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Abstract

Inner product computation is an important primitive
used in many techniques for feature dependency de-
tection, distance computation, clustering and correla-
tion computation among others. Recently, peer-to-peer
networks are getting increasing attention in various ap-
plications involving distributed file sharing, sensor net-
works, and mobile ad hoc networks. Efficient identi-
fication of top few inner product entries from the en-
tire inner product matrix of features in a distributed
peer-to-peer network is a challenging problem since cen-
tralizing the data from all the nodes in a synchronous,
communication efficient manner may not be an option.
This paper deals with the problem of identifying signif-
icant inner products among features in a peer-to-peer
environment where different nodes observe a different
set of data. It uses an ordinal framework to develop
probabilistic algorithms to find top-I elements in the
inner product matrix. These [ inner product entries
are important in making crucial decisions about depen-
dency or relatedness between feature pairs, important
for a number of data mining applications. In this pa-
per we present experimental results demonstrating accu-
rate and scalable performance of this algorithm for large
peer-to-peer networks and also describe a real-world ap-
plication for this algorithm.

1 Introduction

Inner product is an important primitive for many ma-
chine learning and data mining applications such as clas-
sifier learning and clustering. These are used for vari-
ous kinds of tasks such as information retrieval from the
web, text processing, predictive modeling and the like.
Traditional data mining techniques assume that all data
is available at a central location. However there exist sit-
uations in which the data is inherently distributed over a
large, dynamic network containing no special servers or
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clients, for example, peer-to-peer (p2p) networks. Some
of the most important characteristics of p2p networks
are decentralized control, asynchronous communication
paradigm, dynamic topology and the like. A distributed
scenario can be of two types: (1) homogeneous — where
only a fraction of each feature is observed at every site
or (2) heterogeneous — where only some of the features
are observed at each site. For either scenario centraliz-
ing all the data in order to build a global model is not an
appropriate solution due to the high cost of centralizing
and storage requirement at the central node. Therefore,
distributed algorithms are required to solve most data
mining problems in p2p networks. In general, a dis-
tributed algorithm in this setting should (1) not require
global synchronization, (2) be communication efficient,
and (3) be resilient to moderate changes in the network
topology.

Here we explore the homogeneous scenario where
each node has information about only a subset of data
tuples for every feature in the data set. If these features
of the data set can be represented as vectors, then an
inner product matrix is a matrix where each entry is
the inner product between a pair of features. However,
since every site only has partial information about a
feature, the top-l elements of this matrix need not be
the global set of top-l inner product elements. We
have proposed an algorithm, which can identify the
global set of top-l elements in the entire network by
estimating the global inner product values of feature
pairs selected by random sampling in a communication
efficient manner. To the bets of our knowledge, there
does not exist any algorithm in the literature that can
correctly identify the top few elements in a network
without communicating with every single node. As a
result we, have an algorithm with bounded message
complexity. We have also provided error bounds for the
quality of our estimate using the theories from ordinal
statistics.

The rest of the paper is organized as follows.
In Section 2 we provide a motivation for the study



of inner product computation in a distributed (p2p)
setting. Section 3 points out some of the existing
techniques that can be used to solve this problem and
discusses their shortcomings. In Section 4 we describe
our approach in details while Section 5 discusses the
theory behind the approach that we have adopted
for solving the distributed inner product computation
problem. Section 6 analyzes the performance of our
algorithm with respect to the accuracy achieved and
the communication complexity. In Section 8 we discuss
the experimental results while Section 9 describes an
application of this framework in a real life p2p network
scenario. In Section 10 we conclude the paper with some
discussion on the future work.

2 Motivation

The curse of dimensionality makes data analysis sig-
nificantly difficult [1] [2]. It even dictates the cost of
centralization, since the latter increases with increasing
dimension. There exists a number of techniques such
as principal components analysis (PCA), singular value
decomposition (SVD), etc. for dimensionality reduc-
tion in the centralized setting. These can be applied to
reduce the dimensionality and then the inner product
entries of this reduced space can be centralized to find
the significant entries in the new space. However these
off-the-shelf techniques do not scale well in large scale
peer-to-peer networks with respect to communication,
computation and storage. In many cases such as the In-
ternet, distributed file sharing networks (e.g. Gnutella,
Kazaa, Bit Torrents), local area networks, sensor net-
works and peer-to-peer networks the data is inherently
distributed. Thus there exists great scope for develop-
ment of distributed algorithms for performing a wide
variety of tasks that are otherwise quite easily solvable,
in a distributed scenario.

One such task is inner product computation. Inner
product computation is a very powerful primitive in
machine learning and data mining that can be used for
computing Euclidean distance (clustering), information
gain (classifiers, bayes net) and correlation between
vectors. Inner product can also be used for computing
the angle between two vectors. Now, if we consider
each feature as a column vector, then the inner product
between two feature vectors measures the “similarity”
between them in terms of the angle between them. In
other words, higher the inner product value, more is the
similarity between two features and vice versa.

In a homogeneously distributed setting a naive
method for inner product computation would involve
centralizing all the data tuples of every feature to
a central site and then computing the inner product
matrix. However, this is not a feasible solution for a

large-scale distributed system such as a p2p network
because of problems stated earlier. So we propose an
order statistics-based approach that enables a node to
identify the top-I elements in the inner product matrix.
Simply speaking, our statistical tool guarantees that if
the inner product between any two features is above
a threshold, then it can be concluded with a certain
confidence level that those two features are in the top
1—p percentile of the entire population of inner product
entries.

In the next section we present some related work in
the area of distributed inner product computation and
identifying the top elements of a population.

3 Related Work

This section presents a brief overview of the literature
on distributed inner product computation (Section 3.1)
and top-k elements identification (Section 3.2) from
a population using different techniques. The naive
approach to this problem is to centralize all the data
and then find the top elements. The obvious deficiency
of this approach is the bandwidth requirement for
communication and storage requirement at the central
node. Below we present a few of the techniques that
have been proposed in the literature to deal with similar
problems in a distributed setting.

