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ABSTRACT

Link analysis is playing an increasingly important role in
data mining for security and counter-terrorism applications
where the data sets/streams are often distributed and privacy-
sensitive. This paper explores the data pre-processing prob-
lem for link detection and other related problems in a privacy-
sensitive environment. It particularly explores random per-
turbation techniques using additive and multiplicative noise
for privacy-preserving data mining. It presents an overview
of some of the recent results obtained by the authors regard-
ing the privacy preserving properties of random additive and
multiplicative perturbations. At first, it explores the privacy
preserving capability of random additive perturbation and
questions the efficacy of this approach in hiding sensitive in-
formation. Next it explores the result of multiplicative ran-
dom perturbations for privacy-preserving applications and
points out that random projection matrices appear promis-
ing for computing statistical aggregates, principal compo-
nent analysis, and clustering without completely sacrificing
the privacy of the data.

1. INTRODUCTION

Many security and counter-terrorism applications need link
analysis techniques for identifying dependencies among dif-
ferent features, social networks, and communication profiles.
There exists many different algorithms for link detection.
Some of them work with relational tabular data; some of
them work on more structured data, e.g. graphs. Min-
ing such data sets/streams is a challenging problem. The
problem becomes even more challenging when the data is
privacy-sensitive. Financial transactions, health-care records,

and network communication traffic are a few examples where
we often deal with privacy-sensitive data. Figure 1 depicts
the data sources of a typical security screening application
where the data may be privacy sensitive. Consider the prob-
lem of detecting isomorphic sub-graphs, representing certain
social group behavior in a large graph G representing a uni-
verse of social relationships. In most real-life applications,
the graph G will be constructed based on information from
a party (or multiple parties) different from the entity who
is trying to analyze the data. Some of the information may
be extremely privacy sensitive. As a result, either some por-
tions of the graph or the entire graph can be confidential.
Therefore, the party that owns the data (i.e. G) cannot
simply hand it over to the data miner without making sure
that the data will not be exposed to privacy violation. The
challenge is in constructing a representation of the data that
preserves (at least in an approximate sense) the underlying
links that we want to detect while making sure that the rep-
resentation does not divulge the original sensitive parts of
the data/graph.

There is a growing body of literature on data mining tech-
niques that are sensitive to the privacy issue. This has fos-
tered the development of a class of data mining algorithms
[1, 12, 15] that try to protect the data privacy with varying
degrees of success [14]. These algorithms try to extract the
data patterns without directly accessing the original data
and attempt to guarantee that the mining process does not
get sufficient information to reconstruct the original data.
These efforts are related to the general framework of secured
multi-party computation introduced elsewhere [21].

This paper considers the problem of mining multi-party privacy-

sensitive data using random perturbation-based techniques.
It first presents a negative result. It considers random addi-
tive perturbations used by many existing privacy-preserving
data mining techniques (e.g. [1, 8]) that try to preserve
data privacy by adding random noise while making sure that
the underlying distribution is still accurately preserved. It
points out that in many cases, the original data can be eas-
ily filtered out from the perturbed data using a spectral
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Figure 1: Data sources for a typical security screen-
ing application. Many of these sources deal with
privacy sensitive data.

decomposition technique. This paper argues that these ad-
ditive random perturbation-based techniques may not pre-
serve any data privacy at all in many cases. Next, the pa-
per explores multiplicative random projection matrices and
points out that they may be useful for computing statistical
aggregates, principal components analysis, and clustering
from distributed privacy-sensitive data.

Section 2 briefly reviews the common link analysis appli-
cations and discusses their relevance to the current work.
Section 3 explores additive random perturbation-based tech-
niques for preserving privacy and questions the efficacy of
this approach. Section 4 considers multiplicative random
projection matrices for privacy-sensitive data mining. Fi-
nally, Section 5 concludes this paper.

2. LINK ANALYSIS APPLICATIONS

The techniques described in this paper consider data in the
tabular relational format. This section considers different
classes of link analysis applications reported in the literature
and identifies their relevance to the work presented here.

