
Distributed Data Mining in Peer-to-Peer Networks

Souptik Datta Kanishka Bhaduri Chris Giannella Ran Wolff
Hillol Kargupta

�
Dept. of Computer Science & Electrical Engineering

University of Maryland Baltimore County Baltimore, MD, USA�
souptik1,kanishk1,cgiannel,hillol � @cs.umbc.edu

Abstract

Distributed data mining deals with the problem of data
analysis in environments with distributed data, computing
nodes, and users. Peer-to-peer computing is emerging as a
new distributed computing paradigm for many novel appli-
cations that involve exchange of information among a large
number of peers with little centralized coordination. Peer-
to-peer file sharing, peer-to-peer electronic commerce, and
peer-to-peer monitoring based on a network of sensors are
some examples. This paper offers an overview of distributed
data mining applications and algorithms for peer-to-peer
environments. It describes both exact and approximate dis-
tributed data mining algorithms that work in a decentral-
ized manner. It illustrates these approaches for the problem
of computing and monitoring clusters in the data residing
at the different nodes of a peer-to-peer network.

Keywords: Distributed data mining, peer-to-peer.

1 Introduction

Advances in computing and communication over wired
and wireless networks have resulted in many pervasive dis-
tributed computing environments. The Internet, intranets,
local area networks, ad hoc wireless networks, and sensor
networks are some examples. These environments often
come with different distributed sources of data and com-
putation. Mining in such environments naturally calls for
proper utilization of these distributed resources. Moreover,
in many privacy sensitive applications different, possibly
multi-party, data sets collected at different sites must be
processed in a distributed fashion without collecting every-
thing to a single central site. However, most off-the-shelf
data mining systems are designed to work as a monolithic
centralized application. They normally down-load the rel-
evant data to a centralized location and then perform the

�
Also affiliated with AGNIK LLC, Columbia, MD USA.

data mining operations. This centralized approach does not
work well in many of the emerging distributed, ubiquitous,
possibly privacy-sensitive data mining applications.

Distributed Data Mining (DDM) offers an alternate ap-
proach to address this problem of mining data using dis-
tributed resources. DDM pays careful attention to the dis-
tributed resources of data, computing, communication, and
human factors in order to use them in a near optimal fash-
ion. Distributed peer-to-peer (P2P) systems are emerging
as a choice of solution for a new breed of applications such
as file sharing, collaborative movie and song scoring, elec-
tronic commerce, and surveillance using sensor networks.
Distributed data mining is gaining increasing attention in
this domain for advanced data driven applications.

This paper presents an exposure to P2P distributed data
mining technology and its applications in various domains.
The goal of the paper is to present a high level introduction
to this field with pointers for further exploration. The paper
discusses applications of P2P distributed data mining and
illustrates the ideas using some exact and approximate P2P
algorithms.

Section 2 introduces P2P data mining, presents the moti-
vation, and identifies the immediate applications. Section 3
discusses some of the main challenges in P2P data mining.
Section 4 presents a brief review of the related literature and
offers a historical perspective. Section 5 describes several
P2P data mining algorithms. Finally, Section 6 concludes
this paper.

2 Peer-to-Peer (P2P) Data Mining: Why
Bother?

Large-scale data analysis is likely to play a key role in
the next generation of data driven collaborative problem-
solving systems. Collaborations between human beings,
software entities, embedded systems, and other comput-
ing devices are likely to revolutionize many application
domains such as cross-domain P2P multi-organizational

cyber-threat detection, multi-organizational collaboration
for homeland defense related applications, and unmanned
border monitoring using sensor networks. Successful col-
laborative systems for such domains require scalable dis-
tributed data analysis capabilities from large-scale dis-
tributed, possibly multi-party, data sources.

