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Abstract

Many data mining applications, ranging from spam fil-
tering to intrusion detection, are faced with active adver-
saries. In all these applications, initially successful clas-
sifiers will degrade easily. This becomes a game between
the adversary and the data miner: The adversary modifies
its strategy to avoid being detected by the current classi-
fier; the data miner then updates its classifier based on the
new threats. In this paper, we investigate the possibility of
an equilibrium in this seemingly never ending game, where
neither party has an incentive to change. Modifying the
classifier causes too many false positives with too little in-
crease in true positives; changes by the adversary decrease
the utility of the false negative items that aren’t detected.
We develop a game theoretic framework where the equilib-
rium behavior of adversarial learning applications can be
analyzed, and provide a solution for finding the equilibrium
point. A classifier’s equilibrium performance indicates its
eventual success or failure. The data miner could then se-
lect attributes based on their equilibrium performance, and
construct an effective classifier.

1 Introduction

Many data mining applications, both current and pro-
posed, are faced with an active adversary. Problems range
from the annoyance of spam to the damage of computer
hackers to the destruction of terrorists. In all of these cases,
statistical classification techniques play an important role
in distinguishing the legitimate from the destructive. There
has been significant investment in the use of learned clas-
sifiers to address these issues, from commercial spam fil-
ters to research programs such as those on intrusion detec-

tion [8] These problems pose a significant new challenge
not addressed in previous research: The behavior of a class
(the adversary) may adapt to avoid detection. A classifier
constructed by the data miner in a static environment won’t
maintain its optimal performance for long, when facing an
active adversary.

An intuitive approach to fight the adversary is to let the
classifier adapt to the adversary’s actions, either manually or
automatically. Such a classifier was proposed in [1], which
left open the following issue. The problem is that this be-
comes a never-ending game between the classifier and the
adversary. Or is it never-ending? Will we instead reach an
equilibrium, where each party is doing the best it can and
has no incentive to deviate from its current strategy? If so,
does this equilibrium give a satisfactory result for those us-
ing the classifier? Or does the adversary win?

Our approach is not to develop a learning strategy for
the classifier to stay ahead of the adversary. We instead pre-
dict the end state of the “game” — an equilibrium state. We
model the problem as a two-player game, where the adver-
sary tries to maximize its return and the data miner tries to
minimize the amount of misclassification. We examine un-
der which conditions an equilibrium would exist, and pro-
vide a method to estimate the classifier performance and the
adversary’s behavior at such an equilibrium point (e.g., the
players’ equilibrium strategies).

Spam filtering is one motivating application. There are
many examples of spam e-mails where words are modified
to avoid spam filters. We could see that those transforma-
tions the adversary makes to defeat the data miner come
with a cost: lower response rates. Combining the fact that
the reward to the adversary decreases as they try to defeat
the data miner, with the data miner’s interest in avoiding
false positives as well as false negatives, can lead us to an
equilibrium where both are best served by maintaining the



status quo.

Spam filtering also validates our model by confirming
an insight we obtain from the model we develop and ex-
periment in Section 3.2. There is currently intensive debate
about the effectiveness of content based filtering, where at-
tributes are easy to modify. On the other hand, by check-
ing the IP address of each email and blocking port 25 from
home computers, two attributes expensive to modify, people
successfully reduced the overall proportion of spam emails
in 2005 [10]. The tools developed in this paper would help
developers to arrive at such a decision without spending a
long time on making small and constant adjustment to an
(eventually) ineffective strategy. The model assumptions
shown later in the paper are originally based on spam fil-
tering.

Section 2.1 contains our game theoretic model and how
we determine the Subgame Perfect Equilibrium ([9]) and
the associated strategies. Section 2.2 discusses techniques
used to calculate the equilibrium. Section 3 has the simula-
tion results. We conclude with a discussion of future work.
First, however, we will discuss related work, both in adver-
sarial learning and game theory.

1.1 Related Work

Learning in the presence of an adaptive adversary is an
issue in many different applications. Problems ranging from
intrusion detection ([8]) to fraud detection ([3]) need to be
able to cope with adaptive malicious adversaries. As dis-
cussed in [1], the challenges created by the malicious ad-
versaries are quite different than those previous work such
as concept drift ([5]), because the concept is maliciously
changed based on the reactions of the classifier. There have
been applications of game theory to spam filtering. In [6],
the spam filter and spam emails are considered fixed, the
game is if the spammer should send legitimate or spam
emails, and the user decides if the spam filter should be
trusted or not. In [7], the adversary tries to reverse engi-
neer the classifier to learn the parameters. In [1], the authors
applied game theory and aimed to produce a Naive Bayes
classifier that could automatically adapt to the adversary’s
expected actions. They concentrated on a single-shot ver-
sion of the game. While recognizing the importance of an
equilibrium state, they simplified the situation by assuming
the adversary bases its strategy on the Naive Bayes classifier
rather than their proposed adaptive strategy.

