;ﬁjwnt(|alc il = [Ai;]. Similarly for the average VeCIOISito two subtasks. First, given a representationf 6t )

Xl v Xl v to all the peers, we want to raise an alarm whenever
1AU—|A ]|X2J+|A1 \X L . .
o Z |X Avg [f(a:) — f(x)} > ¢, Wheree is a user-defined

= ", Z + .. . .

R =t Pren; threshold. This is thenodel monitoring problemSecondly,

3 W = Kl |A,J\J4 if f(¥') no longer representg (7'), we sample from the
N’é t; tlk)?gtj‘ for ar‘]‘;"bé‘eer any of these vectors can etwork (or even better do an in-network aggregation) to

computed based solely on its local data and what it gets frgnd an update(f( )- This is themodel computation prob-

its immediate neighbors. This, makes the communication
the algorithm localized. We are interested in computing
regression model defined @h.

Next we define the cover of a domain.

Tn Mathematically, the subproblems can be formalized as
f%Iows

Problem 2[Monitoring Problem] Given S;;, and f(?)

to all the peers, the monitoring problem is to output O if
DEFINITION 3.5. (Convex cover Thecoverof a domainis || Ayg [f(y) — J?(?)r’
a set of non-overlapping convex regiafls = {R1, Ro, ... }

such that the function defined @k is invariant inside any

R;.

< ¢, and 1 otherwise, at any time

Problem 3[Computation Problem] Given a sample of the
As an example, Figure 1 shows a possibilg with data from the network, the model computation problem is to

the convex regions as the circle itself and the half-spadi¥l @ newf ().
defined by the tangent lines. We will illustrate this in gegat
details in Section 4. The areas uncovered(lyydenotetie
regions. For simplicity, we assume that the network topplo§ ~ Step 1: Monitoring Regression Model
forms a tree. Note that, as shown in [3], such a tree cenMR monitoring problem, each peer is given a dataset
be efficiently constructed and maintained using varlatun‘nsslt and an est|matef( ). Our goal is to monitor
Bellman-Ford algorithms [12, 16]. ~ 72
[ [ 7] |

3.2 Problem Definition In MR, the task is to learn a = The problem now is to monitor the L2 norm of the
function f (') which “best” approximateg (2’) according average error. Although the error is a single number instead
to some measure such as least square. Now depending othe vector, we can easily define a vectorR3d with the
representation chosen fg)’(x) various types of regressionsecond component 0. We present here a local algorithm
models (linear or nonlinear) can be developed. We leave tivkich monitors the regression coefficients using the L2
type specification as part of the problem statement for ausrm of the average error vector. A preliminary L2 norm
algorithm, rather than an assumption. monitoring algorithm was also dealt in our previous paper
In MR, for each data point’, the error betwee[f(?) [27] in the context ofk-means clustering. The algorithm
and f(F) can be computed a%f(_)) j?(?)r In our Outputs O if‘ @)’ < € and 1 otherwise. The algorithm
scenario, since this error value is distributed across ¢eegy Presented in [27] is prone to noise in the data since it
-~ _.,12 communicates all the data for every data change. In this
agood estimate of the global errords g [f( @)= f(@ )} * paper, we take care of that problem by applying a different
There exist several methods for measuring how suitablg@hdition for sending messages and ensuring that all data is

model is for the data under consideration. We have usgst sent whenever a peer communicates. Rather, we keep
the L2-norm distance between the current network data and




some data (in the form of witheld knowledge) so that if the : ®
data changes later, the change is less noisy. We discuss this
in more details later. Interested readers can compare the
communication graph of the two algorithms by looking at
Figure 3(b) in this paper and Figure 2(c) in [27]. Moreover
we tune the algorithm to make it suitable for regression.
Thus, we feel that this is a significant contribution in itsrow
right.

The regression monitoring algorithm guarantees even-
tual correctness, which means that once computation termi-

nates, each peer computes the correct result as comparqqgiare 1: (A) the area inside arcircle (B) A random vector

a centralized setting. In a termination state, no messages ) A tangent defining a half-space (D) The areas between
verse the network, and hence a peer can decide solely bggedijrcie and the union of half-spaces are the tie areas.

on K;, A; ;, andW, ;, if G, resides inside a specific con-
vex regionR; € Cs. The following theorem formalizes the
termination states of our monitoring algorithm.