The phrase ‘Data Mining’ generally portrays a picture of
analyzing huge databases, mostly in the form of large ta-
bles, for useful patterns. On the other hand, P2P networks
reminds us mostly of well known, file sharing networks
based on a point-to-point connection, without any central
server, e.g. e-Mule, Kazaa. With the advent of high speed
network connectivity and cheap digital storage/data record-
ing devices, these types of server-less networks are growing
very fast. Collectively they already store a huge amount
of widely varying data collected from different sources. If
this data, distributed over large number of peers, can be in-
tegrated, it represents a very valuable data repository that,
upon mining, may give very exciting and useful results.
For example, had it been possible to integrate all the im-
age files stored over all Kazaa peers, and running a content-
wise clustering algorithm on the whole data, the resulting
clusters would have been an excellent resource for answer-
ing image search queries. However, in practice, it is very
difficult to upload all the Kazaa peers’ images to a central
repository where a centralized image clustering algorithm
can be run. However, if the same, or close approximation
of the clustering result can be achieved without moving any
images from their peers, the result would likewise provide
an excellent query routing resource (rout the search query
to the peers having high members counts corresponding to
the most relevant cluster). The same is true for topic-wise
document clustering in a peer-to-peer document repository.
Figure 1 shows such a case where documents stored in dif-
ferent peers are clustered based on three subjects (movies,
baseball, hurricane) by exchanging information with other
peers. Note, in a peer-to-peer clustering, some peers may
not be present in the network all the time, and may join or
leave the network while the clustering is in progress.

A primary goal of P2P data mining is to achieve the
same (or close) data mining result as a centralization ap-
proach, without moving any data from its original location.
To achieve this goal P2P algorithms must possess a unique
set of characteristics including:

� the ability to efficiently scale-up (P2P systems exist to-
day consisting of millions of peers);

� the ability to perform in a router-less network (critical
for sensor networks);

� the ability to calculate the result in-network rather than
collect all of the data to a central processor (which
would quickly exhaust bandwidth in both sensor and
peer-to-peer networks);

� the ability to function correctly in the presence of
peer/edge failures and data change.

To further motivate P2P data mining, next we briefly
consider other application areas.

Figure 1. Document clustering in peer-to-peer
file sharing network.

� Sensor Networks: Light-weight, inexpensive sensors
with wireless communication capabilities can be eas-
ily deployed in large numbers to form sensor networks.
The potential for such networks is already widely rec-
ognized. They can be deployed in hostile/difficult to
reach locations to provide detailed environmental in-
formation at a fine spatial granularity. In these net-
works, the preservation of battery power is critical and
wireless communication is significantly more energy
costly than computation. Therefore, data analysis al-
gorithms must operate in a communication-efficient
fashion. Moreover, peers may need to operate in a
router-less environment with no global IPs. Finally,
due to the limited power and hostile environment,
light-weight, wireless sensor networks are highly dy-
namic with peer and edge failure a common occur-
rence. A P2P data mining application like outlier de-
tection or scene segmentation may be very useful in
such a network. Consider sensors deployed over a deep
sea bed to monitor seismic vibrations for the tsunami
forecasting. These sensors form an ad-hoc peer-to-
peer network amongst themselves and the central mon-
itoring station. The user of this sensor network is is
perhaps least bothered about the network details. All
he likes to know is the top few vibration characteris-
tics along with their positions periodically from the en-
tire network to check possibility of tsunami. For this,

2

the sensors need to communicate between themselves
to decide about the highest values of vibration mea-
sured, and need to send the top-ranked values to the
user. A distributed order detection algorithm that can
run over a P2P network to detect the top-k values in a
communication-efficient manner is useful for such an
application.

� Mobile Ad-hoc Networks (MANETs): MANETs are
getting increasing attention in many wireless applica-
tion domains. Such ad-hoc networks may play a key
role in defining how we communicate at work and so-
cial environments in the future. Several data rich en-
vironments (e.g. vehicular ad-hoc networks, P2P e-
commerce environments) are emerging and they are
likely to need data analytic supports for efficient and
personalized services. Consider a simple profiling ap-
plication launched via cellular phones that tries to au-
tomatically connect to MANET like network formed
by different cellular phones in the vicinity and identify
peers with similar interest to form a social network. A
lightweight P2P classification algorithm may be very
handy in such an application.