We take a different approach, directly investigating the
equilibrium state of the game, at which point all parties will
stick to their current strategies. We aim at providing a guide
for how to construct classifiers that could lead to the data
miner’s eventual success in the game.

2 Problem Formulation

In this section we present a game theoretic model for
adversarial learning applications, and provide a solution for
finding the equilibrium strategies using stochastic simulated
annealing and Monte Carlo integration.

2.1 A Game Theoretic Model

The adversarial learning scenario can be formulated as a
two class problem, where class one (1) is the “good” class
and class two (m2) is the “bad” class. n attributes would be
measured from a subject coming from either classes. De-
note the vector of attributes by © = (21,22, ...,2,) . As-
sume the attributes of a subject x would follow different
distribution for different class. Let f;(z) be the probability
density function of class m;, © = 1,2. The overall popu-
lation is formed by combining the two classes. Let p; de-
note the proportion of class m; in the overall population.
Note p; + p2 = 1. The distribution of the attributes x for
the overall population could be considered as a mixture of
the two distributions, with the density function written as
f(@) =p1fi(z) + p2fo().

Assume that the adversary can control the distribution of
the “bad” class ms. In other words, the adversary can mod-
ify the distribution by applying a transformation 7" to the at-
tributes of a subject «x that belong to 5. Hence fo(x) would
be changed into f§ (). Each such transformation would
have a cost. At the same time, the adversary gains a profit
when a “bad” instance (72) is classified as a “good” instance
(71). We assume that the values of p; and ps will not be af-
fected by the transformation, meaning that adversary would
transform the distribution of 7o but in a short time period
would not significantly increase or decrease the amount of
“bad” instances. Here we examine the case where a ratio-
nal adversary and a rational data miner play the following
game:

1. Given the initial distribution and density f(x), the ad-
versary will choose a transformation 7" from the set of
all feasible transformations S.

2. After observing the transformation 7', the data miner
will create a classifier h.

Consider the case where data miner wants to minimize
its (mis)classification cost. Define ¢;; be the cost of classi-
fying a subject x € m; given that x € 7;. Given transfor-
mation 7" and the associated f] (x), the data miner uses a
classifier h(z), and let L be the region where the instances
are classified as 7; based on h(z), i = 1,2. The expected



cost of classification can be written as ([4]):

o(T,h) = /Lh [ctip1fi(x) + cropa f3 (2)] dz

+/ [c21p1f1(@) + capaf3 (2)] da
Lh

2

Define the payoff function of data miner as us(7T,h) =
—c(T, h). Note that the value of ¢(T, h) is always positive
assuming positive c;; values. In order to maximize payoff
ug, data miner needs to minimize ¢(T', h).

Note that adversary will only profit from the “bad” in-
stances that are classified as “good”. Also note that the
transformation may change the adversary’s profit of an in-
stance that successfully passed the detection. Define g7 (z)
as the profit function for a “bad” instance x being classified
as a “good” one, after the transformation 7" being applied.
Define the adversary’s payoff function of a transformation
T given h as the following:

() = [ (" @) (@)

Within the vast literature of game theory, the extensive
game provides a suitable framework for us to model the
sequential structure of adversary and data miner’s actions.
Specifically, the Stackelberg game with two players suits
our need. In a Stackelberg game, one of the two players
chooses an action a; first and the second player, after ob-
serving the action of the first one, chooses an action as.
The game ends with payoffs to each player based on their
payoff functions w;, us and aj, as. In our model, we as-
sume all players act rationally throughout the game. For
the Stackelberg game, this implies that the second player
will respond with the action ao that maximizes ug given
the action a; of the first player. The assumption of acting
rationally at every stage of the game eliminates the Nash
equilibrium with non-credible threats and creates an equi-
librium called subgame perfect equilibrium. Further more,
we assume that each player has perfect information about
the other. Here in this context, “perfect information” means
that each player knows the other player’s utility function.
Further more, player two observes the a; before choosing
an action. In applications such as spam filtering, this is a
reasonable assumption due to publicly available data.

Hence we define the Adversarial Learning Stackel-
berg Game: Agame G = (N, H, P, u;) is called an Adver-
sarial Learning Stackelberg Game if N = {1, 2}, set of se-
quences H = {0, (T), (T, h)}s.t. T € Sand h € C, where
S is the set of all admissible transformations for adversary,
and C is the set of all possible classification rules given a
certain type of classifier. Function P assigns player to each
sequence in H where P(0) = 1, P((T)) = 2 (i.e., there ex-
ists an corresponding function A that assigns action space

to each sequence in H where A(0)) = S, A((T)) = C,
A((T,h)) = (). Payoff functions u; and us are defined as
above.

