
Multiresolution Data Aggregation and Analytical Exploration of Large Data Sets

Li Yang Mustafa Sanver

Department of Computer Science, Western Michigan University

{yang, msanver}@cs.wmich.edu

Abstract

Analytical processing of large relation data demands for

a shared compact representation of data in multiple reso-

lutions in order to efficiently facilitate the incurring data

aggregation, data cube, and range queries. This paper ad-

dresses technical problems of multi-resolution data aggre-

gation and investigates enabling technologies for efficient

analytical processing of large data sets. In particular, the

paper discusses visualization and data access techniques

for interactive exploration of large data sets.

1. Introduction

Analytical processing of large relational data plays im-

portant roles in data warehousing and data mining. In these

areas, relational data are commonly assumed as points dis-

tributed in high dimensional space. Therefore, the problem

is how to support analytical processing, mining, and explo-

ration of a large number of data points in high dimensional

space effectively, efficiently, intuitively, and interactively.

By large data, we mean a data set that is too large to

be loaded entirely into main memory. Over the years, data

warehousing and data mining communities have developed

efficient techniques to facilitate decision support on large

data. One major idea is to materialize data aggregates and

data cubes. However, the idea is not effective to restrain

the exponential size of the data involved. For a relational

data set with d aggregating attributes A1, . . . , Ad, multi-

dimensional aggregation on the d attributes would have
∏

d

i=1
|Ai| cells, which constitute a base cuboid in the data

cube on the d attributes. Assume each attribute Ai has

Ci levels of concept hierarchy, the full data cube would

contain
∏d

i=1
Ci such cuboids. Although techniques have

been proposed to reduce the size of the aggregated data,

most of these techniques (1) support only a small num-

ber of dimensions, (2) ignore conceptual hierarchy, and

0Research described in this paper is supported in part by National Sci-

ence Foundation under Grant IIS-0414857.

(3) work in ad hoc ways and apply only to special sit-

uations or data distributions. In data mining, techniques

have been developed for data clustering and data classifi-

cation of large relational data. However, these techniques

have the common drawback that they are query-dependent.

They build their own unique data structures once for each

query and such structures are generally of no use to an-

swer further queries. Using raw relational data as input,

these approaches need to scan the data set at least once

for each query, which cause the computational complexities

to be at least O(n). In addition, decision support applica-

tions have additional concerns such as data integration and

privacy protection. Existing privacy-preserving techniques

(perturbation, k-anonymization, swapping) are ad hoc and

also query-dependent.

The above observations suggest that large relational data

in their raw format are rarely appropriate as data input for

decision support applications. We have the following be-

liefs of analytical applications on large data sets:

• We believe that the key challenge is to create a com-

mon data representation that convert a large amount of

relational data into forms that facilitate analytical ap-

plications. Such a data representation should be com-

pact yet still comprehensive enough to answer most

queries. Preparing such a common data representa-

tion may take time (ideally incremental to input data

records). However, decision support should be more

efficient using this data representation as input.

• We believe that such a common data representation

should be available in multiple resolutions and data

resolution plays an instrumental role in analytical ap-

plications. Applications should be offered a trade-off

between precision and performance. Another big ad-

vantage of data resolution is that it provides a radical

mechanism for privacy preservation: each user can be

given permissions to access the data within a specific

range of resolutions and, therefore, the privacy of in-

dividual data records is preserved. Existing data ware-

housing techniques do not support data resolution be-

yond concept hierarchy, yet concept hierarchy is not

1

fully honored in most data cube implementations.

• We believe that such a common data representation

should support multidimensional indexing of aggre-

gated data in order to support slicing and dicing, data

selection, and range queries.

In summary, we think that decision support applica-

tions need a common representation of aggregated data.

Such a data representation should be available in multiple

resolutions and should provide a mechanism to index the

multi-resolution data aggregates. In this paper, we discuss

data aggregations piggybacked in internal nodes of a high-

dimensional tree index as an intermediate data interchange

mechanism between database and analytical applications.

Because the number of entries of the aggregated data de-

pends on the resolution rather than the number of origi-

nal data records, it makes decision support tools scalable

to large data sets.

As a fundamental change of input data format, multi-

resolution data aggregation opens new challenges for re-

search in OLAP, data mining, and data exploration. This

paper investigates enabling techniques for these analytical

applications. In particular, we focus on interactive visual

exploration of large data sets, which is an important area

that has not been adequately addressed by the data mining

community.

2. Multi-Resolution Data Aggregation

At the core of multidimensional data analysis is efficient

computation of data aggregates. As a primitive operation

in SQL, the data aggregation (group-by) operation is ex-

tensively studied in database systems. Basic techniques for

computing group-by’s are sorting and hashing to organize

the data by value and then aggregating with a sequential

scan (often built into the sorting or hashing) of the orga-

nized data records. Because data reporting also needs subto-

tal and cross-tabulation, Jim Gray et al. [5] proposed new

operators, data cube and roll-up. A data cube can be logi-

cally thought as the union of all group-by’s each of which is

obtained by grouping on a subset of aggregating attributes.

