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Abstract
This paper introduces orthogonal decision trees that of-

fer an effective way to construct a redundancy-free, accu-
rate, and meaningful representation of large decision-tree-
ensembles often created by popular techniques such as Bag-
ging, Boosting, Random Forests and many distributed and
data stream mining algorithms. Orthogonal decision trees
are functionally orthogonal to each other and they corre-
spond to the principal components of the underlying func-
tion space. This paper offers a technique to construct such
trees based on eigen-analysis of the ensemble and offers ex-
perimental results to document the performance of orthog-
onal trees on grounds of accuracy and model complexity.

1. Introduction
Decision tree [8] ensembles are frequently used in data

mining and machine learning applications. Boosting [4, 3],
Bagging[1], Stacking [10], and random forests [2] are some
of the well-known ensemble-learning techniques. Many of
these techniques often produce large ensembles that com-
bine the outputs of a large number of trees for producing the
overall output. Large ensembles pose several problems to a
data miner. They are difficult to understand and the overall
functional structure of the ensemble is not very “actionable”
since it is difficult to manually combine the physical mean-
ing of different trees in order to produce a simplified set
of rules that can be used in practice. Moreover, in many
time-critical applications such as monitoring data streams
[9], particularly for resource constrained environments [5],
maintaining a large ensemble and using it for continuous
monitoring are computationally challenging. So it will be
useful if we can develop a technique to construct a redun-
dancy free meaningful compact representation of large en-
sembles. This paper offers a technique to do that.

This paper presents a technique to construct redundancy-
free decision trees-ensembles by constructing orthogonal
decision trees. The technique first constructs an algebraic
representation of trees using multi-variate discrete Fourier
bases. The new representation is then used for eigen-
analysis of the covariance matrix generated by the decision�
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trees in Fourier representation. The proposed approach con-
verts the corresponding principal components to decision
trees using a technique reported elsewhere [5]. These trees
are functionally orthogonal to each other and they span the
underlying function space. These orthogonal trees are in
turn used for accurate (in many cases with improved accu-
racy) and redundancy-free (in the sense of orthogonal basis
set) compact representation of large ensembles.

Section 2 presents a brief overview of the Fourier spec-
trum of decision trees. Section 3 describes the construction
of orthogonal decision trees. Section 4 presents experimen-
tal results. Finally, Section 5 concludes this paper.

2. Fourier Transform of Decision Trees
This section briefly discusses the background material

[5] necessary for the development of the proposed technique
to construct orthogonal decision trees. The proposed ap-
proach makes use of linear algebraic representation of the
trees. In order to do that that we first need to convert the
trees into a numeric tree just in case the attributes are sym-
bolic. This can be done by simply using a codebook that
replaces the symbols with numeric values in a consistent
manner. Since the proposed approach of constructing or-
thogonal trees uses this representation as an intermediate
stage and eventually the physical tree is converted back, the
exact scheme for replacing the symbols (if any) does not
matter as long as it is consistent.

Once the tree is converted to a discrete numeric function,
we can also apply any appropriate analytical transformation
if necessary. Fourier transformation is one such interesting
possibility. Fourier bases are orthogonal functions that can
be used to represent any discrete function. Consider the set
of all � -dimensional feature vectors where the � -th feature
can take ��� different categorical values. The Fourier basis
set that spans this space is comprised of 	�
���� ��� basis func-
tions. Each Fourier basis function is defined as,� ���������� �� 	�����! �"� 	 � # �! %$'&)(+*-,'./1032 0!450
where 6 and � are strings of length � ; 7 # and 8 # are9 -th attribute-value in x and j, respectively; 7 #;: 8 #=<>@? : � :BACABA �"�ED and � represents the feature-cardinality vec-
tor, � � :CABACA � 
 ; � �� �F��� is called the j-th basis function. The
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vector 6 is called a partition, and the order of a partition6 is the number of non-zero feature values it contains. A
Fourier basis function depends on some 7%� only when the
corresponding 8G�IH� ? . If a partition 6 has exactly J number
of non-zeros values, then we say the partition is of order J
since the corresponding Fourier basis function depends only
on those J number of variables that take non-zero values in
the partition 6 .