Peer-to-peer data mining is a relatively new field.
Clustering in p2p networks [3] [4], association rule
mining [5], monitoring L2 norm [6] are some of the
recent work in this area.

3.1 Distributed Inner Product Computation
Data transformations such as Fourier Transforms,
Wavelet Transforms and the like can be used for do-
ing inner product computation in an efficient manner
when the data is distributed among a large number of
peers. Since these transforms are orthogonal, they pre-
serve the inner product between any two given vectors
exactly. In other words, the inner product between any
two vectors in the original space is the same as the in-
ner product between those two transformed vectors in
the new space. In general, however, for every vector of
dimension d, there would be d coefficients in the new
space. Thus there would be no savings with respect to
computation or communication. We can, however, con-
sider only a few (k < d) significant coefficients and still
be able to get the inner product with high accuracy. Us-
ing such a technique, therefore, we can do a distributed
inner product computation by simply communicating
these compact coefficients instead of the original data.
Random Projection can also be used for comput-
ing inner product between vectors in a projected space.
Random Projections have been used extensively in the



literature for dimensionality reduction and several other
tasks (for example [7] and [8]). It preserves inner prod-
uct on average (when using large random matrices) and
the variance of the process is also bounded. Hence this
method serves as a natural candidate for inner product
computation using low communication overhead as pro-
posed by Giannella et al. [9]. The major disadvantage
of this method is that every peer in the network needs
to agree on the random seed from which to generate
the random matrix. This implies an expensive round of
synchronization and flooding of the network.

3.2 Identifying top-k items Several techniques ex-
ist in the literature for monitoring the top elements of
a population. These techniques can potentially be used
for identifying the top interacting features in a static en-
vironment as well. Wolff and Schuster [5] present a local
algorithm that can be used for monitoring the entries
in a certain percentile of the population. In the paper,
the authors describe a majority voting algorithm, where
each peer, P;, has a number b; either zero or one, and a
threshold 7 > 0 (the same threshold at all peers). The
goal is for the peers to collectively determine whether
> bi is above nt where n is the number of peers in
the network. The approach described here can be eas-
ily extended to a more general scenario: each peer has
a real number x; and the collective goal is to decide
whether Avg(xz;) > 7. By a proper choice of 7 ( e.g.
p'" percentile of the population to monitor) this tech-
nique can be used to find the all the entries of the inner
product matrix that belong to the pt" percentile of the
population. The major disadvantage of this problem
is the communication complexity — a separate major-
ity voting problem needs to be invoked for every inner
product entry and thus the system will not scale well
for large number of features.

Distributed Top-K Monitoring by Babcock and
Olston [10] presents a way of monitoring the answers
to continuous queries over data streams produced at
physically distributed locations. While a naive solution
to this problem is to centralize all the data, it is not
feasible in a typical streaming scenario due to the
extremely high rate of data arrival. In this paper,
the authors propose an incremental technique to deal
with this problem. This paper assumes a central
node and the top-k set is always determined by the
central node. The basic algorithm is as follows. The
coordinator node finds the answers to the top-k queries
and distributes it to all the monitor agents. Along with
it, the central node also distributes a set of constraints.
These constraints allow a monitor node to validate if the
current top-k set matches with what it finds from the
local stream. If the validation results in true, nothing

needs to be done else, the monitor agent sends an
alert to the co-coordinator node. The coordinator node
re-computes the top-k set based on the current data
distribution and sends out both the new top-k and new
set of constraints to be validated for each monitor agent.
Since the paper assumes that there is a central node, this
technique is not directly applicable in many inherently
distributed environments e.g. Mobile ah-hoc networks,
vehicular ad hoc networks and the like.

In the context of information retrieval, several tech-
niques exist in the literature for top-k object identifica-
tion. Balke et al. [11] propose a super peer approach for
finding the top objects. The top queries are handled by
the super peers and any other peer in the network can
contact these super peers to get the answers to these
queries. The paper also discusses ways to select these
super peers so that any peer can find its closest super
peer efficiently. There are also techniques which explore
the retrieval algorithms taking into account the relative
rankings of objects. Many of these algorithms depend
on gossip based techniques for spreading the ranks of its
objects [12].

In the next section we present our distributed algo-
rithm to identify the significant inner product entries.
4 P2P Computation of Significant Inner
Product Entries

In this section we describe our algorithm for doing
distributed selection of top-I entries when there are k
elements in the top 1 — p percentile of the population
(I < k). For this, we first introduce some of the
notations used throughout the rest of this paper.

4.1 Notations We deal with the homogeneously par-
titioned data where all features are observed at every
node, but each site only has a subset of the total tuples
in the overall data set. We assume that there are S
nodes (peers) in the network Pi, Ps, ..., Ps. The global
set of features, which is common for all the peers, is de-
noted by (a1, ag, ..., ac). The local data set for peer P; is
denoted by ID; having r; rows and ¢ columns. Therefore,
the union of the data sets of all the peers is U7_;D; = D.
The inner product between two k-dimensional vectors
x and y is defined as x.y = Zle z;y;- Now, if each
feature is represented as a vector, we can define the in-
ner products between the features in a similar fashion.
Thus, the global inner product matrix A is a ¢ X ¢ ma-
trix where A;; corresponds to the inner product between
the i*" and j** feature. Since this matrix is symmetric
about the diagonal and the diagonal entries are the in-
ner product of the feature vectors with themselves, we
considgr only the upper half of this matrix. Thus we
[

£-¢ distinct entries in the inner product matrix.

have 5



Henceforth we refer to A as the upper triangular in-
ner product matrix. We also assume that the entries
of this matrix has been indexed with a single number

in a consistent fashion across all peers — i.e. {1,1} —
(13,{1,2} — {2}, .. {e, 1} — {£5£},. The entries of
matrix A can be written as A[l], A[2], ..., A[CQQ*C]. Now
matrix A is distributed among all the peers, and let the
share of peer P, be denoted by Ij,. Let the d** entry of
this matrix be denoted by Ix[d], Vd € {1, ..., CQ;“}. Be-
cause of the decomposable property of inner products,

(refer to Section 5.1 for details), Zle I, [d] = Ald].