While these application-areas differ in some respects,
they share the common denominator of motivating a new
breed of data analysis and mining algorithms capable of op-
erating effectively on dynamic, large-scale P2P networks.
Perhaps by this time, the reader is convinced such algo-
rithms can solve several potentially exciting problems, and
have ever increasing value in the future. Next, we discuss a
few novel challenges faced in developing such algorithms.

3 Challenges in a Peer-to-peer Computa-
tional Environment

The computational environment in P2P systems is drasti-
cally different from the ones for which traditional data min-
ing algorithms were intended. To understand the require-
ments, consider an analogy with Internet protocols. Inter-
net routers invest bandwidth, memory, and computation in
routing protocols which yield faster communication. Like-
wise, peers would invest CPU, memory, bandwidth, and – in
some cases (e.g. sensor-networks) – battery power, as well
as their local data, if the result of the computation would
yield them some benefit. Both systems have similar scales
(of the order of millions), the same communication patterns
(sparsely connected network with time varying loads), the
same failure pattern, and data dynamics (data in peers con-
stantly changes, just as latency of connections changes).
Furthermore, both are necessarily open systems, which have
limited control over their components.

Below are a list of operational characteristics desired for
data mining algorithms developed for a P2P network.

1. Scalability – Scalability is without doubt the foremost
requirement for a peer-to-peer algorithm. Ideally algo-
rithms for P2P networks should be either independent
of the size of the system, or at most dependent on the
log of the size. Because we assume each peer also has
some data, scalability with respect to the data size is
equally as important. Typically the resources required
by such algorithms would be dependent on the size of
their output rather than on the input.

2. Communication Efficient – P2P data mining algo-
rithms must be able to work in a communication effi-
cient manner. Although this category somewhat over-
laps with the scalability requirement, we decided to list
it explicitly in order to underscore its importance. Al-
though, many P2P systems are designed for sharing
large data files (e.g. music, movies), a distributed data
mining system that involves analyzing such data, may
not have the luxury to frequently exchange large vol-
ume of data among the nodes in the P2P network just
for data analysis. Data mining in a P2P environment
should be “light-weight”; it should be able to perform
distributed data analysis with minimal communication
overhead.

3. Anytimeness – For a real-world P2P system, data at
the peers often change. Thus, the algorithms have to
work incrementally. This is especially right for sen-
sor networks where generally the data is considered to
be streaming. Any algorithm that needs to begin from
scratch whenever the data changes is thus inappropri-
ate for our goals. Hence, incremental algorithms are
required. Furthermore, since the rate of data-change
may be higher than the rate of computation in some
applications, the algorithm has to be able to report a
partial, ad hoc solution, at any time. These are called
anytime algorithms.

4. Asynchronism – Peer-to-peer systems can be very large
(number of nodes in the range of million). So any
attempt to synchronize between the entire network is
likely to fail due to connection latency, or limited band-
width in case of sensor networks. Thus, any algorithm
developed for peer-to-peer system should not take the
route of global synchronization.

5. Decentralization – Although some peer-to-peer sys-
tems still use central servers for various purposes,
overall, this method is considered unsuitable for most
tasks. This is especially true for tasks involving large
amounts of data. The algorithms need to be de-
signed to transfer minimal data (i.e., they compute in-
network) and use no centralized coordination.

6. Fault-tolerance – The larger the system, the more fre-
quent are failures. In some current peer-to-peer sys-

3

tems, it is not unusual for several peers to leave and
join the system at any given moment. Thus, the failure
of peers, and the subsequent loss of data and partial re-
sults they maintain is not a rare event from which the
system should be able to recover, but rather a common
event to which the algorithm must be robust.

4 Evolution of Peer-to-Peer Data Mining

P2P data mining is a new field. It has emerged recently
from distributed data mining, motivated by the rapid growth
of P2P networks. Distributed data mining is itself a very
young area. It has been developed in the last 5-10 years
and has resulted in many distributed versions of standard
algorithms, e.g. association rule mining, Bayesian network
learning, clustering. However, most of this work was not
geared toward P2P networks as they assumed a stable net-
work and data.