@@

o8

_©

XY

lines chosen. Note that, the region in which the outputis 0 is
THEOREMA4.1. [Convex Stopping Rule]Let Pi,..., P, R. which is convex by itself. The output is 1 inside any of
be a set of peers connected to each other over a spannimgse half-planes. Therefore for each regiod'in Theorem
treeG (V, E). LetG,, K;, A; ;, andW; ; be as defined in the4.1 can be applied.
previous section. LeR be a convex region ins. If at timet
no messages traverse the network, and for elacbla €ER
and for everyP; € N;, ﬁ € R and eitherV\Tj € Ror

Wi = 0, theng_g € R.

ALGORITHM 4.1. Monitoring Regression Model
Input: €, Cs, S; +, N; andL.

Output: O if HE < ¢, 1 otherwise

Initialization : Initialize vectors; Call INIT()
Proof (SKETCH): We omit the formal proof here due to jt messageRecvdFro 3 X, |X|) then
shortage of space. Simply speaking, the theorem can be __, _,

proved by taking any two arbitrary peers and exchanging all Xj.i — X and|X;;| < [X]|

of their withheld knowledge. We call this as the unification ~ Update vectors

step. After unifying all the peers it can be shown that _end if
at cR. 1 if S;+, IN; or IC; changes or INIT(fhen

for all NeighborsP; do
if LastMsgSent > L time units agdhen

The significance of Theorem 4.1 is that under the condi-
tion describedP; can stop sending messages to its neighbors

—> . . = — if R = (then
and outpquCiH. The idea s to ensure th&l andg; finally T KR =X X e -
L , SetX;; « =7~ {/*Tie Region*/y
reside in the same convex region. If the result of the theorem Set| X K XJ'
holds for every peer, then Theorem 4.1 guarantees this is the end?f| igl K| = | X5

correct solution; else, there must either be a messagerin tra

if A, &R Rth
sit, or some peef;, for whom the condition does not hold. ! ’”Z_, orWi,; ¢ Rthen

.
Then eitherP, will send a message which will change its SetX;,; and|.X; ;| such thatd; ; and
output or the message will be received, leading to a change W, ; € R {/*Theorem Condition*}
in Ia; eventually. Thus eventual correctness is guaranteed. end if .

In order for the monitoring algorithm to track the global MessageSenﬂ(ch, Xijs |Xi,j|)
average error, we need to specify the input to the algo- LastMsgSent— CurrentTime
rithm and the covelCys. For the input, every data point Update all vectors
SN . 12 else
[@, J(@)] € Si¢ is mapped to [f( v)- I )} ’0>' Wait L time units and then check again

With abuse of notations, henceforth we will refer to this end if

as S;;. Since this transformation makes every point in  end for

Si+ € R?, the coverCj is as shown in Figure 1. It consists end if

of the following regions - the inside of thecircle (R.) and

the half-spacesK,;,,, Ry, , ...) defined by each of these tan-  Algorithm 4.1 presents the pseudo-code. The inputs
gent lines (and hence unit vectors). The angle between eltne algorithm ares; ;, Ni, e andCs and L. Each peer

of these unit vectors i%}, whered is the number of tangentinitializes its local vectorsC;, A; ; andW; ;. A peer may
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(a) Initial state (b) Activated leaves (c) Activated intermediate nodes (d) Activated roots

Flag=1 Flag=1 Flag=1

Figure 2: Convergecast and broadcast through the diffestepts. The blue circles represent states when the peerstdo no
raise a flag. The purple circles represent the state whenrdhpseaised and alert (flag=1) and sent its data to its pafent.
soon as the peer gets data from all but one neighbor it tuti@yeinally, the roots are denoted by red.

need to send a message if its local data changes, if it recewe&onvergecast-broadcast technique.

a message or if the set of neighbors change. In any of The basicideais to use thenvergecagbhase to sample
these cases, the peer checks if the condition of the theoidamta from the network to a central post and compute, based
holds. First peer?; finds the regioniz & Cs such that on this sample, aneW( 7). Thebroadcasphase distributes