4.2 Approach The process is started by any node
in the network that decides to find the top-I entries
in the distributed inner product matrix. We call this
node the initiator node. Based on the desired level of
confidence (q) and percentile (p) of the population to
monitor, our algorithm needs to know three parameters
— (1) number of ordinal samples to collect or n, (2)
the number of peers to visit for estimating each sample
or m, and (3) n indices of the inner product matrix
corresponding to the n samples to collect. In this section
we will assume that the initiator node already has the
values of these parameters. It launches m x n random
walks and after all these walks terminate, the samples
are sent back to the initiator node. The initiator then
needs to add all the samples having the same index. It
then orders the n samples and the highest one is known
as the threshold. Any inner product value greater than
this threshold is expected to be in the top 1—p percentile
of the population with the chosen confidence. Hence the
approach consists of the following tasks: sample size
computation, sample collection, threshold detection and
finally top-l inner product elements identification.

e Sample Size Computation:

The initiator P; first selects a confidence level ¢
and the order of population percentile p it would
tolerate. Based on the algorithm described in
Section 5.2, the initiator calculates the number of
samples required to compute the threshold such
that any inner product that is greater than this
threshold is among the top (1 — p) percentile of
the population of inner products. Let us denote
this sample size as n. It also randomly generates n
indices (each between 1 < i < 022_ €) which will
be used for sampling the inner product entries.
Since the data is distributed among all the peers
finding a global entry of the inner product matrix
requires visiting all the peers and adding up the
values obtained from each peer. If we choose to visit
a subset m of S nodes, we can estimate the value
of this inner product entry. We have used Central

Limit Theorem (CLT) in order to derive the value
of m in Section 5.3. After this step, the initiator
peer knows the value of m, n and the actual indices
of the inner product entries to be sampled.

e Sample Collection:

Given the sample size of n and the number of
peers to visit m, the initiator invokes m X n
random walks using the protocols described in
Section 5.4 to choose independent samples from the
network. Since estimating one single inner product
entry requires sampling m peers for the same
indexed entry, each random walk carries with it the
index number of the element to be sampled. Also
each random walk carries the IP address and port
number of the initiator node so that the terminal
node of a random walk can send its inner product
entry directly to the initiator node. At the end of
these random walks P; has m x n samples where
there are n different indices and m inner product
values for every index of the inner product.

e Threshold Detection:

Once the initiator node gets all the samples, its
next task is to identify the threshold. Since inner
product is decomposable, for every index i, peer P;
sums up the all the m entries corresponding to the
same index ¢. It then finds the largest of this set of
inner product entries and this is the threshold.

e Top-/ inner product elements identification:

The above technique would give the peer a way to
identify one of the items in the top-k, where there
are k elements in the top (1 — p) percentile of the
population. We can extend this to find some [ of
the top-k elements (I < k). All that a peer P; needs
to do is to launch n x m x [ random walks. Now
after aggregating the results we have nl elements
and for every n element we can find a threshold.
Thus we will have [ thresholds and each of these
would belong to the top-k elements.

OrdSamp (Algorithm 4.2.1) presents the sample
collection technique for a single random walk using
the ordinal framework. The initiator sends a token
(initialized to a value equal to the length of the random
walk A), its IP address, port number (InitiatorNode-
Num) and the index of the element (Samplelndex) to
sample for this random walk. When a node gets this
token, it decrements its value by 1. If the value of the
token becomes 0, the inner product entry indexed by
SampleIndex is selected from the local data set and
sent back to the initiator node.



Algorithm 4.2.1 Distributed selection of samples
(OrdSamp)
Input of peer P;: D; - the local database, IV; - set
of immediate neighbors of P;, its local transition
matrix p;;

Output of peer P;: Sends the sample if the

random walk terminates at this peer

On receiving a message (T'oken):

Token = Token - 1

Fetch SampleIndex

Fetch Initiator NodeNum

IP Address and Port number of the initiator node

if Token = 0 then
Pick the element whose index is SamplelIndex
from D;.
Send SamplelIndex to the Initiator NodeNum.
Wait for new Token messages for other random
walks

else
Send Samplelndex, Initiator Node Num to a
neighbor selected according to the transition
matrix

end if

5 Building Blocks

This section elaborates on some building blocks that
are necessary to understand the distributed feature
selection algorithm.

5.1 Decomposable Inner Product Computation

Let x and y be two vectors. Now inner product between
two vectors is defined as:
> o

(z,y)€D

Xy =

Now according to our scenario, D is divided into .S peers
and the contribution of peer P; is D;. We can therefore,
write the inner product of those two vectors as:

i=1 (z,y)€D;

where k; is the contribution of the Pf" peer towards the
inner product between x and y. Sampling from all the
peers is infeasible especially in large systems and hence
we resort to sampling from a subset of peers from S in
order to estimate x.y.

5.2 Ordinal Approximation Given a data set hor-
izontally partitioned among peers we want to find some

[ of the top-k entries which are in the top 1—p percentile
of the population. A trivial approach to this problem
would be to collect the entire data set from all peers and
compare all the pairwise inner products among the fea-
tures. This simple approach, however, does not work
in a large-scale distributed p2p environment because
the network state is not stable with frequent nodes ar-
rivals and departures, and the overhead of communi-
cation would be extremely high. Theories from order
statistics, however, could relieve us from this burden by
considering only a small set of samples from the entire
population and producing a solution with probabilistic
performance guarantees. Order statistics has been ap-
plied in a number of different fields such as classifier
learning [13], genetic algorithms [14], sensor networks
[15], and discrete event optimization [16]. The follow-
ing part of this section discusses application of order
statistics in our framework.