A function KMLONP
RQTS , that maps an � -dimensional
discrete domain to a real-valued range, can be represented

using the Fourier basis functions: K �F���U�WV ��X � � �� ����� .
where X � is the Fourier Coefficient (FC) corresponding

to the partition 6 and
� �� ����� is the complex conjugate of� �� �F��� ; X � � VZY � �� �F��� K �F��� . The order of a Fourier co-

efficient is nothing but the order of the corresponding parti-
tion. We shall often use terms like high order or low order
coefficients to refer to a set of Fourier coefficients whose
orders are relatively large or small respectively. Energy of
a spectrum is defined by the summation V �"X�[� . Let us also
define the inner product between two spectra \^]  `_ and \a] [ _
where \a] ��_ �cb X ] �_5d  X ] ��_5d [ :BACABA X ] �_edgf hif jlk is the column ma-
trix of all Fourier coefficients in an arbitrary but fixed order.
Superscript m denotes the transpose operation and npoOn de-
notes the total number of coefficients in the spectrum. The
inner product, qr\s]  `_ : \a] [ _;t � V �"X ]  E_5d � X ] [ _5d �@u We will
also use the definition of the inner product between a pair
of real-valued functions defined over some domain v . This
is defined as qwK  �F��� : K [ �F��� t � V Yyx{z K  �F��� K [ ����� u

Fourier transformations of bounded-depth decision trees
have several properties that makes it an efficient one. More
details can be found elsewhere [6, 7].

Let us also note that,

1. the Fourier spectrum of a decision tree can be effi-
ciently computed [5] and

2. the Fourier spectrum can be directly used for con-
structing the tree [7].

In other words, we can go back and forth between the
tree and its spectrum. This is philosophically similar to
the switching between the time and frequency domains in
the traditional application of Fourier analysis for signal pro-
cessing.

Fourier transformation of decision trees also preserves
inner product. The functional behavior of a decision tree
is defined by the class labels it assigns. Therefore, if> �  : � [ :BACACA � f z f D are the members of the domain v then the
functional behavior of a decision tree K �F��� can be captured
by the vector b K j 2 x{z �|b K �F�  � K ��� [ � ACACA K �F� f z f � j}k , where
the superscript m denotes the transpose operation. The fol-
lowing section describes a Fourier analysis-based technique
for constructing redundancy-free orthogonal representation
of ensembles.

3 Removing Redundancies from Ensembles

Existing ensemble-learning techniques work by combin-
ing (usually a linear combination) the output of the base
classifiers. They do not structurally combine the classifiers
themselves. As a result they often share a lot of redundan-
cies. The Fourier representation offers a unique way to fun-
damentally aggregate the trees and perform further analysis
to construct an efficient redundancy-free representation.

Let K�~ ����� be the underlying function representing the en-
semble of 9 different decision trees where the output is a
weighted linear combination of the outputs of the base clas-
sifiers. Then we can write,K�~ ������� J  �� ]  E_ �F����� J [ � ] [ _ ������� ABACA � J # � ] # _ �F���� J  F�4 x��i� X ]  E_5d � � �� ����� A{A � J # �� x�� 0 X ] # _5d � � �� �F��� u

Where J � is the weight of the �5��� decision tree and � �
is the set of all partitions with non-zero Fourier coefficients

in its spectrum. Therefore, K ~ ��������V 4 x�� X ] ~ _ed � � �������� ,
where X ] ~ _5d � �|V #��! J � X ] �_ed � and � �|� #���! � � . There-
fore, the Fourier spectrum of K�~ �F��� (a linear ensemble clas-
sifier) is simply the weighted sum of the spectra of the mem-
ber trees.

Consider the matrix � where � ��d 4 � � ] 4 _ �F����� , where� ] 4 _ ������� is the output of the tree � ] 4 _ for input ��� < v . � is
an n v3n�� 9 matrix where n v3n is the size of the input domain
and 9 is the total number of trees in the ensemble.