Link Analysis is finding a growing number of applications
in many domains such as social sciences [19], criminal in-
telligence [17], and large database structuring [10]. Tradi-
tional data mining techniques such as association rule min-
ing, clustering, market basket analysis are sometimes used
for link analysis. These algorithms usually work from tabu-
lar data and the material presented in the coming sections is
directly applicable to these application scenarios. However,
there also exist a large body of link analysis applications
that deal with more complex types of data such as URL
sequences, distributed data, and graph structured data to
name a few.

The World-Wide-Web is another important domain for link
analysis applications. Web search engines are becoming in-
creasingly popular. While the earlier search engines used
text analysis techniques to match documents with queries,
the use of link analysis techniques has become more com-
mon, [4]. Typically the term link analysis, in this context,
refers to the study of the algorithms operating over the web’s

link graph which defines the relationships between pages,
based on the hyperlinks from page to page. These applica-
tions constitute an important component of this field. How-
ever, often these web mining applications are not the types
where privacy issues are very critical. If the information is
posted at the web then it is not likely to be very privacy sen-
sitive. Therefore, in this paper we shall not directly consider
the link analysis problem from web data.

Data in the form of graph structures shows up in many link
analysis applications. Telephone communication networks
and intelligence sources usually generate this types of data.
These applications usually involve analysis of weighted di-
rected or undirected graphs for detecting different charac-
teristics like social groups, outliers behavior, and instance
of target sub-graphs. Although the graphs themselves are
not in tabular forms, they can be represented in that form.
Adjacency matrix is one possible way to do that. For exam-
ple, consider the graph shown in Figure 2. Let us assume
that links C-E, F-E, and D-E are privacy sensitive. These
links may correspond to properties that deal with sensitive
features and therefore the exact link weights cannot be dis-
closed to the third party interested in mining the data.

Figure 2: Graph data for link analysis.
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Table 1: The privacy sensitive links are represented
using adjacency matrix-based representation.

One possible solution to this problem is to perturb the sen-
sitive information in a secured fashion so that specific un-
derlying data patterns remain invariant but the data itself
appears very different from its original form. This prob-
lem can be posed in the following abstract form. Given the
sensitive component of the graph shown in Table 1, find a
representation of the data that preserves both privacy and
the target types of data pattern.



As we see, the data in many link analysis applications can
be represented in a tabular form. Therefore the rest of this
paper will consider data represented in that form. The fol-
lowing section considers the possibility of using random ad-
ditive noise to preserve the privacy of the data.

3. DENSITY ESTIMATION AND RANDOM
ADDITIVE PERTURBATION

Random additive perturbation [1] is a natural choice to pre-
serve privacy. It works by adding “randomly” generated
noise from a given distribution to the values of sensitive
attributes. In this section we discuss a spectral filtering
technique for reconstructing the original data from the per-
turbed representation and argue that this apparent masking
of data may not necessarily preserve privacy in many cases.
First let us briefly review the random value perturbation
technique introduced elsewhere [1].

3.1 Perturbing the Data

The random additive perturbation method attempts to pre-
serve privacy of the data by modifying values of the sensitive
attributes using a randomized process. The authors of [1]
explore two possible approaches — Value-Class Membership
and Value Distortion — and emphasize the Value Distortion
approach. In this approach, the owner of a dataset returns
a value w; + v, where u; is the original data, and v is a
random value drawn from a certain distribution. The n
original data values u1,u2, ..., u, are viewed as realizations
of n independent and identically distributed (i.i.d.) random
variables U;, i = 1,2,...,n, each with the same distribu-
tion as that of a random variable U. In order to perturb
the data, n independent samples vi,v2,...,v,, are drawn
from a distribution V. The owner of the data provides the
perturbed values u1 +v1,u2 +v2, ..., Uy + v, and the cumu-
lative distribution function Fy (r) of V. The reconstruction
problem is to estimate the distribution Fy(x) of the original
data, from the perturbed data.