We use the minimum cost Bayesian classifier as an ex-
ample to illustrate how we would solve for the subgame per-
fect equilibrium. First we will find the best response func-
tion for data miner given a transformation 7. Using the
population proportion p; of each class as the prior probabil-
ities, and after observing T being applied to the “bad” class
(fF(z)), the optimal classification rule becomes:

ho(z) = { 2 (()illlir;vicsf)mfg(f) < (c21 — enn)prfa(x)

hp(x) is the decision rule that minimizes the expected clas-
sification cost of the data miner. Given T, ht is the best
response of data miner, i.e., Ro(T)) = hp. Then the ad-
versary would find the transformation 7" that belongs to S
which maximizes its profit, given the data miner would use
hr = Ry(T') defined above as its classification rule. Let
L = {z: (c12 — coa)pafi (z) < (21 — cr1)pifi(a)}
be the region where the instances are classified as m; given
hr. The adversary gain of applying transformation 7 is:

which is the expected value of the profit generated by the
“bad” instances that would pass detection under transforma-
tion T'. Therefore we can write the subgame perfect equi-
librium as (T, hr-(x)), where

T = argmazres (9.(T)). (1

Game theory ([9]) established that the solution of the above
maximization problem is a subgame perfect equilibrium.
Furthermore if the action space S is compact and g.(T")
is continuous, the maximization problem has a solution.

Another important aspect of the Adversarial Learning
Stackelberg game and its subgame perfect equilibrium is
that once an equilibrium point is reached, even if the game
is repeated, both parties will not have an incentive to change
their actions.

Theorem 1. Let us assume that the adversarial learning
Stackelberg game is played n times for finite n. Let us also
assume that current f(z) = p1 f1(x) + p2f2(zx) is reached
after playing the game k times and after adversary used
T*, the subgame perfect equilibrium strategy defined by
Equation 1, in the k" game. Also assume that parties will
change their actions if they increase their payoff. This im-
plies that adversary will not change f»(z) in the 5 round
where k& < j < n. Similarly, the data miner will not change
hr« () in the j*" round where k < j < n.

Proof. Omitted. O



The above formulation could accommodate any well de-
fined set of transformations .S, any appropriate distributions
with densities f1(z) and f2(x), and any meaningful profit
function g7 (z). Next we present how above equations can
be solved in practice.

2.2 Solving for the Equilibrium

Since the domain of the integration L"” for the adver-
sary gain g.(7") is a function of the transformation 7', find-
ing an analytical solution to the maximization problem is
very challenging. In addition, even calculating the integra-
tion analytically for a specific transformation is not possible
for high dimensional data. Instead, we use Monte Carlo in-
tegration technique that generally converts a given integra-
tion problem to computing an expected value. The adver-
sary gain g.(7") can be written as:

0:T) = [ (130 @) x @) £ (@)

In the above formula, I, n, () is the indicator function and
1

returns 1 if  is classified into 7y, else it returns 0. f7 (z)
is naturally a probability density function. Therefore g.(T")
could be calculated by sampling m points from f4 (z), and
taking the average of g7 (z) for the sample points that sat-
isfy (c12 — coa)pafs (x) <= (c21 — cr1)prf1 ().

We consider stochastic search algorithms for finding an
approximate solution for Equation 1. Especially, in our
case, a stochastic search algorithm with the ability to con-
verge to the global optimal solution is desired. To satisfy
this goal, a simulated annealing algorithm is implemented
to solve for the subgame perfect equilibrium. [2]

3 Simulation Study

We have done simulations to examine various equilib-
rium strategies. Gaussian distributions and minimal cost
Bayesian classifier are applied in the experiments. Gaussian
distributions have a particularly helpful property: after a lin-
ear transformation of the attributes, we still have a Gaussian
distribution and an explicit expression for the density. This
combination as a simple example gives us important insight
about how costs could affect the equilibrium strategies.

3.1 Profit Function and Gaussian Mixture
First define the profit function g7 (z) as:
9" (x) =g —a|T™ (z) — x|, 2)

where x is the transformed “bad” instance, 7'~*(z) is the
original one, and g and a are positive constant numbers. To

quantify the difference of the “bad” instance T~!(x) be-
fore and after transformation 7', we compute the L; norm
of T~1(x) —x. This is simply adding up the absolute differ-
ences of the individual attributes before and after transfor-
mation 7". The constant value g is the constant profit gen-
erated by original instances. In our preliminary simulation
study, we assume the profit would decline linearly accord-
ing to the extent of the transformation. Here a is the reduc-
tion rate. This definition of the profit is based on the follow-
ing intuition: The more the original distribution changes,
the higher the cost for the adversary. Although more “bad”
instances could avoid being detected, each instance would
generate less profit for the adversary. Hence it is possible to
reach a point that adversary stops modifying the instances,
and the equilibrium is established. Further assume that each
class m;, i = 1,2, has a Gaussian distribution. f;(x) is the
density function for Gaussian distribution N (u;, 3;).