K; € R (R = 0 otherwise). IfR = 0, thenk; is in a this f() to the network. The monitoring algorithm now
tie region and @C@i has to&}nd all its data. If, for allmonitors the quality of the result. The efficiency and cor-
P; € N;, bothA; ; € RandW,; € R, P; does nothing; rectness of the monitoring algorithm allows a very simple

else it needs to seﬁ and |)?;| and send those. sucksampling technique to be used — if an ill-fit model is built at
that after the message is sent, the condition of the theor@i it Will soon be detected by the local algorithm resugtin
holds for this peer. As we already pointed out that if a pe@rgnother rognd of convergecast in the worst case. Another
communicates all of its data, then if the data changes agafint to note is that, in our convergecast-broadcast peces
later, the change is far more noisy than the original data. 9§ do not specify the root of the convergecast tree. Rather

we always seP?; and|X; ;| such that some data is retaine N I_et the netyvqu s.tru.c'.[ure (que d.elays and data skewness)
while still mainfaining thé conditions of the theorem. ecide it. This is significant since it ensures (1) decentral

do this by checking with an exponentially decreasing set 'é?d control, (2) load balancing, and (3) robustness agains

S = — — single point of failure.
values 0f|_Wl_J|_unt|I either all K;, A;; andW,; € .R’ or In the convergecast phase there are two main parame-
|[W;.;1=0, in which case we have to send everything. No{ s

that_other than th ! d not Each peer maintains a user selected alert mitigation
at ofher than these two cases, a peer need not se r%tant,r and the sample size. An alert should be stable

m_egsage since the theorem guarantees g}/entual_(; orrgct?gls 3 given period of timer before the peer can send its
Similarly, whenever it receives a message @nd | X|), it - gata  thereby preventing a possibly false alarm from prop-
setsX);; — X and|.X;;| — | X|. This may trigger another agating. In order to do this, the peer relies on the underly-
round of communication since ifS; can now change. ing monitoring algorithm. If the monitoring algorithm rais

To prevent message explosion, in our event-based sydlag, the peer notes the time, and sets a timer tone
tem we employ a “leaky bucket” mechanism which ensurgsits. If the timer expires, or a data message is received
that no two messages are sent in a period shorter than a dtym one of its neighborsp; first checks if there is an ex-
stantL. Note that this mechanism does not enforce synchisting alert and if it has been recordedr more time units
nization or affect correctness; at most it might delay conveigo. If so, it counts the number of neighbors from which it

gence. has received data messages. Once it receives data messages
from all of its neighbors, the peer computes a new regression
5 Step 2: Computing Regression Model model (') based on the sample it received and sends it to

The regression monitoring algorithm presented in the earlitself. It then moves to the broadcast phase and s¢tid
section can be viewed as a flag which is raised by a pé&eall its neighbors. On the other hand, if it has receiveddat

N ~_,.12 messages from all but one of the neighbors then it takes a
Avg [£(7) = F(@)]

> e. In this section we uniform sample (of user-defined size) from its own data and

whenever{
discuss how the peers collaborate to find a é#) using the data it has received from its neighbors. It then forwards




the sample to the peer from which it has not received data  Datasentfalse R
and marks its state as broadcast. The peer does nothing if it ~ Restart Monitoring Algorithm with nevy;
has not received data from two or more neighbors. Note that, end if

at each peer, the sampling technique is such that, each daend if
point gets an equal chance of being included in the sampledf S; ;, N; or IC; changes or INIT(Yhen
data set. We do this by properly weighing every data point Run Monitoring Algorithm
by size of the subtree from which the sample was received. flag=OutputMonitoring Algorithm()
The broadcast phase is fairly straightforward. Every if flag=1 andP;=IsLeaf()then
peer which receives the nefi{ 7 ), restarts a new regression Execute the same conditions as
monitoring algorithm with this newf(Z). It then, sends MsgType = Dataset_-Msg
the newf(7) to its other neighbors and changes the status €Nd if
to convergecast. There could be one situation in which &€"d |
peer receives a neﬁ(?) when it is already in the broadcast
phase. This is when two neighbor peers concurrently beco
roots for the convergecast tree. To break this tie, we stiect
f(?) to propagate the root of which has a higher id. Figur:
2 shows a snhap-shot of the convergecast broadcast steps
progresses up the communication tree.
The pseudo-code is presented in Algorithm 5.1.