3.2 Estimation of Density Function from the
Perturbed Dataset

Estimating the density function is a common problem in
data mining and link analysis is not an exception. The den-
sity information can be used for clustering, classification,
and other related problems. Perturbed data using additive
noise allows estimating the underlying density function rea-
sonably well.

The authors [1] suggest the following method to estimate the
distribution Fy(u) of U, given n independent samples w; =
u; +vi, ¢ = 1,2,...,n and Fy(v). Using Bayes’ rule, the
posterior density function f;(u) of U, given that U+V = w,
can be written as

e u)fo()
fo) = 7= = o) fo ()=’

where fu(.), fv(.) denote the probability density function
of U and V respectively. If we have n independent samples
u; +v; = w;, © = 1,2,...,n, the corresponding posterior
density can be obtained by averaging:

fv(wi —w)fo(u)
fu(u) = Z "y (wn — 2) fo () (1)
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Figure 3: Estimation of triangular data using the
spectral filtering technique.

For sufficiently large number of samples n, we expect the
above density function to be close to the real density func-
tion fy(u). In practice, since the true density fy(u) is un-
known, we need to modify the right-hand side of Equation
1. The authors suggest an iterative procedure where at each
step j = 1,2,..., the posterior density j”U_1 (u) estimated at
step 7 — 1 is used in the right-hand side of Equation 1. De-
tailed description of this approach can be found elsewhere
[1]. A related approach to estimate the density function and
a discussion on quantifying privacy can be found in [2].

The following section presents a spectral filtering algorithm
for filtering the noise out of the perturbed data. We use
this filter to show that the original data can be accurately
reconstructed from the randomized data and therefore this
approach may not be suitable for preserving privacy.

3.3 Separating the Data from the Noise
This section points out that although the data may look ap-
parently different after the random additive perturbation,
it is possible to extract the original data by using spectral
filtering techniques. Detailed description of the material dis-
cussed in the following can be found elsewhere [14].

Consider an m X n data matrix U and a noise matrix V' with
same dimensions. The random value perturbation technique
generates a modified (or perturbed) data matrix U, = U+V.
Our objective is to extract U from U,. Although the noise
matrix V' may introduce seemingly significant difference be-
tween U and U, it may not be successful in hiding the
data. Random noise has well defined probabilistic proper-
ties that may be used to identify the noise component of the
perturbed data matrix U, in an appropriate representation.
The rest of this section argues that the spectral representa-
tion of the data allows us to do exactly that.

Consider the covariance matrix of Up:
UpyUp = (U+V)'(U+V)
U'v+viu+Utv 4+ vV (2)

Note that when the signal vector (columns of U) and ran-
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Figure 4: A higher noise content (low SNR) leads
to less accurate estimation. SNR in upper figure is
1.1, while that for lower figure is 4.2.

dom noise vector (columns of V') are uncorrelated, we have
E[UTV] = E[VTU] = 0. This assumption is valid in prac-
tice since the noise V' that is added to the data U is gener-
ated by a statistically independent process. If the number
of observations is sufficiently large, we have that UTV = 0.
Equation 2 can now be simplified as follows:

U U, =U0"U+V"V (3)

Since the correlation matrices UTU, UpT Up, and VTV are
symmetric and positive semi-definite, let

UTU = QuAuQL, UlU, =QpApQy, and  (4)
VTV = QvAvaTa (5)

where Qu.,Q@p, Qv are orthogonal matrices whose column
vectors are eigenvectors of UL U, U,T Up, VTV, respectively,
and Ay, Ap, A, are diagonal matrices with the correspond-
ing eigenvalues on their diagonals.

