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Thank you!
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Outline

* Problem definition / Motivation
« Static & dynamic laws; generators
* Tools: CenterPiece graphs; fraud detection

e Conclusions
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Motivation

Data mining: ~ find patterns (rules, outliers)

* Problem#1: How do real grap!

s look like?

e Problem#2: How do they evo.

ve?

* Problem#3: How to generate realistic graphs

TOOLS

e Problem#4: Who i1s the ‘master-mind’?

 Problem#5: Fraud detection

NGDM 2007 C. Faloutsos
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Problem#1: Joint work with

Dr. Deepayan Chakrabarti
(CMU/Yahoo R.L.)
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Graphs - why should we care?

3o all e Bags

'.Internet Map Food Web
[lumeta.com]

T Sewial Shctoes of "Uowepeaihe” Schon [l

Wi

¥ LT

Friendship Network Protein Interactions
[Moody '01] [genomebiology.com]
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Graphs - why should we care?

* IR: bi-partite graphs (doc-terms) 5

e web: hyper-text graph

e ... and more:

NGDM 2007 C. Faloutsos
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Graphs - why should we care?

* network of companies & board-of-directors
members

 ‘viral’ marketing
* web-log (‘blog’) news propagation

* computer network security: email/IP traffic
and anomaly detection

NGDM 2007 C. Faloutsos
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Problem #1 - network and graph
mining

How does the Internet look like?
How does the web look like?

What 1s ‘normal’/‘abnormal’?

» which patterns/laws hold?

NGDM 2007 C. Faloutsos
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Graph mining

* Are real graphs random?

NGDM 2007 C. Faloutsos
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Laws and patterns

 Are real graphs random?
* A: NO!!
— Diameter

— 1n- and out- degree distributions

— other (surprising) patterns

NGDM 2007 C. Faloutsos
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Solution#1

* Power law 1n the degree distribution
[SIGCOMMO99]

internet domains

att.com
1000 /. -.-------. — e
log(de gree) " ITEET O U_INTE?FI:?EBEEJ%EITE‘ rﬁt‘? L{tg%%rgﬁgj :
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log(rank)
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Solution#1’: Eigen Exponent £

Eigenvalue
100

' 'P3.Cragon” +
exp(4.3031) *x*{-0.47734) ——

Exponent = slope

E=-048

10 b

May 2001

1 10 100

Rank of decreasing eigenvalue

« A2: power law in the eigenvalues of the adjacency

matrix
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But:

How about graphs from other domains?

NGDM 2007 C. Faloutsos
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More power laws:

* web hit counts [w/ A. Montgomery]

_Web Site Traffic

log(count)

Zipf

t\“ ‘ebay”’

111} 10 10
MNumber of Visits Websites Receive

NGDM 2007 C. Faloutsos
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epinions.com

e who-trusts-whom

count
100000 : i
Qriginal graph
R-MAT graph
10000 =
_ 1000} o
= gt
Q LY
o
100
; . ;
1 10 100 1000
Out-degres
(out) degree
NGDM 2007

10000

C. Faloutsos

[Richardson +
Domingos, KDD
2001]

_ trusts-2000-people user
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Motivation

Data mining: ~ find patterns (rules, outliers)

y/ Problem#1: How do real grap

s look like?

e Problem#2: How do they evo.

ve?

* Problem#3: How to generate realistic graphs

TOOLS

e Problem#4: Who i1s the ‘master-mind’?

 Problem#5: Fraud detection

NGDM 2007 C. Faloutsos

17



% CMU SCS

Problem#2: Time evolution

o with Jure Leskovec /
(CMU/MLD)

* and Jon Kleinberg (Cornell —
sabb. (@ CMU)

NGDM 2007 C. Faloutsos 18
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Evolution of the Diameter

* Prior work on Power Law graphs hints
at slowly growing diameter:

— diameter ~ O(log N)
— diameter ~ O(log log N)
* What is happening in real data?