Approaches to P2P data mining have focused on devel-
oping some primitive operations as well as more compli-
cated data analysis/mining algorithms. Researchers have
developed several different approaches for computing prim-
itive operations (average, sum, max, random sampling) on
P2P networks. For example, Kempe et al. [5] investigate
gossip based randomized algorithms. They prove that the
error will go to zero in probability if the algorithm runs un-
interrupted. Jelasity and Eiben [6] develop the ‘newscast
model’ as part of the DREAM project1. They rely on em-
pirical accuracy results rather than guaranteed correctness.
Both of the above approaches used an epidemic model of
computation. Bawa et al. have developed [2] an approach
in which similar primitives are evaluated to within an er-
ror margin. A main goal of these works is to lay a foun-
dation for applications and more sophisticated data anal-
ysis/mining algorithms (efficient complex algorithms can,
in principle, be developed from the application of efficient
primitives).

The common feature of all the approaches mentioned so
far is that they all require resources that scale directly with
the size of the system. This feature distinguishes these from
local algorithms. Such algorithms [1] computed their result
using information from just a handful of nearby neighbors.
Even still, it is possible to make definite claims regarding
correctness. The resources required by these algorithms are
independent of the size of the system in many cases. The
obvious benefit is their superb scalability, which make them
a good fit for networks spanning millions of peers. They
are also very good at adjusting to failure and changes in the
input locally, so far as the output need not change. However,
a disadvantage of local algorithms is the limited class of
functions to which they can apply.

1www.dcs.napier.ac.uk/ benp/dream/private.htm

Researchers have focused on developing local algo-
rithms for primitive operations. Mehyar et al. have used
a graph Laplacian-based approach to compute the average
over a P2P network [8]. Wolff and Schuster have devel-
oped a local algorithm for computing the majority vote over
a P2P network [10]. Based on this last primitive, local al-
gorithms have been developed for more complicated prob-
lems: K-facility location [7], association rule mining [10],
and monitoring a K-means clustering [9]. Researchers have
also focused on developing approximate local algorithms
for complicated problems. Datta et al. developed an ap-
proximate local algorithm for K-means clustering [3] in a
P2P network.

Data mining in wireless sensor networks (WSNs) is re-
lated to data processing over a P2P network, and this field
has emerged even more recently. This is a more challenging
sub-area in P2P data mining, as algorithms need to work in
extremely demanding and constrained environment of sen-
sor networks (limited energy, storage, computational power,
bandwidth etc.). WSNs also require highly decentralized
algorithms. More details about information processing in
sensor network can be found at [11].

5 Algorithms in Peer-to-Peer Data Mining

Peer-to-peer networks today hold a huge amount of data
that, if mined, can be a source of extremely useful informa-
tion. Also, it is clear that the environment offers a unique set
of challenges for the development of data mining algorithms
– extending standard centralized data mining algorithms to
such environment is difficult. Now we discuss some al-
gorithms developed to address data mining primitives like
sum, average over the network, as well as more complicated
problems like K-means clustering. We will first introduce
the concept of local algorithm, and then discuss different
variants of it.

Let us formally define first what do we mean by local al-
gorithm. An algorithm is local if, assuming a static network
and data, there exists a constant

�
such that for any network

size, there are inputs such that the algorithm terminates with
communication expended per peer no greater than

�
and on

the rest of the inputs the communication expended per node
is on the order of network size. Local algorithms are very
attractive for large scale systems like peer-to-peer systems
and sensor networks because of their scalability.

They can be broadly classified under two categories.

� Exact local algorithms: Those which are guaranteed
to always terminate with precisely the same result that
would have be found by a centralized algorithm.

� Approximate local algorithms: Those which cannot
make this accuracy guarantee.

4

Exact local algorithms are obviously more desirable, but are
more difficult to develop (in some cases seemingly not pos-
sible). We will discuss examples in both categories and, in
particular, illustrate how the classic data mining problem of
K-means clustering can be addressed in each.

Next we describe an exact local algorithm for majority
voting, and show how it can be used as a primitive for mon-
itoring a K-means clustering [9]. Following this, we de-
scribe a approximate local algorithm offering an approxi-
mate solution for incrementally computing a K-means clus-
tering. Before doing all of this, we briefly discuss classical
K-means clustering for readers not familiar with the prob-
lem.