Let X be a continuous random variable with a
strictly increasing cumulative density function (CDF)
Fx(z) . Let &, be the population percentile of order
p, i.e. Fx(&) = Pri{z < &} = p, e.g. &os is called
the median of the distribution. Suppose we take n
independent samples from the given population X and
write the ordered samples as z1 < a2 < -+ < Zp.
We are interested in computing the value of n that
guarantees

Priz, > &} >q.

LEMMA 5.1. [16] Let x1,%2,...,xn be n iid. sam-
ples drawn from an underlying distribution. They are
arranged such that r1 < xo < ... < &,. Then P(z, >
&) =1 —p", where &, is the pt" percentile of the popu-
lation.

Proof.
Pz, > &) 1— Pz, <&)
= 1- Fn(&p)
= 1 —p"

Now if the above probability is bounded by a confidence
q, we can rewrite the above equation as

(5.1) 1—p'>q=n> [Mw

log(p)

For example, for ¢ = 0.95 and p = 0.80, the value of

n obtained from the above expression is 14. That is, if

IFollowing a common convention, we use upper-case bold

letters to refer to random variables, lower-case regular letters to

refer to their actual observed values, and lower-case bold letters
to refer to vectors.



we took 14 independent samples from any distribution,
we can be 95% confident that 80% of the population
would below the largest order statistic x14. In other
words, any sample with value greater or equal to z14
would be in the top 20 percentile of the population with
95% confidence. The smaller the p is, the smaller the
n. For detailed treatment of this subject we refer the
reader to David’s book [17].

5.3 Cardinal Approximation In order to derive
bounds on the number of peers to sample (m) we
have used the Central Limit Theorem (CLT). CLT tells
us that if we take m independent samples from any
population, the mean of the samples approximately
follows a Normal Distribution (u,ﬁ), where p and o
are the mean and standard deviation of the population.
Lemma 5.2 gives a expression for determining the value

of m using CLT.

LEMMA 5.2. Let X3,X2,....,Xm be m independent
samples drawn from a population with mean p and stan-
dard deviation o. Let X denote the mean of these sam-
ples. Then the value of m is bounded from below by
m > M? where ® is cdf of the standard normal
variate, q is the confidence and € denotes the probability

of deviation of X from .

Proof. Form the CLT we know that X approximately
follows a Normal distribution with mean y and standard
deviation ﬁ We can write,

PX-pzo = PEIM >
vm vm
= P(zze‘{‘ﬁ)
= 17P(ZS“T>
(5.2) = 141%“?)

Now if Equation 5.2 is bounded above by ¢, we get

1*@(€\éﬁ)§q

2 '(1-g)o
€

= m >

5.4 Random Sampling Random sampling in the
networks is a prerequisite to the estimation of popu-
lation percentile. It can be performed by modeling
the network as an undirected graph with transition
probability on each edge, and defining a corresponding

Markov chain. Random walks of prescribed length on
this graph produce a stationary state probability vec-
tor and the corresponding random sample. The sim-
plest random walk algorithm chooses an outgoing edge
at every node with equal probability, e.g. if a node
has degree five, each of the edges is traversed with a
probability 0.2. However, it can be shown that this ap-
proach does not yield a uniform sample of the network
unless the degrees of all nodes are equal (see [18] for ex-
ample). Since typical large-scale Peer-to-Peer network
tends to have non-uniform degree distribution, this ap-
proach will generate a biased sample in most practical
scenarios. Figure 1(a) shows the non-uniform selection
probability using a graph of 5000 nodes.

Fortunately, the elegant Metropolis-Hastings algo-
rithm [19] [20] implies a simple way to modify the tran-
sition probability so that it leads to a uniform station-
ary state distribution, and therefore results in uniform
sample. In this paper, we implement an adaptation of
this classical algorithm. Next we briefly introduce the
Metropolis-Hastings algorithm for random walk.

Let G(V, E) be a connected undirected graph with
|V| = n nodes and |E| = m edges. Let d; denote the
degree of a node 7, 1 <7 < n. The set of neighbors of
node i is given by I'(¢) where Vj € T'(4), edge (i,7) € E.
Let P = {p;;} represent the n x n transition probability
matrix, where p;; is the probability of walking from
node i to node j in one message hop (0 < p;; < 1 and
Zj pi; = 1). Algorithm 5.4.1 gives the basic protocol
for doing a random walk using the Metropolis Hastings
Algorithm.

Algorithm 5.4.1 Metropolis-Hastings (MH)
Input of peer P;: Its degree d;

Output of peer P;: A row of transition matrix p;;

On Initialization: P; sends out a Degree message

to all Pj S F(PZ)

On receiving a message (Degree): If it has

received the degree information from all P; € I'(F;)

it can compute p;; as follows:
]./ max(di, dj)

pij =4 1-—

0

ifi#jandjeTl()
Zjer(i) pij ifi=j

otherwise
Termination: Once the degree has been calculated
the peer can terminate the transition matrix

calculation

This algorithm generates a symmetric transition
probability matrix and is proved to produce uniform
sampling via random walk [21]. Lovész [18] showed that
the length of random walk (\) necessary to reach to sta-
tionary state is of the order of O(logn). Empirical re-
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Figure 1: Performance of three different random walks on a power law topology of 5000 Nodes.

sults show that when the length of walk is 10 xlog n, this
algorithm converges to uniform distribution. The net-
work size S could be estimated using the localized esti-
mation scheme proposed by [22]. Figure 1(c) shows the
probability of selection using the Metropolis-Hastings
algorithm over a simulated network with 5000 nodes.
As can be easily seen, the probability of selection is uni-
form even for varying degree distribution. We also com-
pared this technique with another random walk tech-
nique proposed by Orponen and Schaeffer [23] known
as the Degree Balanced Random Walk (DRW). Exper-
iments with this random walk technique (as shown in
Figure 1(b) shows that the probability is uniform in this
case as well. The major problem with this technique is
that it requires a long length to come to a stationary
distribution. In this paper, therefore, we have used the
MH algorithm for collecting samples from the network.