It has been shown elsewhere [14] that for “reasonable” signal-
to-noise ratio,

Ap = Ay + Ay. (6)

Suppose the signal covariance matrix has only a few domi-
nant eigenvalues, say Ay (u) > -+ 2> Ag (u), With Aj () < e
for some small value € and i = k + 1,...,n. This condition
is true for many real-world signals. Suppose Ag, () > A1, (v),
the largest eigenvalue of the noise covariance matrix. It is
then clear that we can separate the signal and noise eigen-
values Ay, A, from the eigenvalues A, of the observed data
by a simple thresholding at A; (). Note that equation 6
is only an approximation. However, in practice, one can
design a filter based on this approximation to filter out [14]
the perturbation from the data. This filtering approach first
separates the signal eigenstates from those belonging to the
noisy eigenstates and then use the signal eigenstates to con-
struct an approximation of the original data by projecting
the perturbed data on to the subspace spanned by the signal
eigenvectors. In other words, U = UpA4A,”, where A, is

the matrix whose columns are the eigenvectors correspond-
ing to the signal eigenvalues.

The filtered data based on this approximation turns out to
be an accurate estimation of the original data. Figure 3
shows one such estimation of data when the actual data has
a triangular trend. Extensive experimental results presented
elsewhere [14] also support the observation.

The accuracy of the suggested method depends upon differ-
ent factors. One is the relative amount of noise added to the
actual data. The method works well as long as the relative
noise content remain within a specific limit. In fact if that is
not the case then the data mining algorithm will also have
trouble extracting accurate patterns from the data. We de-
fine the term “Signal-to-Noise Ratio” (SNR) to quantify the
relative amount of noise added to actual data to perturb it.

Value of Actual Data

SNR = Value of Noise Added to the Data

As the noise added to the actual value increases, the SNR
decreases. Our experiments show that this method predicts
the actual data reasonably well up to a SNR value of 1.0 (i.e.
100% noise). Figure 4 shows the difference in estimation
accuracy as the SNR increases from 1. The dataset used
has square trend in its values. The upper figure shows the
estimation corresponding to 24% noise(mean SNR = 4.2),
and the lower figure shows estimation corresponding to 90%
noise (mean SNR = 1.1).

The second important factor is the inherent noise in the
original dataset before we add noise explicitly for preserving
privacy. The spectral filtering technique will remove the
random noise regardless of its source. Therefore, if the data
set contains some noisy eigenstates it will be removed since
we do not have to identify whether this noise component
originated from the original data set or from the privacy-
preserving data transformation. As a result, sometimes the
filtered data may look quite different from the original data
set.

‘We have performed experiments with artificial dataset hav-
ing specific trend in its value as well as real world dataset
containing random component. The results show that for
dataset with specific trend like the one shown in Figure 3,
due to absence of any random component in actual data,
Equation 6 holds closely, giving a close estimation of the
actual data. However, for some real life datasets with in-
herent noise, the eigenvalues of signal and noise may not
always be clearly non-overlapping and separable. In that
case Equation 6 may not be applicable. Figure 5 shows that
our method gives a close estimation of actual data when the
dataset has specific trend of a sine curve, and SNR of the
perturbed data is 1.1. It also shows that the performance
is significantly better than that of a moving average filter.
We also applied our method to ‘Tonosphere data’ available
from [24] which has random component in its values. We
perturbed the original data with random noise such that
mean SNR is same as the artificial dataset, i.e. 1.1. Figure 6
shows that the recovery quality is poor compared to datasets
with definite trend since the actual dataset has some random



Spectral Filtering : Plot of Estimated Data vs Actual Data with SNR =1.3504 .

=t Actual data
+ Estimeted data

— Perturbed data
| | | | |

0 50 100 150 200 250 300
Moving Average : Plot of Estimated Data vs Actual Data with SNR =1.3504 .

=t Actual data

+ Estimeted data

— Perturbed data
1

0 50 100 150 200 250 300
Estimation Error: Spectral Filtering vs. Moving Average
05 T T T

— Spectral Filtering
—— Moving Average
I

05 ! | | |
0 50 100 150 200 250 300

Figure 5: Spectral filtering recovers actual data with
specific trend in its value closely. It works better
than a moving average filter. This seems to be con-
sistent over many experiments that we have per-
formed using different data sets.

component.