K-means clustering: Simply put, clustering is the
grouping of similar objects (data points) in a way that
minimizes intra-cluster dissimilarity while maximizes inter-
cluster dissimilarity. K-means clustering is a classical clus-
tering technique where K, the number of clusters, is fixed a
priori. The goal is to divide the objects into K clusters min-
imizing the sum of the average distances to the centroids
over all clusters. Finding an optimal clustering is hard (NP-
complete), so the most common approach is to employ an
iterative, greedy search as described below (data points are
tuples in ���):

1. Place K points randomly. These represent the initial
cluster centroids.

2. Assign each point to the closest centroid.

3. Recalculate the positions of each centroid (the average
of all data points assigned).

4. Repeat Steps 2 and 3 until the centroids do not change.
The assignment of points to the final centroids forms
the clustering.

5.1 Exact Local Algorithms

All of the exact local algorithms assume that a tree topol-
ogy has been overlaid on top of the network.

5.1.1 Majority Voting

This problem serves as a nice primitive upon which more
complicated exact local algorithms can be developed (all
material here is based on [10]). In the majority voting prob-
lem, each peer, ��� , has a number ��� either zero or one, and a
threshold �
	�� (the same threshold at all peers). The goal
is for the peers to collectively determine whether � � � is
above ��� where � is the number of peers in the network.
The approach described here can be easily extended to a
more general scenario where each peer has a real number � �
and the collective goal is to decide whether ��������������	�� .
For simplicity we do not describe the extension but will

use it later when discussing the exact local algorithm for
K-means monitoring.

Peer ��� only communicates with its neighbors in the net-
work, ��� . ��� maintains � � , an estimate of the global sum,
and !"� , an estimate of the number of nodes in the network.
These estimates are based on all of the information �#� last
received from its neighbors. Based on these estimates � �
believes that the majority threshold is met if � � $! � �%	&� ,
otherwise it believes the majority has not been met. We call
this the threshold belief of � � .

Let �(')� denote the most recent sum estimate sent to �#�
from its neighbor � ' . Likewise define ! ')� as the most recent
number of nodes estimate sent from neighbor � ' . The crux
of the approach lies in deciding whether � � needs to send
a message to its neighbor � ' . If � � can be certain that it
does not have any information that will cause the threshold
belief of � ' to change, then it need not send a message. If
��� cannot be certain, a message must be sent. In order for
��� to make this decision, it must estimate the sum and count
of � ' based on the information it knows for certain ��' has,
namely, that sent to � ' and sent from � ' : ���*'�+,!"�*' and �-')� ,
!.')� .

Suppose ��� estimates that � ' believes the threshold to be
met (i.e. � �*'0/1�(')� $ �2!"�*'0/3!.')�4�5�%	6�). It need not send a
message if its own estimate can only strengthen this belief
(i.e. � �*'7/6�-')� $ �2!"�*' $!.')���8�19:� � $!"�2�). In this case,
��� can be certain that it does not have any information that
could change the threshold belief of �;' . Similar reasoning
applies if ��� estimates that <=' does not believe the threshold
to be met. If � � decides to send a message, then it sends all
of its information about the global sum excluding that sent
from � ' (i.e. � �*' is set to � � / ?>A@B '�C�D�E � > �) and likewise
for the global count (i.e. ! �F' is set to G0/&6>�@B '�C�D�E ! > �).

This approach is naturally robust to data and network
change. If � � ’s data changes (i.e. � � flips), then � � recom-
putes � � and ! � and applies the above conditions to all its
neighbors. If a neighbor � ' drops out of the network, then
� � recomputes � � and ! � without � ')� and ! ')� and applies
the above conditions to all remaining neighbors.

5.1.2 Monitoring a K-Means Clusterings

In this section we present an algorithm for monitoring a K-
means clustering of data distributed over a P2P network (all
material is based on [9]). The algorithm does not solve the
problem of computing a K-means clustering. Doing this is
an an exact local manner is quite difficult (perhaps impos-
sible). Instead, the algorithm monitors when the centroids
computed by a centralized K-means (and distributed to all
nodes in the network) is no longer accurate. At this point
the centralization approach is invoked. In Section 5.2.1, an
approximate local algorithm for K-means is presented.