ecial case : Linear Regressiorin many cases, sampling
rom the network is communication intensive. We can
f|nd the coefficients using an in-network aggregation if we
'\3‘1 l00se to monitor a widely used regression matellinear
regression (linear with respect to the parameters or the
unknown weights).
Since the dataset of each peer consists sofd-

ALGORITHM 5.1. P2P Regression Algorithm dimensional tuple§z’, f ()] and @ = [z125 ... 24-1], We

Input: €, Cs, S; ¢, N;, L, fandT
~ —~ 2
Output: f such tha[HAvg {f(?) - f(?)} H <e
Initialization : Initialize vectors; Call INIT()
MsgType= MessageRecvdFromy)
if MsgType = Monitoring_M sg then
Pass Message to Monitoring Algorithm
end if
if MsgType = New_Model_M sg {/*Broadcast*}
then R
Updatef
Forward newfto all neighbors
Datasent=false R
Restart Monitoring Algorithm with newf
end if
if MsgType = Dataset_M sg {/*Convergecast¥ then
if Received from all but one neighbthren
flag=Output Monitoring Algorithm()
if Datasent = false and flag = 1 then
if DataAlert stable forr timethen
D=Samplef; ;, Recvd_Dataset)
Datasent=true;
SendD to remaining neighbor
else
DataAlert=CurrentTime
end if
end if
end if
if Received from all neighbothen
D=Samplef; ;, Recvd_Dataset)
f=Regression))
Forward new; to all neighbors

want to fit ad — 1 degree polynomial since the last attribute
corresponds to the outpu]f(?) = ag + a1T1 + asxo +

... +aq_1xq_1, Wherea;’s are the coefficients that need to
be estimated from the global dataskt We drop the cross
terms involvingz; andx; for simplicity. Using least square
technique and after simplification we get,

Gel .j Gl
||ggt| legl s \Zg:‘ f1 l'd 1
Z g Z ‘ ( )2 Zj:tl 1 *xil—l
Gl g j j Gl
Z‘]:H w?i—l Z‘j:q xfi—l * ] Z‘] t1(xd )2
Gl
Z|| (@)
gt =25\ d
ay >l (CE E
X . = ! =Xa=Y
o) \SE @

wherez/ is the value of the*” attribute ingG, for the j*

row and f(z'7) is the corresponding output. Therefore for
computing the matrix (or more appropriately vectar)we
need to evaluate the matricésandY . This can be done in a
communication efficient manner by noticing that the entries
of these matrices are simply sums. Hence, instead of sending
the raw data in the convergecast round, pBecan forward

a locally computed matriX; andY;. PeerP;, on receiving

this, can forward a new matriX; andY ; by aggregating, in

a component-wise fashion, its local matrix and the received
ones. Note that the avoidance of the sampling technique
ensures that the result is exactly the same compared to a
centralized setting. Moreover, the dimensionality of the



matricesX; andY; isd.d+d.1 = O(d?). This shows that the by the data of the peer), independent of the network size.
communication complexity is only dependent on the degreencey = constant.
of the polynomial or the number of attributes. Since, in most Therefore the regression monitoring algorithm is
cases, the number of attributes is much small compared (1), O(1))-local under the static scenario assumptions.
the sample size required in the convergecast round, there ja
be significant savings in terms of communication.