This section clearly points out that for data sets where the
underlying “signal” is non-random, spectral filtering tech-
niques may be used to break the wall of privacy offered by
some of the random additive noise-based privacy-preserving
data mining algorithms, at least for the data sets used in
our experiments. We need a solution to this problem. The
following section explores the possibility of using a com-
bination of multiplicative random projection matrices for
privacy-preserving applications.

4. MULTIPLICATIVEPERTURBATIONSFOR

PRESERVING PRIVACY AND RANDOM
PROJECTIONS

The previous section pointed out some of the problems of
privacy preserving data mining techniques that use additive
random matrices. This section considers multiplicative ran-
dom matrices for preserving privacy. If U be the data matrix
and V be an appropriately sized random noise matrix then
we are interested in the properties of the perturbed data
U, = UV. In general, we explore the properties of the data
transformation induced by a collection of such multiplicative
random noise matrices.

This paper specifically considers random projection matri-
ces and points out [15] that multiplicative noise may be used
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Figure 6: Spectral filtering performs poorly on a
dataset where the original data has some inherent
random noise components. It removes both the in-
herent noise data and also the noise explicitly added
to preserve privacy.

to compute basic statistical aggregates, principal component
analysis, and clustering without apparently completely sac-
rificing the data privacy.

In this section, we restrict ourselves to the problem of com-
puting the correlation matrix from multi-party data set(s)
where the owner of the data does not trust the third party
who developed the data mining program. Although, corre-
lation computation is a relatively simple kind of statistical
operation, its frequent use in data mining (including link
analysis) applications calls for the development of its privacy
sensitive counter-part. Moreover, computing the correlation
matrix allows us to solve several other related problems. We
shall discuss this in more details soon. Let us first define the
problem we plan to pursue.

Consider a distributed environment with two parties—7P,,
and P.. Party P, owns the data set U and P, owns the
data mining program. Now P, wants to mine the data set
U; however P, does not trust P.. Although P, wants P, to
be able to extract the underlying patterns, it would like to
make sure that P, cannot reconstruct the data set.

It is natural to wonder why we cannot provide the correla-
tion matrix to a third party directly since normally the raw
data set cannot be reconstructed only from the correlation
matrix? It is certainly possible if the client party is just
interested in the correlation matrix, the data is owned by a
single party, and the owner of the data has the resources to
compute it. However, the objective of the privacy-sensitive
data mining technology is somewhat different, in our opin-
ion. In this domain, it is normal to assume that the owner
of the data is not necessarily the data miner itself and the
owner may not have any resource for mining the data. More-
over, the final objective is to allow the data miner only lim-
ited access to some representation of the data in such a way
that a class of mining objectives (not just a single opera-
tion) are fulfilled. Providing just the correlation matrix to
the client party does not meet the overall objective. This
approach also does not work for heterogeneous distributed



data sets [15].

The correlation computation problem is directly related to
several other common data mining tasks. A solution to this
problem will help addressing a number of related problems.
Some of them are discussed below. Correlation computa-
tion is very similar to the problem of computing the in-
ner product from data [9, 20]. Zhu and Shasha exploited
[22] an interpretation of the correlation coefficient as a mea-
sure of Euclidean distance between two data vectors. Note
that many clustering applications make use of Euclidean
distance; thus if we can compute the correlation matrix se-
curely, we may also be able to implement a privacy preserv-
ing clustering algorithm. Vaidya and Clifton [18] proposed a
privacy preserving association rule mining algorithm on ver-
tically partitioned distributed data. The key insight is that
if the entire transaction database is a boolean matrix where
1 represents the presence of the item (column feature) in a
transaction, while 0 represents an absence correspondingly,
the support of an itemset is nothing but the inner prod-
uct of the vectors representing the sub-itemsets with both
parties. Du and Zhan [7] presented a technique for build-
ing decision tree classifier from distributed privacy-sensitive
data. The secure inner product computation acts as the
building blocks for node-splitting evaluation and a secured
correlation computation algorithm can be directly used for
that.