6 Performance Analysis

In this section we analyze the error that occurs in our
distributed algorithm and the message complexity.

6.1 Error Bound In our distributed algorithm there
are two sources of error — (1) error due to ordi-
nal sampling and (2) due to cardinal sampling. Let
Al, Az, e A,, denote the samples as found by the dis-
tributed algorithm (the subscripts correspond to the in-
dexing scheme defined in 4.1). Note that each of these
Agq’s are estimated by aggregating the values of the d-th
indexed entry of the inner product matrix from m peers,
where the value of the d'” indexed entry for the i*" peer
is given by I;[d] and I|d] = ZZ;II‘[d] denotes the mean
of the estimates for a fixed d. Lemma 6.1 derives the
probability that the threshold i.e. A, belongs to the
pt" percentile of the population.

LEMMA 6.1. Let Al,Az,...,An be the n samples re-
turned by the distributed algorithm. They are ordered
such that Ay < Ag < ... < A,. Then, P(A, > &) =

1-TT5-, @((%fud)‘é—dm), where pq and og4 are the mean
and standard deviation of the feature of the population
corresponding to Aq, &, is the population percentile of
order p and ®(.) is the area under the standard normal

curve.

Proof.
P(A,>§&) = 1-PA,<§)
= 1-J[P(Aa<&)
d=1

= 1-[[PO nld <&)
d=1 =1

d=1
:1_ﬁmmg%)
d=1
- Paa <
d=1
. ﬁp(i[d]0: M o ;Md)
d=1 Vm vm
N | R C D
d=1 9d
= - TR Y
=1 m od

Some explanations regarding the derivation are as
follows. Step 2 follows directly from step 1. Now since
Ag4 is a sum of all the elements obtained by visiting m
peers, we must have Ag = >t Ii[d] V d. Finally, since
> Lild] is a sum of random variables we have used
CLT to derive the final expression.

Hence the probability of error is [])_, (I)((%’ —

o)

pa)X>=).  This shows that as n increases, the error
04



decreases since each term of the product is ®(.), which
is the area under a unit Normal variable and is less
than or equal to 1. Also as m increases, the expression
inside ® decreases and thus the overall probability of
error decreases. For a special case in which all the
wa’s and og’s are equal to say p and o, the error
becomes @((% - u)@)" — hence as n increases, the

o
error decreases exponentially.

7 Message Complexity

The distributed algorithm that we just described
launches n x m x [ parallel random walks each of length
A such that each random walk will return a single ele-
ment. The coordinator node can then aggregate these
samples, and come up with [ thresholds. We will use
this model to analyze the message complexity.

For each such a random walk, the initiator node
needs to send the following four information in the
message:

1. Token Number - Integer 32 bits

2. Index of the inner product entry to sample - Integer
32 bits

3. IP Address - Integer 32 bits
4. Port Number - Integer 32 bits

The message complexity for this step is : 128m X
n x I x A = 128mnl\ bits. Now from Section 5.2,

since n = {%—‘, the message complexity can be
rewritten as, 128ml lﬂig(;)q) .

Once the random walk ends, the terminal node
simply needs to send the sampled element back to
the initiator node. This would need 64 bits assuming
that each entry of the inner product matrix can be
represented as a single double number. Thus, the overall
message complexity for the entire step is: 128mnl\ +
64nml = O(mnlX) bits.

Note that this expression is independent of the
number of features c. Hence we expect the algorithm
to be scalable with respect to the number of features.

Now, considering the centralized algorithm, if each
peer has a dataset r; x ¢, then the total message
complexity for the centralized scheme can be written
as : 64r; x ¢ x S = O(r;cS) bits.

8 Experiments and Performance Evaluation

In this section, we study the performance of the pro-
posed distributed feature selection algorithm.

8.1 Data Generation The experimental data was
synthetically generated. Each entry of the data matrix

was generated randomly from a uniform distribution.
Each column was generated from a different range of
the uniform distribution in order to have variation in
the data. The centralized data set was then uniformly
split (so that each peer has the same number of tuples)
among all the peers to simulate a horizontally parti-
tioned scenario. Unless otherwise specified, each peer
had 500 tuples and 500 features. The reason for the
synthetic data experiments was to have more control on
the parameters of the algorithm.

8.2 Network Topology and Simulator Our net-
work topology was generated using the ASWaxman
Model from BRITE 2, a universal topology genera-
tor. The generator initially assigns node degrees from
a power-law distribution and then proceeds to inter-
connect the nodes using Waxman’s probability model.
Simply speaking, in this model, the probability of two
nodes (i and j) being connected is given by P(i,j) =
ae~4)/BL where 0 < a, f < 1 (fixed at 0.15 and 0.2
respectively in our experiments), d(i, j) is the Euclidean
distance from node ¢ to node 7, and L is the maximum
distance between any two nodes. Power-law random
graph is often used in the literature to model large non-
uniform network topologies. It is believe that p2p net-
works conform to such power law topologies [24]. We
use the Distributed Data Mining Toolkit (DDMT) 3
developed by the DIADIC research lab at UMBC to
simulate the distributed computing environment. This
toolkit is build upon LEAP (Light Extensible Agent
Platform) 4, which itself is an extension of JADE (Java
Agent DEvelopment Framework) °; a multi-agent sys-
tems platform. All of our algorithms were implemented
in Java JDK 1.5, and the experiments were conducted
on a dual-processor workstation running Windows XP
with 3.00GHz and 2.99GHz Xeon CPUs and 3.00GB
RAM.