The high scalability of the local algorithms is due to the
6 Local Algorithm fact thata and~ are constants and is independent of the

In this section we first definéocal algorithms as done bynetwork size. _ _
Das et al. [9] and then prove that the algorithm that we have Similarly, ignoring network delays and assuming a static

developed in this paper is local. scenario, the running time of the algorithm will always be
a constant, independent of the network size. Analysis of
DEFINITION 6.1. [a-neighborhood of a vertex]: Leff = the communication complexity and running time of the local

(V,E) be the graph representing the network whére algorithms for dynamic scenarios, is an open issue.
denotes the set of nodes aAdepresents the edges between Note that the regression monitoring algorithm is eventu-
the nodes. The-neighborhood of a vertexv € V is the ally correct (not approximate). This means that the result t
collection of vertices at distance or less from it inG: Wwhich it converges to is the same when compared to a cen-
To(v,V) = {u|dist(u,v) < a}, wheredist(u,v) denotes tralization of all the data.
the length of the shortest path in betweerland v and the
length of a path is defined as the number of edges init. 7 Experimental Results

In this section we discuss the experimental setup and amalyz
DEFINITION 6.2. [a-local query] LetG = (V,E) be a the performance of the P2P regression algorithm.
graph as defined in last definition. Let each nades V
store a data seX,. Ana-local query by some vertexisa 7.1 Experimental Setup We have implemented our algo-
query whose response can be computed using some fungigins in the Distributed Data Mining Toolkit (DDMT) [11]
f(Xa(v)) whereX,(v) = {Xulv € Ta(v, V)}. developed by the DIADIC research lab at UMBC. We use

i ) . topological information generated by thigarabasi Albert

DEFINITION 6.3. [(«a, v)-local algorithm] An algorithm is g Ay model in BRITE [8] since it is often considered a rea-
called (o, 7)-local if it never requires computation of & g5 ahje model for the internet. BA also defines delay for net-
local query such that > o and the total size of the responsg . eqges, which is the basis for our time measurefent

to all sucha-local queries sent out by a peer is bounded an top of the network generated by BRITE, we overlay a
~. « can be a constant or a function parameterized by tl&%mmunication tree

size of the network while can be parameterized by both the

size of the data of a peer and the size of the network. 7 5 patg Generation The input data of a peer is a vector

) , L (71,22,...,24) € R?, where the firstd — 1 dimensions
We call such and, )-local algorithmefiicient if both correspond to the input variables and the last dimension

« and~y are either small constants or some slow growin .
) : . . rresponds to the output. We have conducted experiments
functions (sublinear) with respect to its parameters. The

. . on both linear and non-linear regression models. For the
following lemma, Lemma 6.1 proves that Alg. 4.1llixal linear model, the output is generated accordingfo= ag -+
according to this definition. ’ putisg 9 v

a1x1 +asxe+ ... +aq—1x4—1. We have used two functions

LEMMA 6.1. [Locality] The regression monitoring algo-for the non-linear model: (1y3 = ao + a1a221 + apa122
rithm is (O(1), O(1))-local considering static data and net{Multiplicative) and (23 = ao * sin(ay + aza1) + a1 *

work sin(az + apx2) (sinusoidal). Every time a simulated peer

needs an additional data point, it chooses the values of

Proof (SKETCH): Considering a static network and datat1, 2, - - - Z4—1, €ach independently in the range -100 to
each peer communicates with its immediate neighbors orfi00- Then it generates the value of the target variable
The query of the requesting peer can be propagated toU8!g any of the above functions and adds a uniform noise
many neighbors as required by the conditions of Theordfthe range 5 to 20% of the value of the target output. The
4.1 and the data of the peer. Hence, = constant, regression weightsy, a1, ..., aq_1’s are changed randomly
independent of the size of the network. at controlled intervals to create an epoch change.

The number of times such a communication takes place

is dependent on the data of th? peer. Nevertheless itis alW_aWWall time is meaningless when simulating thousands of compoters
a constant for each problem instance at hand (characterizeidgle PC.
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Figure 3: A typical experiment is run for 10 equal length emcQuality and overall cost are measured across the entire
experiment — including transitional phases. The monigpdnst is measured on the 1a&1% of every epoch, in order to
ignore transitional effects.