Although, the purpose of this section is to investigate the
properties of multiplicative noise, the following analysis is
easier to understand in the context of deterministic orthog-
onal matrices. The following section presents that perspec-
tive.

4.1 Secure Correlation Computation and Or-
thogonal Matrices

The Pearson Product-Moment Correlation Coefficient, or
correlation coefficient for short, is a measure of the degree of
linear relationship between two random variables, X and Y.
It is usually estimated from the given data set, comprised of
m tuples (z;,y;), using the following expression:

Corr(X,Y) = Zwlyz (7)
i=1

We assume that the data columns are normalized so that
they have 0 mean and unit length (4> norm).

Computing correlations using the above expression in a straight

forward fashion requires direct access to the data. We can-
not compute the correlation coefficient using Equation 7 un-
less we know the values of the tuples (z;,y;). However, in a
privacy sensitive application we cannot allow that. In this
scenario, the data matrix U belongs to someone else. We
can get the meta-data information that tells us about the
underlying schema, the number of observed attributes, and
the number of observed data points. Our goal is to compute
the correlation matrix by observing some representation of
U that does not allow reconstruction of the original data
matrix U.

Let U be an m x n matrix, R1 be an n X n random or-
thogonal matrix, and R> be an m X m randomly chosen

orthogonal matrix. Now consider the following sequence of
linear transformations of the data matrix U.

Uy = URy;; Uy=ULRy=RTUTR, (8)
UsUy (RTUTRy)(RTUTR2)™ = RTUTR.R URy

Since both R: and R» are orthogonal matrices we can write,

RiUsUF R = RiRITUTR:RJUR.R{ =U"U (9)

Now recall that U U is nothing but the correlation matrix of
U. So if the owner of the data set U computes Uz and hands
over that and the matrix R; to a third party, the correlation
matrix can still be computed by that party. However, since
the matrix R, is hidden there is no way to exactly recon-
struct the matrix U from Uz and R;. The following lemma
formally states this claim.

LEMMA 1. [15] Given an m X n real-valued data matrix
U, two random orthogonal matrices Ri, and Ry such that
Ry # I and Ry # I, and Us, as defined above by Equation
8. The matrix U is not uniquely defined by U and R;.

An intuitive proof sketch is given here.

PrOOF. By exploiting the orthogonality property, we can
rewrite Equation 8 as,

UFR{ = RIU (10)

Thus given Uz and R, one cannot determine U from Equa-
tion 10, this is based on the premise that the possible solu-
tions is infinite when the number of equations is less than
the number of unknown variables.

A further analysis of Equation 10 shows the above model
holds the following ambiguities:

e If R has m columns and rank(RY) = m, there are
infinitely many solutions for U. The reason is that for
any RY, there exists a pseudoinverse matrix R ™ such
that RIYRY =1, and U = R} YUT RY.

e If RY has m columns and rank(R3) < m (note this
condition is false for orthogonal matrix), thus for any
RY, given one solution U such that UTRT = RYU, we
can construct the set of all solutions as U+{Y|R] Y =
0}, where 0 here denotes the zero matrix of the same
dimensions as Uf RT. The columns of such matrices
Y are arbitrary vectors z such that Rz =0, i.e., z is
an arbitrary vector belonging to the null space of Rj .

e We cannot determine the scale of U. The reason is
that, with both U and R being unknown, any scalar
multiplier in one of the observations of U could always
be cancelled by dividing the corresponding column vec-
tor of RY.

e We cannot determine the order of the observations of
U. The reason is that, with both U and Rj being
unknown, any permutation matrix P and its inverse
can be substituted in Equation 10 to give UL RT =
RIP1PU. The matrix PU can be viewed as a new



representation of U and R P~' can be viewed as a

new representation of RS . Thus we cannot distinguish
between U and any other pertumations of it.