8.3 Performance We have performed experiments
to study the applicability of the ordinal approximation
theories in our distributed environment by comparing
the results returned by the centralized algorithm. By
a centralized algorithm we mean centralizing the entire
data set of all peers and running the ordinal approx-
imation on this data set. We have reported four sets
of experiments - (1) the quality of our estimation when
monitoring increasing percentile of population, (2) the
scalability of our algorithm, (3) the effect of increasing
the sampling on the error, and (4) effect of finding I

Zhttp://www.cs.bu.edu/brite/
3http://www.umbc.edu/ddm/wiki/software/DDMT/
4http:/ /leap.crm-paris.com/

Shttp://jade.tilab.com/



elements in the top 1 — p percentile of the population.
We have reported both the accuracy and message com-
plexity (in bits transferred) whenever appropriate. Un-
less otherwise noted we have the following default val-
ues for the different parameters: (1) S=500, (2) ¢=500,
(3) n=15 (which comes from p=15% and ¢=95%), (4)
m=5/2,(5) =1, (6) A = 10xlogS, and (7) r; (number
of data rows for each peer) = 500.

8.3.1 Experiments with different percentile of
population In this experiment we compared the ac-
curacy of the distributed algorithm with the centralized
one. We have experimented for three different percentile
(p) values of 95, 90 and 85 for which the number of
samples (n) required are 59, 29 and 19 respectively. We
sampled 50% of the peers (m = S/2). In the graph
in Figure 2 the circular points represent the actual pt*
percentile of the population, whereas the square and the
star represent the threshold for the same confidence and
percentile for the centralized and distributed scenario
respectively using ordinal approximation. The distance
between the red stars and the green circular dots rep-
resents the error due to ordinal approximation whereas
the difference between the red stars and the blue squares
in the graph can be attributed to the cardinal approxi-
mation introduced in the distributed environment. We
notice that in both the centralized and distributed sce-
nario, the threshold is greater than the actual pt* per-
centile of the population. This means that there will be
no false positives in ordinal estimation. Each point in
the graph is an average of 100 runs of the experiment.
The variance in the different runs is quite low compared
to the value itself (~ 102).

Figure 3 compares the communication of our algo-
rithm with that of the centralized version for monitoring
different percentiles of population (p). Since the num-
ber of features ¢ = 500 and S = 500 remains constant,
messages for the centralized experiments for different
percentiles is the same. In the distributed scenario, the
expression in Section 7 is used for finding the number of
messages. In all cases, our algorithm outperforms the
centralizing scheme by a factor of approximately 100.
Hence in the figure the number of distributed messages
is tending to zero in the higher scale.

8.3.2 Experiments with varying number of
peers We have also performed a scalability test on the
accuracy and message complexity of our algorithm. Fig-
ure 4 shows the results when the percentile of the pop-
ulation is fixed at p = 10%. As can be seen from the
figure, the threshold detected by both the centralized
and distributed experiments using order statistics are
greater than the p" percentile of the population cor-
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Figure 2: Relative values of the estimated highest order
statistic with corresponding values of actual population
percentile for varying values of population percentile.
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Figure 3: Message complexity with increasing percentile
of population.
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Figure 4: Relative values of the estimated highest order
statistic with corresponding values of actual population
percentile for varying size of the network.

roborating the fact that the algorithm has excellent ac-
curacy. These results are and average of 100 runs of the
experiment.

Figures 5(a) and 5(b) presents the number of mes-
sages both in the distributed and centralized scenario.
Top 15% of the population was monitored in each of
these cases. Figure 5(a) presents the scalability with
respect to the number of peers (¢ was set at 500) while
in Figure 5(b) the number of features was varied (S was
set at 500). In both figures, the number of messages for
the distributed algorithm is far less than the centraliz-
ing algorithm. Note that in Figure 5(b), the distributed
messages were constant since it is invariant of the num-
ber of features.

8.3.3 Experiments with increasing m We have
also done experiments to test the effect of increasing the
sample size m. Figure 6 shows the effect on the thresh-
old selection with increasing of sampling m. The trend
is clear - as we increase m, the distributed threshold
(red stars) approaches the centralized threshold (blue
squares).

8.3.4 Experiments with increasing [ In this sec-
tion we present the message complexity of our distrib-
uted algorithm while monitoring [ of the top-k elements
in the p'" percentile of the population. Section 7 shows
that message complexity is linearly dependent on [. Fig-
ure 7 presents the message complexity compared to the
centralized scheme.
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Figure 6: Variation of the threshold with changes in m.
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9 Application

An interesting application of this technique is client-
side web mining. In this section we discuss how we
modify our order statistics based top-I item identifica-
tion technique for this application. Interested readers
are referred to the paper by Liu et al. [25] for a detailed
discussion on this application.

9.1 Why p2p communities and Client-side web
mining ? According to Maslow’s theory [26], social mo-
tive, which drives people to seek contact with others
and to build satisfying relations with them, is one of
the most basic needs of human beings. The tendency
to have affiliations with others is visible even in virtual
environments such as the World Wide Web. Many on-
line communities like Google and Yahoo groups provide
the user a place to share knowledge, and to request and
offer services. Traditional web mining has spent lots of
efforts on the web server side, e.g. to analyze the server
log. We propose a framework that utilizes the client-side
information, namely, the web browsing cache. In many
cases the server-side web data is inaccessible to the user
who generated the data — so no information about that
data is available to the user. On the other hand, using
the data at the source machine itself (which we call the
client-side data), we can learn several interesting facts
about the data and develop several systems (e.g. p2p
community, recommender systems etc.). We define a
Peer-to-Peer community as a collection of nodes in the
network that share common interests. Communities can
then exchange information for better query routing for
example. Compared with other related work, our frame-
work has the following specific features:

e It proposes an order statistics-based algorithm
(similar to what has already been discussed) to
quantify the similarity between peers over the net-
work. This approach allows a peer to build a com-

munity with hierarchical structure.

e Any technique that creates and represents a peer’s
personal profile as a feature vector can be plugged
into our framework.