We begin by explaining why a monitoring algorithm is

5

useful. In large scale applications, peer-to-peer system sta-
tus data is collected as part of their daily routine. This data
is often necessary to build complex models representing the
state of the system. Examples for such use of global mod-
els include facility location in sensor networks [7], trust as-
signment in peer-to-peer file sharing [4]. It is obvious that
building global models (by aggregating all the data) is diffi-
cult (if not impossible) mainly due to cost in communication
and more so when the data distribution changes.

There can be two ways we can compute these models in
a dynamic environment where the data distribution changes
(epoch changes) interleaved with long periods of static be-
havior. One of the ways is to build the model periodically.
While this scheme is simple, it has several disadvantages. If
the data change is sporadic, and if the cost of monitoring is
far lower than the cost of recomputing the model then this
type of algorithms will unnecessary waste resources by re-
computing models during stationary periods as well. Also it
has the risk of being inaccurate whenever the distribution of
the data changes. The other alternative is to use a reactive
method of computing the model whenever the data distri-
bution changes. This method not only consumes far less
resources during the stationary phase but also tries to up-
date and build a new model as soon as the data distribution
changes. The reactive approach is thus a valid alternative to
periodic algorithms which are in many cases inaccurate and
inefficient.

The K-means monitoring algorithm has two major parts -
monitoring the data distribution in order to trigger a new run
of K-means algorithm and computing the centroids actually
using the K-means algorithm. The monitoring part is car-
ried out by an exact local algorithm, while the centroid com-
putation is carried out by a centralization approach. Simply
put, the local algorithm raises an alert if the centroids need
to be updated. At this point data is centralized, a new run
of K-means is executed, and the new centroids are shipped
back to all peers. Henceforth we only focus on the monitor-
ing part.

The monitoring phase is very tightly connected to the
majority voting algorithm. First let us define the metric
we use in order to determine whether the current centroids
represent the data. At a given time � , each peer ��� has a
multidimensional local dataset � ������� . It also has the current
centroids computed by running centralized K-means on the
complete dataset(from the last exact K-means execution).
The peer computes an average of all of its data points (the
average is a vector, one average value for each dimension).
It then computes the component-wise difference between
the average and the current centroids to get a vector, which
we call

�� � (the knowledge of � �). Since this is a vector, a
reliable measure of its value is the L2-Norm. For K-means
monitoring at any peer, the problem reduces to checking
whether the L2 norm of that vector is significant. In other

words, the problem is: given the difference vector
�� � , check

if ���
�� �	�
���� or �
�

�� �	����9� , where is user-defined thresh-
old. For the 2-D case, the shape of the L2-Norm of a vector
is a circle (sum of squares of individual components) and
hence the problem can be reduced to a set of majority votes
to determine if �
�

�� � �
� is outside or inside the circle. The
first step is to approximate this figure using a set of tangent
lines which are defined by a set of unit vectors. Figure 2
shows such a figure. The unit vectors are shown with ar-
rows. Also shown in this figure are the tangent lines (the
dotted lines). This shows that the circle has been approxi-
mated to a polygon. At this stage we are interested in the
three cases : �
�

�� ���
� is inside the circle (region (A) in Figure
2), �
�

�� �	��� is outside the circle and �
�
�� ����� is in the region be-

tween the circle and polygon. The first can be solved using
a simple majority voting mechanism where we check if the
L2-norm of a point in ��� is less than . The second case
however is a little tricky to solve (note that if two peers say
that a point is outside the circle, the points can be on the
two opposite ends and hence the sum can still be inside the
circle). For this reason we use majority votes along each of
these tangent lines. Thus if there are � tangent planes, there
are ��/ G majority votes, one each for checking the inside
conditions and the rest for the outside. The most difficult
case is however to when the ���

�� ����� is in the region (D) in the
figure. Since no peer is certain as to what to do, we have to
resort to flooding in this scenario. Note that this space can
be made arbitrarily small using more and more number of
tangent lines. The cost is however increase in computation
for each peer.