7.3 Measurement Metric In our experiments, the tworegression monitoring algorithm: size of local bufféf, ;|,
most important parameters for measurement argjtiadity the radius of the circle, size of the leaky bucket and noise

of the result and theostof the algorithm. For the monitoringin the data. Apart from these there are also the system size
algorithm, quality is measured in terms of the percentafiumber of peers) and dimensionality of the multivariate re
of peers which correctly compute an alerg., the number gression problem which can affect performance. In this sec-

of peers which report thaﬁlaH < e when HEZ < e and tion we present the quality (insidee. ‘ Ez < ¢, outside

H@H > ¢. For the regressioni.e. H@:H > ¢ and overall) and cost of the algorithm w.r.t.

computation algorithm, quality is defined as the L2 norudiifferent parameters. Note that, unless otherwise stated,
distance between the solution of our algorithm and the &cthave used the following default values: number of peers =
regression weights. We refer to the cost of the algorithit®00,|S; ;| = 50, ¢ = 1.5, d = 10 andL = 500 (where the
as the number ohormalized messagesent, which is the average edge delay is about 1100 time units). As we have al-
number of messages sent by each peer per unit of leaggdy stated, independent of the regression function chose
bucketL. Hence, 0.1 normalized messages means that nine underlying monitoring problem is alwaysit¥. The re-
out of ten times the algorithm manages to avoid sendingu@ts reported in this section are with respect to linear@hod
message. We report both overall cost and the monitorisigce it is the most widely used regression model. Results
cost (stationary cost), which refers to the “wasted effoft” of monitoring more complex models are reported in the next
the algorithm. We also report, where appropriate, messagestion.
required for convergecast and broadcast of the model. Figures 4(a) and 4(e) show the quality and cost of the
algorithm as the size of local buffer is changed. As expected
7.4 Typical Experiments A typical experiment is shownthe inside quality increases and the cost decreases as the
in Figure 3. In all the experiments, about 4% of the data size of buffer increases. The outside quality is very high
each peer is changed every 1000 simulator ticks. Moreowroughout. This stems from the fact that, with the noise
after every 5x 10° simulator ticks, the data distribution isin the data, it is easy for a peer to get flipped over when it is
changed. To start with, every peer is supplied the same checking for inside a circle. On the other hand, noise cannot
gression coefficients as the coefficients of the data generaange the belief of the peer when the average is outside.
tor. Figure 3(a) shows that for the first epoch, the quality the second set of experiments, we varieftom 1.0 to
is very high (nearly 96%). After 5< 10° simulator ticks, 2.5 (Figure 4(b) and 4(f)). Here also, the quality increases
we change the weights of the generator without changing #e is increased. This is because with increasinghere
coefficients given to each peer. Therefore the percentagesof bigger region in which to bound the global average.
peers reportin ;EZ < e drops to 0. For the cost, Figurelhis is also reflected with decreasing number of messages.
Hgote that, even foe = 1.0, the normalized messages are
around 1.6, which is far less than the theoretical maximum
of 2 (assuming two neighbors per peer). The third set of
experiments analyzes the effect of leaky budkeAs shown
Figure 4(c) quality does not depend @n while Figure

3(b) shows that the monitoring cost is low throughout t
experiment if we ignore the transitional effects.

7.5 Results: Regression MonitoringThere are four ex-
ternal parameters which can influence the behavior of t'll?e
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Figure 4: Behavior of the monitoring algorithm w.r.t thefdiient algorithm parameters.