Thus for any two arbitrarily chosen matrices R1 and R, the
matrix U can be computed from U> and R: if and only if
R» is an identity matrix. This contradicts the premise. [

Since the matrix Us is generated by two linear transforma-
tions, in the rest of this paper we shall call it a “double-
sided” transformation of the matrix U. The following sec-
tion explores a randomized approach to this problem. It
shows that randomly generated projection matrices can be
used to compress the data while preserving the correlation
information without exposing the raw data.

4.2 Secure Correlation Computation and Ran-
dom Projection Matrices

In this section we consider random noise matrices whose
elements are random variables with given probability laws.
We shall use these matrices to perturb the data without
destroying some of the underlying patterns. However, the
perturbations will be multiplicative, unlike the additive type
that we have seen earlier in this paper. We will also be
particularly interested in projection matrix-based random
perturbations.

From Equation 9 we note that the matrices R; and R»
should satisfy the following constraint: Ry RT = RyR% = 1.
So far we treated R; and R» as square and orthogonal ma-
trices. Now let us change the gear and redefine them.

Let Ri be an n x k1 dimensional random noise matrix whose
entries are independent, identically distributed (i.i.d.) ac-
cording to some unknown distribution with zero mean and
unit variance. Similarly let R> be an m X k2 dimensional
random matrix with i.i.d. entries with zero mean and unit
variance. The randomized approach presented in this sec-
tion exploits the fact that RTR approximates an identity
matrix on average.

Intuitively, this result echoes the observation made else-
where [11] that in a high-dimensional space vectors with
random directions are almost orthogonal. A similar result
was proved elsewhere [3].

LEMMA 2. [15] Let R be a p x q dimensional random
matrix such that each entry r; ; of R is independently chosen
according to some unknown distribution with mean 0 and
variance 1. Then, E[RRT] = qI

Lemma 2 can be used to prove [15] the following result.

LEMMA 3. [15] Given an n X k1 dimensional random ma-
trix R1 and an m X k2 dimensional random matrix Ry with
ii.d. entries chosen from N(0,1), and the “doubly-projected”
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Figure 7: Performance of random projection-based
algorithm with respect to different dimensional data
sets. k1 = 60%n, k2 = 60%m.

matrix Us defined by Equation 8. Then,

diag[E(RiU2US RY)] =

(K + 2k1 + (n — 1)k1)kadiag(UTU)
E(RiUsU¥ RY) — diag|E(R1UsUY RT))
(k1 + k1 )k (UTU — diag(UTU))

where the columns of U have been z-score normalized and
diag(A) is the diagonal matrix of matrix A.

This result points out that one can estimate the correla-
tion matrix UT U by computing the average of R,U>U3 R,
which requires several transmissions of Ry and U. This
leads to the question that how much privacy is lost with
each trial, if at all any? Lemma 1 proves there is no way
to reconstruct U because U is not uniquely defined by Uz
and R; when R; and R» are random orthogonal matrices.
This claim can be extended to any random matrices defined
by Lemma 2. Moreover, if V' is an orthogonal matrix and
R is a random matrix whose entries are i.i.d. with N(0,1)
distribution, the entries of V R, are again i.i.d. with N(0,1)
distribution. So the observations of U> which is equal to
RTUT R, have the same distribution as would observations
of RfU TVRz, and thus we cannot use them to distinguish
between UT and any other matrices.

The total communication cost of this algorithm is O(T (nk1+
k1k2)) where T is the number of trials of double projection.
Note the fact that the higher the dimensionality of the data
set, the more likely the random vectors are orthogonal. So
when the dimension of the data increases, the number of
transmissions required to get a fixed error bound (which is
normally in O(2/k2) ) decreases, which in turn decreases the
communication cost. Figure 7 validates this claim. Figure
8 demonstrates the overall performance of the random pro-
jec'cion1 algorithm with respect to k1 and k2 on Nasdaql00
data.