9.2 Peer Profiles A crucial issue in forming Peer-
to-Peer communities is to create peer profiles that ac-
curately reflects a peer’s interests. These interests can
be either explicitly claimed by a peer, or implicitly dis-
covered from the peer’s behaviors. A peer’s profile is
usually represented by a keyword/concept vector. Tra-
jkova and Gauch proposed techniques to implicitly build
ontology-based user profiles by automatically monitor-
ing the user’s browsing habits [27]. Figure 8 shows a
sample ontology for user profile. We point out that any
approach that represents a peer’s profile in a feature
vector can be used in our framework. In this paper, we
use the frequency of the web domains a peer has visited
during a period of time as the peer’s profile vector. To
avoid the uncertainty of ontology matching, we expect
all peers to agree on the same ontology defined by a
controlled vocabulary. In this paper, this means that
all peers agree on a superset of web domain names.

9.3 Similarity Measurement The goal of commu-
nity formation is to find peers sharing similar inter-
ests. However, if we choose a similarity measurement
), and simply setup a subjective threshold such that
peers with similarities greater than this threshold can
be grouped together, we can’t represent the essential
characteristics of a social community, namely, hierar-
chy. In a social network, a person may have multi-level
friends, where the first level might be family members
and closest friends, the second level might be some col-
leagues who are not so familiar with. A person could
also have indirect friends from his/her friends’ social
network. A Peer-to-Peer community from one peer’s
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Figure 8: A sample ontology for user profile.

perspective should also have such kind of hierarchical
structure. That is, some peers share more interests with
this peer, and some less.

To achieve this goal, we use our order statistics-
based approach which enables a peer to know how
similar the other peer is to itself. In other words, our
statistical measurement guarantees that if the similarity
between peer P; and P; is above a threshold, P; can
determine with confidence level ¢ that P; is among the
top (1 — p) quantile most similar peers of P;’s. As
a running example, let us assume there are 5 peers
{P1, P2, P5, Py, Ps} in the network, and the similarity
measures between Py and all other peers are {1,3,2,4},
respectively, where the higher the value, the higher the
similarity. If P, knows the similarity between her and
Ps is 4, our approach will enable P; to know with high
confidence that Ps is among the top 25% most similar
peers of P;’s in the network, without computing all the
similarity values.

Now we formally define a Peer-to-Peer community
based on our above discussion.

DEFINITION 9.1. [(Q,p,q)-P2P ~ ComMmuUNITY] A
(Q,p,q)-P2P community from peer P;’s view 1is a
collection of peers in the network, denoted by C, such
that the similarity measures €0 between P; and all the
members in C are among the top (1 — p) quantile of the
population of similarity measures between P; and all
the peers in the network, with confidence level q.

DEFINITION 9.2. [EXTENDED (2,p,q)-P2P CoMMmU-
NITY| An extended (2, p,q)-P2P community from peer

@ second level community member

@ community initiator

O first level community member

O not community member

@ first level community member of the community initiated by Pj

Figure 9: Example of Peer-to-Peer communities.

P;’s view is the union of C (defined by Definition 9.1)
and all the peers from the (Q,p,q)-P2P community of
each member in C.

These two definitions implicitly capture the hierar-
chical characteristics of the community. When a peer
finds a similar buddy, she could compute the quantile
value and determine which area this buddy belongs to.
A peer could also specify a p value and only invite those
belonging to top (1 — p) quantile area to be her com-
munity members. The community could be expanded
to include members from members’s community. For
example, in Figure 9, Peer A, P;, H are the first level
members (with larger p) of community initiated by P;.
Peer C, F and G are the second level members (with
smaller p) of community. Note that P; is also a ini-
tiator of another community, and it has E as its first
level community member. Peer A, P;, H, E compose an
extended p2p community initiated by P;.

We use the scalar product between two profile
vectors to quantify the similarity between two peers.
Other similarity metrics such as Euclidean distance can
also be applied in our framework without any hurdle.
In the next subsection we discuss how the community
is actually formed.

9.4 Community Formation Process We address
the Peer-to-Peer community formation process under
the assumptions that: 1) each peer can be a member
of multiple virtual communities; 2) peers interact with
each other by submitting or replying queries to deter-
mine the potential members of a given community; and
3) there is no super peer as a centralized authority.
The Peer-to-Peer community emerges as a peer,
P;, called community initiator, invokes a community



discovery process which consists of the following tasks:
sample size computation, quantiles estimation, member
identification, member notification and acceptance, and
community expansion.

e Sample Size Computation: The initiator P;
first selects a confidence level ¢ and the order of
population quantile p it would tolerate. It can
then find the sample size n as discussed in Section
5.2. Note that for this scenario a peer does not
need to do a cardinal sampling since we are dealing
with a special case of the distributed inner product
computation here — when each peer has only one
feature vector and not a matrix of local inner
product elements.

o Quantiles Estimation: Given the sample size
n, the initiator invokes n random walks using the
protocols described in Section 5.4 to choose inde-
pendent sample peers in the network. Whenever a
new peer P; is chosen, it replies to P; with its ad-
dress and port number, and builds an end-to-end
connection with P;. Then P; computes the scalar
product of its profile vector and P;’s profile vector.
After P; collects all the n scalar products, it finds
the largest one as the threshold for quantiles of or-
der p. These two steps are very similar to the first
two steps of the algorithm discussed in Section 4.2.

e Member Identification: The initiator P; com-
poses a discovery message containing its address
and port number, as well as a time-to-live (TTL)
parameter defining the maximum number of hops
allowed for the discovery propagation. Then the
discovery message is sent to all P; neighbors. When
a peer P; receives this message, it replies to P; with
its address and port number. P; then invokes a
scalar product computation with P; to get the simi-
larity value. If TTL > 0, P; forwards the discovery
message to all its neighbors, except for the peer
from which the message has been received. Each
peer discards duplicate copies of the same discov-
ery message possibly received.