An ensemble classifier that combines the outputs of the
base classifiers can be viewed as a function defined over the
set of all rows in � . If �R� d 4 denotes the 8 -th column matrix
of � then the ensemble classifier can be viewed as a func-
tion of � � d  : � � d [ :BACACA � � d # . When the ensemble classifier
is a linear combination of the outputs of the base classifiers
we have � � J� �� � d  � J [ � � d [ � ACABA J # � � d # , where �
is the column matrix of the overall ensemble-output. Since
the base classifiers may have redundancy, we would like to
construct a compact low-dimensional representation of the
matrix � . However, explicit construction and manipulation
of the matrix � is difficult, since most practical applications
deal with a very large domain.

In the following we demonstrate a novel way to perform
a PCA of the matrix � , defined over the entire domain. The
approach uses the Fourier spectra of the trees and works
without explicitly generating the matrix � .

The following analysis will assume that the columns of
the matrix � are mean-zero. This restriction can be easily
removed with a simple extension of the analysis. Note that
the covariance of the matrix � is � k � . Let us denote this
covariance matrix by � . The � � : 8 � -th entry of the matrix,



� �Fd 4 � q�� �5� : � � : � �5� : 8 � t � q � ] ��_ �F��� : � ] 4 _ �F��� t� �'� X ] ��_5d � X ] 4 _ed � � q�\a] ��_ : \a] 4 _�t (1)

Now let us the consider the matrix � where ���Fd 4 �X ] 4 _5d ] ��_ , i.e. the coefficient corresponding to the � -th mem-
ber of the partition set � from the spectrum of the tree � ] 4 _ .
Equation 1 implies that the covariance matrices of � and �
are identical. Note that � is an n ��n�� 9 dimensional matrix.
For most practical applications n � nyq3q¡n v3n . Therefore ana-
lyzing � using techniques like PCA is significantly easier.
The following discourse outlines a PCA-based approach.

PCA of the matrix � produces a set of eigenvec-
tors which in turn defines a set of Principal Components,¢  : ¢ [ :BACACA ¢�£ . Let ¤�] 4 _5d ¥ be the 8 -th component of the ¦ -th
eigenvector of the matrix � k � .

¢ ¥ � §�4 �¨ ¤�] 4 _5d ¥ � �5� : 8 �O�ª© � �Z« � d ¥ � �� �F���5¬ Yyx{z u
Where « � d ¥ � V §4 �! ¤] 4 _5d ¥ X ] 4 _5d � . The eigenvalue decom-

position constructs a new representation of the underlying
domain where the feature corresponding to column vector¢ ¥ is ® ¥ � V � « � d ¥ � �� �F��� i.e.,

¢ ¥ �¯b ® ¥ j Yyx{z . Note that ® ¥
is a linear combination of a set of Fourier spectra and there-
fore it is also a Fourier spectrum. Also note that

¢ ¥ -s are
orthogonal which is proved in the following.

The inner product between
¢ ¥ and

¢�°
for ¦±H�³² is,q ¢ ¥ : ¢�° t � q b ® ¥ j Y : b ® ° j Y t � ? u Therefore, we con-

clude that the spectra corresponding to the orthonormal ba-
sis vectors

¢ ¥ and
¢ °

are themselves orthonormal. LetK�¥ and K ° be the functions corresponding to the spectra´ ¥ and ´ ° . In other words, K{¥ �������µV � « � d ¥ � � ����� andK ° �F���s� V � « � d ° � � ����� . Therefore, we can also conclude
that, q ¢ ¥ : ¢ ° t � q ´ ¥ : ´ ° t � q¯K�¥ ����� : K ° ����� t . This
implies that the inner product between the output vectors
of the corresponding functions are also orthonormal to each
other.

The principal components
¢  : ¢ [ :BACACA ¢ £ computed using

the eigenvectors of the covariance matrix � are orthogonal
to each other themselves. Since each of these principal com-
ponents is a Fourier spectrum in itself we can always con-
struct a decision tree from this spectrum using technique
noted in Section 2 and detailed elsewhere [5]. Although
the tree looks physically different from the Fourier spec-
trum, they are functionally identical. Therefore, the trees
constructed from the principal components

¢  : ¢ [ :CABACA ¢£
also maintain the orthogonality condition. These orthogo-
nal trees now can be used to represent the entire ensemble in
a very compact and efficient manner. The following section
reports some experimental results.