Experiments with this algorithm shows excellent accu-
racy and scalability. This algorithm has been simulated in a
testbed of 1000 peers. We ran simulations for 500, 1000,
2000 and 4000 peers and the accuracy does not change.
Also the number of messages per peer remains constant,
irrespective of the size of the network. This typifies local
algorithms - they are infinitely scalable.

5.2 Approximate Local Algorithms

In the previous section, we have talked about exact local
algorithms that can be very useful in solving data mining
problems in peer-to-peer networks. Although these algo-
rithms achieve exact solutions eventually, they are limited
to problems which can be reduced to threshold predicates.
For example it is very difficult (perhaps impossible) to de-
velop an exact local algorithm to compute the mean of a set
of numbers distributed over the network, but not so for eval-
uating whether the mean lies above a threshold. In light of
this, some data mining problems are very difficult, perhaps
impossible, to solve with exact local algorithms – in partic-
ular, K-means clustering. In the previous section, what we
described is mostly monitoring the K-means clustering. In

6

A

B

C

D

Figure 2. (A) the area inside an circle. (B)
Seven evenly spaced vectors which defines
the tangent planes. (C) The borders of the
seven half-spaces define a polygon in which
the circle is circumscribed. (D) The area be-
tween the circle and the union of half-spaces.

this section, we develop an approximate local algorithm for
K-means clustering.

5.2.1 Peer-to-peer K-means Algorithm

This is an iterative algorithm based on message exchange
between directly connected peers to approximately solve
the K-means clustering problem in peer-to-peer network (all
material here is based on []). The algorithm is initiated with
a set of randomly chosen starting centroids distributed over
all peers. In each iteration, each peer runs a two-step pro-
cess. The first step is identical to one iteration of standard
K-means where � -th peer ��� assigns each of its own point to
its nearest of k cluster-centroids. Let ��� � �
�'�� ��� G 9
	 9���
denote the corresponding centroids (local centroids) and
� � � ���'�� � � denote the number of points in � -th peer associated
with it (cluster counts) on

�
-th iteration. ��� stores these

local centroids and counts for answering queries from its
neighbors. In the second step, peer �#� sends a poll message,
consisting its id and current iteration number to its immedi-
ate neighbors and waits for their responses. Each response
message from a neighboring peer ��� contains the locally
updated centroids and cluster counts of that peer for

�
-th it-

eration. Once all immediate neighbors of � � have responded
or cease to be neighbors, ��� updates its 	 ��� centroid by tak-
ing a weighted average of all the centroids received by it

and its own centroid, weights being corresponding number
of points in that cluster. Then it moves to the next iteration
of K-means and repeats the whole process.

If the maximum change in position of the new centroid
after an iteration remains above a user-defined threshold,
then peer � � goes on to iteration

� / G . Otherwise it enters
the terminated state.

Note that other than executing the above two steps, at any
point, each peer also needs to respond to any polling mes-
sage received from its neighbor. Suppose peer � � receives
a polling message from peer � � during its iteration

�
. The

message corresponds to iteration �� at peer � � . If �� 9 �
,

then � � sends its local centroids and counts from iteration
�� . Otherwise, this poll message is placed in a queue. �#� will
check this queue at every iteration and respond to any mes-
sages it can. Any peer, ��� , can enter a terminated state at
the end of iteration

�
if its cluster centroids stops changing

significantly . In that case, ��� no longer updates its cen-
troids or sends polling messages. However, it does respond
to polling messages from peer � for iteration �� by send-
ing its local centroids and counts from iteration ���4��� �� + � .
Note that, no peer has an explicit condition under which all
activity stops. However, once a peer enters the terminated
state, it no longer sends polling messages, only responses.
Therefore, once all peers enter into the terminated state, all
communication ceases i.e. the algorithm has terminated.

The algorithm can adjust itself to changing network and
dynamic data in peer with simple mechanism to detect
change in network/data. Any new peer joining the network
can join the ongoing clustering algorithm by syncing to the
ongoing minimum iteration in its neighborhood. Change in
data content of any peer just reassigns the cluster centroids
in that peer and move on to the next iteration.