NGDM 2007 C. Faloutsos
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Evolution of the Diameter

* Prior work on Power Law graphs hints
at slowly gro diameter:

— diameter ~
og N)
* What is happening in real data?

— diameter ~ O

e Diameter shrinks over time

NGDM 2007 C. Faloutsos
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Diameter — ArXiv citation graph

» Citations among o diameter
physics papers o & Post '95 subgraph, no past

e 1992 2003

* One graph per
year

Effective diameter
|

1%92 1 QIEM 1 EiIQE 1 QIEJB EDIDD EDIDE QDI{H
time [years]
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Diameter — “Autonomous

Systems”
 Graph of Internet diameter —Linear
* One graph per ;'B
day E 46
* 1997 —2000 E‘”

E%EID 3500 4000 4500 5000 5500 6000 6500

number of nodes
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Diameter — “Affiliation Network”

e Graph of “Idiameter [=ruigmpn
. . 11 | —-e-Post :95 subgraph
CollabOratlons 1n ol 1"1 -——-Post '95 subgraph, no past
physics — authors § |
linked to papers S s
10 years of data £ |
E"'__
5_
1.%! 92 1 EI'I94 1 QIQE 1 QIQB EDIDEI EDICI.'E

time [years]
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Diameter — “Patents”

Lo ¥ diameter
¢ Patent CltathIl -H-Eglsl,tqraaf;pgubgraph
30F —4-'Post '85 subgraph, no past

network
« 25 years of data

Effective diameter

1%?5 1980 1985 1980 1995 2000

time [years]

NGDM 2007 C. Faloutsos 24



% CMU SCS

Temporal Evolution of the Graphs

* N(t) ... nodes at time t

* E(t) ... edges at time t

* Suppose that
N(t+1) = 2 * N(t)

* Q: what 1s your guess for
E(t+1) =2 2 * E(t)

NGDM 2007 C. Faloutsos 25
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Temporal Evolution of the Graphs

* N(t) ... nodes at time t

* E(t) ... edges at time t

* Suppose that
N(t+1) = 2 * N(t)

* Q: what 1s your guess for
E(t+1) @ E(t)

* A: over-doubled!

— But obeying the "~ Densification Power Law’”’
NGDM 2007 C. Faloutsos 26
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Densification — Physics Citations

 Citations among
physics papers  E(t)]
e 2003: L

Apr 2003

— 29,555 papers, % |
352,807 5"
citations 5 |
10° .
: Jan 1993 S
: —=0.0113 x. R?=1.0
mﬂf 0 0" 10°

Number of nodes N(t)
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Densification — Physics Citations

e Citations among o,

physics papers  E(t) Apr 2003
+ 2003 o
— 29,555 papers, % |
352,807 510
citations 5
1{]3:_ "
r Jan 1993
' + Edges
. —=0.0113x"* R*=1.0
10" = - 3
107 10° 10 10

Number of nodes N(t)
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Densification — Physics Citations

e Citations among o,

physics papers  E(t) Apr 2003
e 2003: mmi
— 29,555 papers, % | 1.69
352,807 E 1
citations 5 | l: tree
1{]3:_ . "
F Jan 1993
' + Edges
, —=0.0113x"%R*=10
107 - = 3
107 10° 10 10

Number of nodes N(t)
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Densification — Physics Citations

 Citations among
physics papers  E(t)]
e 2003: 10°

Apr 2003

— 29,555 papers, § | clique: 2
352,807 501
citations 5 |
10°}
F Jan 1993
[ + Edges
] —=0.0113x"%R*=1.0
-I{]l- o I"'.I '4 I,:
10° 10° 10 10°

Number of nodes N(t)
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Densification — Patent Citations