4(g) shows that the cost decreases slowly with increasimgnted the Nelder-Mead simplex method [23].
L. Finally, Figures 4(d) and 4(h) depict the dependence of We have conducted experiments on three datasets. Each
the noise on the monitoring algorithm. Quality degrades agdality graph in Figure 6 presents two sets of error bars.
cost increases with increasing noise. This is expectedesiiihe blue square shows the L2 norm distance between the
with increasing noise a peer is more prone to random effeatistributed coefficients and the actual ones. Also shown in
This effect can, however, be nullified by using a large buffeach figure is the L2 norm distance between the coefficients
or biggere. found by a centralized algorithm and the actual ones (red
Our next experiment analyzes the scalability of the modiamonds). The first pair of figures, Figures 6(a) and 6(d)
itoring algorithm w.r.t the number of peers and dimension show the results of computing a linear regression model. Our
the multivariate problem. As Figures 5(a) and 5(c) shoaim is to measure the effect of variation of alert mitigation
both the quality and cost of the algorithm converge to a caoeriod = on quality and cost. As shown in Figure 6(a), the
stant as the number of peers increase. This is a typical belguality of our algorithm deteriorates asincreases. This
ior of local algorithms. For any peer, since the computatia® because, on increasing a peer builds a model later
is dependent on the result from only a handful of its neighnd therefore is inaccurate for a longer intermediate perio
bors, the overall size of the network does not degrade fRigure 6(d) shows that the number of data collection rounds
quality or cost. Similarly, Figures 5(b) and 5(d) show thdblue dots) decrease from four times to twice per epoch. This
the quality or the cost does not depend on the dimensiorre$ults from a decrease in the number of false alerts. Also
the multivariate problem either. This independence of teown are monitoring messages (green squares).
quality and cost can be explained by noting that the under- Figures 6(b) and 6(e) analyzes the quality of our algo-
lying monitoring problem is inR2. Therefore for a given rithm while computing a non-linear multiplicative regrass
problem, the system size or dimensionality of the problemodelviz. x5 = ag+aja221 +aga;x2. Figure 6(b) presents
has no effect on the quality or the cost. the quality as other parameteiz. sampling size is varied.
Overall, the results show that the monitoring algorithiAs expected, the results from the distributed and cengdliz
offers extremely good quality, incurs low monitoring costomputations converge with increasing sample size. Also th
and has high scalability. number of data collection rounds as depicted in Figure 6(e)
decrease as sample size is increased.
7.6 Results: Regression Model®©ur next set of experi- The third pair of figures, Figures 6(c) and 6(f) show the
ments measure the quality of the regression model compuseche results for a sinusoidal modet; = ag * sin(a; +
by our algorithm against a centralized algorithm having ag>x1) + a; * sin(as + apx2). Here also the quality becomes
cess to the entire data. There are two important parametsztter and the cost decreases as the sample size is increased
to be considered here — (1) the alert mitigation constant (  To sum everything up, the regression computation al-
and (2) the sample size (for non-linear regression). For-cogorithm offers excellent accuracy and low monitoring cost.
puting the non-linear regression coefficients, we have@npllso, the number of convergecast-broadcast rounds is also
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Figure 5: Scalability with respect to both number of peerd dimension of the multivariate problem.

two times per epoch on an average. We have tested our al- self stabilization. In Theoretical Computer Scienc&86(1—

gorithm on several regression functions and the results are 2):199-230, October 1997.

highly satisfactory. [2] S. Bandyopadhyay, C. Giannella, U. Maulik, H. Kar-
gupta, K. Liu, and S. Datta. Clustering distributed data

8 Conclusions and Future Work streams in peer-to-peer environmenisformation Science
176(14):1952-1985, 2006.

To the best of the authors’ knowledge this is one of the firs[g] Y. Birk, L. Liss, A. Schuster, and R. Wolff. A local algorithm
attempts on developing completely local and asynchronous  for ad hoc majority voting via charge fusion. Rroceedings
regression algorithm for P2P systems. The algorithm is of the 18th annual conference on distributed compuyt2@g4.
suitable for scenarios in which the data is distributed s&€ro [4] Yitzhak Birk, Idit Keidar, Liran Liss, Assaf Schuster, and Ran
a large P2P network as it seamlessly handles data changes Wolff. Veracity radius - capturing the locality of distributed
and node failures. We have performed dynamic experiments computations. IrProceedings of the 25th ACM Symposium
with random epoch changes which showed that the algorithm ©n Principles of Distributed Computing (PODC "Qf)ages
is accurate, efficient and highly scalable. Such algorithms 102-111, 2006. )
are needed for next generation P2P applications such as P[Ebs E_soyd,'A. G_hOSh’ B. P|_rabhakar, a_nd .D' Shah. Gqss'p al-
bioinformatics, P2P web mining and P2P astronomy using gorithms: Design, analysis and app."ca.t'onspmcedd'ngs

. o X IEEE Infocom pages 1653-1664, Miami, March 2005.
National Virtual Observatories. As a next step, we plan t([>6] J. Branch, B. Szymanski, C. Gionnella, R. Wolff, and H. Kar-
explore other methods of learning such as support vector gynta. In-network outlier detection in wireless sensor net-
machines and decision trees. works. InProceedings oiCDCS’06, Lisbon, Portugal, July

2006.
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