! Available from http://quote.yahoo.com
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Figure 8: Performance of random projection-based
algorithm with respect to k; and k2 on Nasdaq data
set. The estimated correlation matrix is an average
of 25 independent trials.

4.3 Computing Correlation from Distributed
Data

This section points out that the proposed technique can also
be directly applied to compute correlation matrices from
multiple distributed data sites. Let us first consider homo-
geneous sites [13] where each site observes the same set of
attributes, but the observations are different. This scenario
is sometimes called the horizontally partitioned distributed
data mining scenario.

Let U and V be the two data sets owned by two differ-
ent parties. Both the data sets observe the same set of
attributes. Each column vector of the data sets has been
normalized to have zero mean and unit length. Let  and y
be two such attributes. Also let Corry(z,y), Corrv(z,y),
and Corryuv(z,y) be the correlation matrices estimated
from data sets U, V, and U UV respectively. Then we can
write,

Corry(z,y) + Corrv(z,y) (11)
2

Corryuv(z,y) =

The proposed approach exploits this useful decomposability
property. After obtaining the estimated correlation matrix
from both sites, we can combine them by adding them to-
gether to produce the overall estimated correlation matrix
for the entire data set without ever seeing the raw data from
either site.

An extension of this approach for handling distributed het-
erogeneous data sites is introduced elsewhere [15]. Here we
only describe a naive approach that shares the same philoso-
phy. Let U and V be the two data sets owned by two differ-
ent parties P, and P, where each party observes a different
set of features of the same observation. Let one of the parties
generate a random matrix R as an encryption key and send
that key to the other party through secure communication
channel. Then each party encrypts their data by projecting
them onto this random matrix and sends the new represen-
tations of original data sets, i.e., RTU and RV to the third
party respectively. The overall correlation can be computed

at the third party through (RTU)T(RTV) = UTV without
directly accessing the raw data from each site. This sim-
ple technique assumes that the two participating data sites
are collaborative. Further analysis and experimental results
documenting the performance of these algorithms to mine
distributed multi-party privacy-sensitive data can be found
elsewhere [15].

The technique may be vulnerable to other filtering tech-
niques like Independent Component Analysis (ICA) [16] if
the multiplicative randomization matrix R is a square (not a
projection) matrix. We have performed several preliminary
experiments and noted that ICA does not perform well in es-
timating signal from data protected by random projections.
Actually, it is generally not possible to design linear filters
to simultaneously recover all the original data when the they
are projected into a lower dimensional space by the projec-
tion matrices [5]. However, this calls for further study. Note
that ICA is not directly comparable with our proposed spec-
tral filtering technique described in section 3 of this paper.
The reason is ICA works only if the independent components
are non-Gaussian [23], while the spectral filtering technique
reported here deals with Gaussian random noise.

This multiplicative perturbation method is fundamentally
different from the additive perturbation technique described
in section 3. The dimensions of the perturbed matrices Ui
and U, are different from the original data matrix U in most
of the cases when the multiplicative randomization matrices
R; and R, are non-square matrices. Additive perturbation
does not project data in different dimension as done by mul-
tiplicative perturbation technique.

5. CONCLUSIONS

Preserving the privacy of the data is increasingly becom-
ing an important issue in many link analysis applications.
Therefore, the next generation of link analysis algorithms
must be equipped to deal with techniques that prohibit com-
promising data privacy. This paper reviewed some of the
recent results obtained by the authors in this area in the
context of some of the existing work reported in the litera-
ture. It first pointed out that additive random perturbation
based techniques may have questionable privacy-preserving
properties for many data sets. Next it considered multi-
plicative random projection matrices and explored them for
privacy-sensitive computation of statistical aggregates from
distributed sources. While the approach seems promising
we need more study to evaluate its potential for privacy-
preserving data mining applications.
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