« Citations among ']
E(t

patents granted () .
¢ 1999 g 10|

— 2.9 million nodes = 1.66

— 16.5 million £

edges
. 1975 * 5 =
’ EaCh yearis a . —=0.0002 x-%° R?=0.99
. 10 - .
dataPOlnt o Numbel%i nodes N(t) L
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Densification — Autonomous Systems

e Graph of
Internet
e 2000 g 10°
~ 6,000 nodes .
— 26,000 edges : o
* One graph per o
+ Edges
day z —=087 x1-18 R2:1_r::q
L 1r[?l~13t;|Er1'|Izner Dfnudgsﬂg.? N(t) n
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Densification — Affiliation

Network
e Authors linked 07
to their E(t)
publications g “
* 2002 = o) 1.15
- 60,000 nodes &
* 20,000 authors 'O’
38,000 papers 2 * igj;s. P
— 133,000 edges B T T

Number of nodes N (t)
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Motivation

Data mining: ~ find patterns (rules, outliers)

y/ Problem#1: How do real grap

s look like?

\/Pro'aﬁem#2: How do they evo!

ve?

* Problem#3: How to generate realistic graphs

TOOLS

e Problem#4: Who i1s the ‘master-mind’?

 Problem#5: Fraud detection

NGDM 2007 C. Faloutsos
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Problem#3: Generation

* Given a growing graph with count of nodes N,
N,, ...

* Generate a realistic sequence of graphs that will
obey all the patterns

NGDM 2007 C. Faloutsos
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Problem Definition

* Given a growing graph with count of nodes N,
N,, ...

* Generate a realistic sequence of graphs that will
obey all the patterns
— Static Patterns
Power Law Degree Distribution

Power Law eigenvalue and eigenvector distribution
Small Diameter

— Dynamic Patterns
Growth Power Law
Shrinking/Stabilizing Diameters

NGDM 2007 C. Faloutsos 36
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Problem Definition

* (Given a growing graph with count of nodes
N, N, ..

* (Generate a realistic sequence of graphs that
will obey all the patterns

e Idea: Self-similarity
— Leads to power laws

— Communities within communities

NGDM 2007 C. Faloutsos
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Kronecker Product — a Graph

X
Q@ 1
O
’@ 3

74704

7

.
G

Adjacency matrix
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Kronecker Product — a Graph

* Continuing multiplying with G, we obtain G,and
so on ...

G, adjacency matrix
NGDM 2007 C. Faloutsos 39
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Kronecker Product — a Graph

* Continuing multiplying with G, we obtain G,and
so on ...

G, adjacency matrix
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Kronecker Product — a Graph

* Continuing multiplying with G, we obtain G,and
so on ...

G, adjacency matrix
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Properties:

e We can PROVE that

— Degree distribution 1s multinomial ~ power law
— Diameter: constant
— Eigenvalue distribution: multinomial

— First eigenvector: multinomial

* See [Leskovect, PKDD’05] for proofs

NGDM 2007 C. Faloutsos 42
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Problem Definition

* @Given a growing graph with nodes N, N,, ...

* Generate a realistic sequence of graphs that will obey all
the patterns

— Static Patterns
v/ Power Law Degree Distribution
v’ Power Law eigenvalue and eigenvector distribution
v/ Small Diameter

— Dynamic Patterns
v~ Growth Power Law
v/ Shrinking/Stabilizing Diameters

First and only generator for which we can prove
all these properties

NGDM 2007 C. Faloutsos



% CMU SCS
(Q: how to fit the parm’s?)
A:

 Stochastic version of Kronecker graphs +
* Max likelithood +

* Metropolis sampling
* [Leskovect+, ICML’07]

NGDM 2007 C. Faloutsos
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Experiments on real AS graph

4
i . ' 'AS graph —e—
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Conclusions

» Kronecker graphs have:

— All the static properties

v’ Heavy tailed degree distributions

v/ Small diameter

v~ Multinomial eigenvalues and eigenvectors
— All the temporal properties

v’ Densification Power Law

v~ Shrinking/Stabilizing Diameters
— We can formally prove these results

NGDM 2007 C. Faloutsos
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Motivation

Data mining: ~ find patterns (rules, outliers)

y/ Problem#1: How do real graphs look like?

/ Problem#2: How do they evolve?