Consider the set of linear transformations S. Define T'
as a n x n real matrix, the transformed instance x has every
element x; as a linear combination of the original attributes
(T Y(x), Ty *(x), ..., T, ())". In our preliminary study S
will be limited to a certain region, not the entire space of the
real matrices. Under transformation 7', f4 () becomes the
density of N(Tue, T3oT"), which is the new distribution
for the “bad” class mo. Here T” is the transpose of 7.

Rewrite the subgame perfect equilibrium using the above
specifics as follows:

T = argmaxr </
T

1

(9g—a ‘T_l(x) — £C|1) fQT(x)dx>
, where fI'(x) is the density of N (T g, TS2T").
3.2 Experimental Results

It is interesting to see what the equilibrium strategies
would become in response to different classification costs
and transformation costs. Due to space limitations, we
show only one set of experiments. In our setting a classifier
changes when the classification cost matrix changes, and
the adversary’s gain is affected by the profit function under
a transformation 7'. In this section we search for approx-
imate equilibrium results under various classification cost
matrices and profit functions. Table 1 contains the param-
eter values (rounded to 4 digits after the decimal point) for
the Gaussian distributions. Notice there is no linear trans-
formation T such that f] (z) = f1(z).

In our cost matrices, the correct classification costs are
fixedto be 0, i.e., c1; = coo = 0. We would modify the mis-
classification costs of classifying a “bad” instance as “good”
and a “good” instance as “bad”. (Please note that c;; is the
cost of deciding = € ; given that x € ;. In our case, 7 is
the “bad” class and 7; is the “good” class). Different profit
reduction rates for the adversary are also considered.



Table 1. Mean and standard deviation for m;
and ms.

3! 2

Attribute W o n o

1 —0.7564 | 0.9595 || —0.6461 | 0.7056

2 —0.7324 | 1.0411 || —0.5501 | 0.8935

3 —1.5979 | 0.8483 || —2.1507 | 0.7973

4 —2.8988 | 1.1486 || —1.7248 | 0.9477

5 2.4559 | 0.9872 3.7256 | 1.2581

6 3.9976 | 1.4711 5.3755 | 1.2593

Table 2. Experiment Results
a=0 | a=0.2| a=0.7 | Initial Gain

co1/c12=1 | 0.4950 | 0.2036 | 0.1958 0.1926
co1/c12 =2 | 0.8430 | 0.3156 | 0.3134 0.3098
co1/c12 =10 | 0.9830 | 0.6250 | 0.6234 0.6102

The adversary’s gain is the expectation of the profit gen-
erated by a certain transformation 7". Note that in the profit
function, there are two parameters: the profit without trans-
formation g, and the profit reduction rate a. In the exper-
iments, without loss of generality, we fix g to be 1 and
change the value of a.

Combining the cost matrices and profit functions defined
above, we performed nine experiments corresponding to
combinations of the above. We restricted our search space
to matrices with entries chosen from [—1, 1].

For each cost matrix of the data miner, the initial gain
of the adversary (i.e., choosing the identity matrix as the
transformation) and our experimental results are reported in
Table 2.

The experiments show that for increasing profit reduc-
tion rate ¢ > 0, simulated annealing cannot find a trans-
formation within the search space that improves the gain
of the adversary significantly better than the identity trans-
formation. For a = 0, the adversary can increase its gain
significantly by using transformation to defeat the filter.

The experiments identified two rather extreme equilib-
rium strategies. 1) The cost for misclassified “good” in-
stances is much higher than for misclassified “bad” in-
stances (i.e., ci12p2 < c21p1), and there is no penalty for
the adversary to perform transformations. The equilibrium
strategy for the classifier is to pass most of the instances,
good and bad alike; the adversary would transform its class
(m2) to have the similar distribution as the “good” class
(m1). 2) Under equal misclassification costs, equal popu-
lation size, and severe penalty for transformation, the clas-
sifier would minimize the total number of misclassified in-

stances; the adversary would not attempt to perform a trans-
formation (i.e., perform the identity transformation). We
could see when under more severe penalty, an adversary has
less incentive to change.

4 Conclusion

Many classification problems operate in a setting with
active adversaries: while one party tries to identify the
members of a particular class, the other tries to reduce the
effectiveness of the classifier. Although this may seem like
a never-ending cycle, it is possible to reach a steady-state
where the actions of both parties stabilize. The game has an
equilibrium because both parties facing costs: costs associ-
ated with misclassification on the one hand, and for defeat-
ing the classifier on the other. By incorporating such costs
in modeling, we can determine where such an equilibrium
could be reached, and whether it is acceptable to the data
miner.
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