Extensive experiments with the algorithm showed that
the clustering accuracy, in comparison to centralized K-
means clustering algorithm (the hypothetical case where
data present in all peers are integrated and standard K-
means is applied on the data as a whole), is more than � ��� .
The scalability of this algorithm is very good, as the aver-
age accuracy of clustering achieved remains more-or-less
the same with increase in network size.

6 Conclusions

Distributed data mining is a natural choice when the
data mining environment has distributed data, computing
resources, and users. This paper focused on an emerging
branch of distributed data mining—peer-to-peer data min-
ing. P2P data mining applications may play a key role in the
next generation of file sharing networks, sensor networks,
and mobile ad hoc networks. This paper offered an expo-
sure to the recent literature in this area. It also offered a

7

sampler of exact and approximate P2P algorithms for clus-
tering in such distributed environments.

Data analysis in P2P environments offers a wide spec-
trum of challenges for the researchers and practitioners. De-
signing distributed, asynchronous, decentralized algorithms
offers many difficult challenges. Many algorithms are start-
ing to emerge. However, maturing these algorithms and in-
tegrating them with real P2P applications offer additional
challenges. Most of the P2P data mining algorithms rely
upon asymptotic convergence properties. Finite-time be-
havior needs more attention. Advanced analysis of such
systems such as stability must be quantified. The scope of
the exact P2P algorithms is usually restricted to functions
that can have a local representation in the given network.
This paper discussed approximate techniques which can be
a way to deal with non-local functions. We are currently
exploring an ordinal framework to relax the cardinal data
mining problems and develop ordinal algorithms for P2P
networks.

Acknowledgments

This work was supported by the United States National
Science Foundation Grant IIS-0093353.

References

[1] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg.
Compact distributed data structures for adaptive net-
work routing. Proceedings of the 21st ACM Sympo-
sium on the Theory of Computing (STOC), 1989.

[2] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Mot-
wani. The price of validity in dynamic networks.
In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 515–526,
2004.

[3] S. Datta, C. Giannella, and H. Kargupta. K-means
clustering over peer-to-peer networks. In Proceedings
of the 8th International Workshop on High Perfor-
mance and Distributed Mining (HPDM’05). In con-
junction with the SIAM International Conference on
Data Mining, 2005.

[4] S. Kamvar, M. Schlosser, and H. Garcia-Molina. The
eigentrust algorithm for reputation management in
p2p networks. In Proceedings of the 12th interna-
tional conference on World Wide Web (WWW), pages
640 – 651, 2003.

[5] D. Kempe, A. Dobra, and J. Gehrke. Computing ag-
gregate information using gossip. In Proceedings of
the 44th IEEE Symposium on Foundations of Com-
puter Science (FoCS), pages 482–491, 2003.

[6] W. Kowalczyk, M. Jelasity, and A. Eiben. Towards
data mining in large and fully distributed peer-to-peer
overlay networks. In Proceedings of BNAIC’03, pages
203–210, 2003.

[7] D. Krivitski, A. Schuster, and R. Wolff. A local facility
location algorithm for sensor networks. In Proc. of
DCOSS’05 (to appear), June-July 2005.

[8] M. Mehyar, D. Spanos, J. Pongsajapan, S. Low, and
R. Murray. Distributed averaging on a peer-to-peer
network. In Proceedings of IEEE Conference on De-
cision and Control, 2005.

[9] R. Wolff, K. Bhaduri, and H. Kargupta. Local l2
thresholding based data mining in peer-to-peer sys-
tems. Technical Report TR-CS-05-11, Department of
Computer Science, UMBC, October 2005.

[10] R. Wolff and A. Schuster. Association rule mining in
peer-to-peer systems. IEEE Transactions on Systems,
Man and Cybernetics, Part B, 34(6):2426–2438, De-
cember 2004.

[11] F. Zhao and L. Guibas. Wireless Sensor Networks:
An Information Processing Approach. Morgan Kauf-
mann, 2004.

8