/Probﬁ_em#B: How to generate realistic graphs
TOOLS

=), Problem#4: Who is the ‘master-mind’?
e Problem#5: Fraud detection

NGDM 2007 C. Faloutsos 47
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Problem#4: MasterMind — ‘CePS’

 w/ Hanghang Tong,
KDD 2006

* htong <at> c¢s.cmu.edu

NGDM 2007 C. Faloutsos 48
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Center-Piece Subgraph(Ceps)

* Given Q query nodes
* Find Center-piece (< p )

e App.
— Social Networks
— Law Inforcement, ...

e Idea:

— Proximity -> random

walk with restarts
NGDM 2007 C. Faloutsos
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Case Study: AND query

R. Agrawal

NGDM 2007 C. Faloutsos
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Case Study: AND query

5 H.V. 10 . LaksV.S. ~
Jagadish akshmana 13 i

AN 4 Corinna 6
Cortes

NGDM 2007 C. Faloutsos
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Case Study: AND query

5 H.V. 10 . LaksV.S. »
Jagadish | akshmana 13 i

10

AN 4 Corinna 6
Cortes

NGDM 2007 C. Faloutsos
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Conclusions Fea
o

O
* QIl:How to measure the importance? 6 o0
 Al: RWR+K SoftAnd
* Q2:How to do 1t efficiently?
* A2:Graph Partition (Fast CePS)

—~90% quality

— 150x speedup (ICDM’06)

NGDM 2007 C. Faloutsos 53
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Motivation

Data mining: ~ find patterns (rules, outliers)
y/ Problem#1: How do real graphs look like?

/ Problem#2: How do they evolve?

/Probﬁ_em#B: How to generate realistic graphs
TOOLS

V/ Problem#4: Who 1s the ‘master-mind’?

e Problem#5: Fraud detection

NGDM 2007 C. Faloutsos 54
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E-bay Fraud detection

w/ Polo Chau &
Shashank Pandit, CMU

NGDM 2007 C. Faloutsos 55
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E-bay Fraud detection

* lines: positive feedbacks
e would you buy from him/her?

NGDM 2007 C. Faloutsos 56
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E-bay Fraud detection

* lines: positive feedbacks
e would you buy from him/her?

e or him/her?

NGDM 2007 C. Faloutsos 57
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E-bay Fraud detection - NetProbe

B He@rate Alphe - Ueaseth Meiworss of 5ospicfous ko i baw Lses H _TFI_E_:"EI

() NetProbe i Carnesie Mllon
~ A L m Tin- dirpAioys nElsobe B

i alisher AT Lcaiu e *

mmmmmmmmmmmmm
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OVERALL CONCLUSIONS

* Graphs pose a wealth of fascinating
problems

* self-similarity and power laws work,
when textbook methods fail!

* New patterns (shrinking diameter!)

* New generator: Kronecker

NGDM 2007 C. Faloutsos
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Promising directions

* Reaching out

— Sociology, epidemiology; physics, ++...

— Computer networks, security, intrusion det.

— Num. analysis (tensors)

[P-source |%%, ° m
° * 7 ~

[P-destination

NGDM 2007 C. Faloutsos
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Promising directions — cont’d
e Scaling up, to Gb/Tb/Pb

— Storage Systems

— Parallelism (hadoop/map-reduce)

NGDM 2007 C. Faloutsos
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E.g.: self-* system (@ CMU

e >2(00 nodes

* 40 racks of computing
equipment

» 774kw of power.

e target: 1 PetaByte

» goal: self-correcting, self-
securing, self-monitoring, self-

NGDM 2007 C. Faloutsos 62
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DM for Tera- and Peta-bytes

Two-way street:

<- DM can use such infrastructures to find
patterns

-> DM can help such infrastructures become
self-healing, self-adjusting, ‘self-*’

NGDM 2007 C. Faloutsos 63
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THAKE YOU!

Contact info:

www. cs.cmu.edu /~christos
(w/ papers, datasets, code, etc)
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