Method of classification Error Percentage
C4.5 24.5989 (%)
Bagging (40 trees) 20.85 (%)
Aggregated Fourier Trees (40 trees) 19.78(%)
Orthogonal Decision Trees 8.02(%)

Table 1. Classification error for SPECT data.

4. Experimental Results

This section reports the experimental performance of or-
thogonal decision trees on the Single Proton Emission Com-
puted Tomography (SPECT) data set. 1 The following four
different experiments were performed to test classification
accuracies: (1) C4.5 classifier, (2) Bagging, (3) Aggre-
gated Fourier Tree: The training set was uniformly sam-
pled, with replacement and C4.5 decision trees were built
on each sample. A Fourier representation of each tree was
obtained(preserving approximately 99(%) of the total en-
ergy), and these were aggregated with uniform weighting,
to obtain a Fourier tree. The classification accuracy of this
aggregated Fourier tree was reported. (4) Orthogonal De-
cision Tree: The matrix containing the Fourier coefficients
of the decision trees (obtained from step 3 above) was sub-
jected to principle component analysis. Orthogonal trees
were built, corresponding to the significant components and
they were combined using an uniform aggregation scheme.
The accuracy of the orthogonal trees was reported.

We report classification accuracies using 10-fold cross-
validation and tree complexity, in terms of the number of
nodes in the tree. In case of the orthogonal trees, tree com-
plexity refers to the average number of nodes in each tree
projected along significant components.

The dataset of 267 SPECT image sets (corresponding to
different patients) was processed to extract 22 binary feature
patterns that summarize the original SPECT images. The
training data set consisted of 80 instances while the test data
consists of 187 instances. The class label is binary.

The Figure 1 illustrates four decision trees built on the
uniformly sampled training data set(each of size 20). The
first decision tree, has a complexity 7 and considers attribute
7, 15 and 10 as ideal for splits. Before pruning, only one in-
stance is mis-classified giving an error of 5(%). After prun-
ing, there is no change in structure of the tree. The estimated
error percentage is 28.5(%). The second, third and fourth
decision trees have complexities 7, 5, and 3 respectively. An
illustration of an orthogonal decision tree obtained from the
first principle component, is shown in Figure 2.

Table 1 illustrates the error percentage obtained in each
of the four different classification schemes. For bagging,

1Available from the University of California Irvine, Machine Learning
Repository.



Figure 1. Decision trees built from the four
different samples of the SPECT data set.

Figure 2. An orthogonal Decision Tree.

only 40 trees are used in the ensemble, since this gives the
best classification accuracy for the data set.

For orthogonal trees, the coefficient matrix was pro-
jected onto the first five most significant principal compo-
nents. The equivalent eigenvectors captured, 99.4416(%),
0.3748(%), 0.0925(%), 0.0240(%), 0.0156(%) of the vari-
ance respectively.

Table 2 illustrates the tree complexity for this data set.
The aggregated Fourier tree and the orthogonal trees were
found to be smaller in complexity, thus reducing the com-
plexity of the ensemble.

5 Conclusions

This paper introduced the notion of orthogonal decision
trees and offered a methodology to construct them. Or-
thogonal decision trees are functionally orthogonal to each
other and they provide an efficient redundancy-free repre-
sentation of large ensembles that are frequently produced
by techniques like Boosting [4, 3], Bagging[1], Stacking

Method of classification Tree Complexity
C4.5 13
Bagging (average of 40 trees) 5.06
Aggregated Fourier Trees (40 trees) 3
Orthogonal Decision Tree 3

Table 2. Tree complexity for SPECT data.

[10], and random forests [2].
The proposed approach exploits the earlier work done by

the first author and his colleagues [5] which showed that
the Fourier transform of decision trees can be efficiently
computed and we can also compute the tree back from its
Fourier spectrum [7]. Although, the paper considers the
Fourier representation, this is clearly not the only avail-
able linear representation around. However, our prior work
shows that it is particularly suitable for representing deci-
sion trees. This work also opens up several new possibili-
ties. Linear systems theory offers many tools for analyzing
properties like stability and convergence.
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