¢ Member Invitation and Acceptance: The
initiator P; evaluates the quality of the discovered
peers by comparing the similarity values with its
threshold. If the similarity is above the threshold,
P; sends an invitation message to that peer. If
the similarity is below the threshold, P; still could
analyze, with the same confidence level, the order
of quantile that the peer belongs to; but note
that this order will be lower than the preset p.
Given this information, P; can decide whether to
send an invitation to a peer with less similarity.

For the sake of simplicity, in our experiments,
P; will not send invitations in this circumstance.
Once a peer P; receives an invitation message, it
decides whether to accept it or not by replying
an acceptance message. Receiving the acceptance
message, P; records P; in its local cache.

e Community Expansion: When a peer P;
accepts the invitation, it replies to the initiator an
acceptance message, as well as with the member
lists in its local cache. These members are from
the p2p community or extended p2p community
initiated by P;. As a reward, the initiator sends
the current member list in its local cache to P;. In
this way, each peer has an extended Peer-to-Peer
community.

9.5 Experiments In this section, we study the per-
formance of the proposed framework for Peer-to-Peer
community formation.

9.5.1 Data Preparation We use the web domains
a peer has browsed to create the profile vector. Each
element of the vector corresponds to the frequency that
the domain has been visited by the peer during a period
of time. The data was collected from the IE history
files of volunteers from UMBC and Johns Hopkins
University. There are totally 97050 browsing history
records in our data set, and 722 unique web domains.
These records are randomly split and distributed to
peers in our network simulator so that each peer can
compute its own profile vector. As we have stated
previously, we assume all the peers agree on the same
profile ontology, i.e. the same set of domain names, and
therefore, all the profile vectors have the same size - 722.
Figure 12 shows a snapshot of a peer’s profile.

9.5.2 Performance Having discussed about the
data and the simulator setup we are in a position to
report the experimental results.

¢ Random Sampling and Quantile Estimation:
This experiment evaluates the accuracy of random
sampling and quantile estimation. We chose three
different p values - 80%,85% and 90%. In all the
three cases, the confidence level ¢ was set to 95%,
and the size of the network was fixed at 100 nodes.
According to Equation 5.1, the number of samples,
denoted by n, necessary to guarantee that the high-
est order statistic is within the top (1—p) percentile
of population is given by 14, 19 and 29, respectively.
Let P; be the community initiator. The popula-
tion can be defined as the set of all pairwise scalar
products between P; and all the other peers. Now,



1801 A distributed scenario ||

* centralized scenario ||
* actual quantile value

Estimated and Actual Quantile Value
=
[2]
o

140+ .
.

0.‘8 0.85 0‘,9
Order of Quantile
Figure 10: Estimated and actual quantile value w.r.t.
the order of quantile. The results are an average of 100

independent runs.

if P; wants to find similar peers who are in the
top (1 — p) quantile of the population, it launches
n random walks. The terminal peer for each ran-
dom walk refers to a sample and P; computes the
scalar product between its own vector and the vec-
tor owned by the sample. P; sorts all the n scalar
products and finds the largest one as the threshold
of quantile of order p. Figure 10 shows estimated
threshold in the distributed experiment. To com-
pare the results with centralized sampling, P; first
collects the pairwise scalar products between itself
and all the peers in the network. P; then performs
a random sampling of size n and finds the largest
scalar product. The threshold found by this ap-
proach is illustrated by the stars in Figure 10. Fig-
ure 10 also shows the actual population quantile
of order p. As is evident from these results, the
threshold found through random sampling and or-
der statistics theory is above the actual population
quantile. Therefore any scalar product greater than
this threshold can be recognized as among the top
(1 — p) quantile population with high confidence.

The next experiment measures the accuracy of
the random sampling and quantile estimation algo-
rithm with respect to the number of peers - 100, 200
and 500. In each of these cases, the quantile of
the population to monitor was set at 80%, and the
confidence level was fixed to 95%. Figure 11 shows
similar results that in all the three cases the aver-
age ordinal thresholds are greater than the actual
quantiles of the population. Note that as we in-
crease the size of the network the scalar product
between any two peers decreases because the origi-
nal data set is now divided into more partitions and
hence each profile vector becomes more sparse.
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Figure 11: Estimated and actual quantile value w.r.t.
the number of peers for fixed p = 0.8,¢ = 0.95. The
results are an average of 100 independent runs.

| TTL || Ave Num of Community Members |

3 3
4 8
8 13

Table 1: Average number of community members found
by the initiator without community expansion.

e Community Formation: Once the threshold is
detected, the next step is to form the communities.
We experimented with two community formation
schemes. One is without community expansion and
one is with expansion. The size of the network was
fixed to be 100. Table 1 shows the average number
of members found by a community initiator with
respect to different TTL values. Table 2 presents
the results using the community expansion scheme.

10 Conclusion

In this paper we have developed a new algorithm for
efficiently identifying some user specified [ entries of the
inner product matrix that belong to the top 1 — p per-
centile of the population. In order to achieve low com-
munication complexity for our distributed algorithm, we
have used an ordinal statistics based approach together
with cardinal sampling. Ordinal statistics provides a

| TTL || Ave Num of Community Members |

3 7
4 12
8 17

Table 2: Average number of community members found
by the initiator with community expansion.
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Figure 12: Snapshot of a peer’s profile.

general framework for estimating distribution free con-
fidence intervals for population percentiles. What this
means is that, for any data distribution, we can use
the same theory developed here in order to estimate the
top-I elements. Using simple cardinal approximation is
more communication intensive. Similarly, we cannot use
only ordinal sampling since the inner product entries are
distributed among the peers. Thus, using both, we can
achieve good results. In this work we bounded both the
message complexity of our algorithm and the error in
our decision making. We have provided experimental
results that substantiate our claims regarding accuracy
and message complexity of our algorithm. Finally, we
have presented a a real-life application of online p2p
community formation using our technique.

As a future work, we are currently trying to extend
this framework for heterogeneously distributed scenar-
ios.
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