Efficient implementation of the data cube operation has

received extensive study with many interesting approaches

proposed. Data cube computation soon becomes prohibitive

as the number of aggregating attributes increases (without

considering class hierarchy, a full cube on d attributes has

to compute 2d group-by’s). Iceberg cube [2] is a technique

to compute only dense cells. Methods for computing ice-

berg cubes include BUC [2], H-cubing [6], and Star-cubing

[11]. Researchers also paid attention on navigating data

cubes, for example, generalizations along various roll-up

paths [10] and cube transversals and closures [3].

The above techniques have not considered class hierar-

chy (never to mention multiple resolutions). A class hierar-

chy Ci on dimension Di can be modeled as a lattice struc-

ture (in most cases it is simply a chain of layers with total

order). A cube lattice on the dimensions D1, . . . , Dd is then

a product lattice C1 × · · · × Cd where the partial order is

defined as c′
1
× · · · × c′

d
� c′′

1
× · · · × c′′

d
if c′

i
� c′′

i
for

c′
i
, c′′

i
∈ Ci and 1 ≤ i ≤ d respectively. Figure 1 gives

example class hierarchies on three dimensions and shows a

Hasse diagram of their cube lattice. The cube lattice with

class hierarchy provides a way to aggregate data at multi-

ple resolutions. Class hierarchy introduces two fundamen-

tal problems to efficient cube computation: (1) The number

of cuboids in a cube lattice increases from 2d to
∏d

i=1
|Ci|,

assuming each dimension Di has |Ci| levels of concept hi-

erarchy; (2) The data cube lattice is no longer a power set

lattice and may require new strategies for lattice traversal.

In addition to multi-resolution data aggregation, range

query is important in analytical applications. There do exist

multi-dimensional index structures for data cubes: Ho et al.

[7] used a quad-tree structure where each node contains the

maximum measure value for a partition. An R*-tree is used

to manage the minimum bounding hyperrectangles (MBRs)

and the prefix sums of the dense regions. Roussopoulos

and Kotidis [9] introduced cubetree which supports multidi-

mensional range queries and bulk incremental updates. The

cubetree structure is realized by a collection of packed R-

trees. R-tree has the drawback that the overlap of MBRs in

internal nodes grows with increasing dimensionality. Ester

et al. proposed a DC-tree structure [4] for dynamic index

maintenance. DC-tree supports concept hierarchy and has

better performance when dimensionality increases.

For the past few years, we have focused on data access

methods to support multi-resolution data aggregation. We

have found that a partition-based high dimensional tree in-

dex offers a good vehicle to piggyback data aggregated at

multiple resolutions, provided that the data have been ag-

gregated according to the regions represented by internal

nodes of the tree. Internal nodes of the tree cannot overlap

with each other in order to make sure that every data point

is aggregated exactly once at a given resolution. There-

fore, the high dimensional index on which we choose to

piggyback data aggregates must meet all of the following

requirements: (1) it is a hierarchical data structure in or-

der to carry data aggregates at multiple resolutions; (2) it

provides a point access method (PAM) instead of a spa-

tial access method (SAM); (3) regions represented by sib-

ling nodes are disjoint with each other (no point is counted

more than once); (4) the region represented by a node is to-

tally covered by the union of regions represented by all of

its child nodes (no point is uncovered). In short, the high

dimensional index must be a partition-based PAM. There

exist a few partitioned-based PAMs on secondary storage.

ALL (A)

ALL (A) ALL (A)

Month (M) Week (W)Group (G) State (S)

Product (P) City (C)

Day (D)

(a) Product (b) Location (c) Date PCD - base cuboid

PCA

GCA

AAD

GADASD

GSD PAD

PSD

ACD

GCD

AAA - apex cuboid

GAAASA

GSA PAAACA

PSA

Figure 1. Lattices of attributes in three dimensions and a Hasse diagram of their product lattice.

Root

Page

Leaf

Pages

Internal

Pages

Figure 2. An example 2dB­tree.

kdB-tree [8] is a basic PAM that other PAMs (LSD-tree,

Buddy-tree, hB-tree, and Bkd-tree) are based on. We have

chosen kdB-tree as our primary data access method for its

simplicity. We call such a tree index data aggregation tree.

Figure 2 shows an example kdB-tree when k is two.

We have extended the kdB-tree structure by storing data

aggregation values in internal nodes of the tree. Each disk

page represents a hyperrectangle in high dimensional space

and contains a collection of internal nodes that partition the

hyperrectangle into smaller hyperrectangles. Each internal

node has the format (Region, PageID, AggregateValues),

where Region specifies the hyperrectangle represented by

the node, PageID points to a child page representing the hy-

perrectangle, and AggregateValues represent a list of aggre-

gate measures of all data points in the hyperrectangle. The

user decides which data aggregate measures are kept in the

node when building the tree.

This approach to multi-resolution data aggregation in-

troduces a few research topics, the biggest one of which is

probably the performance of analytical and range queries

supported by the data aggregation tree. In principle, any

partitioned-based PAM could be used to piggyback data ag-

gregates. An important work we have to do is to carefully

examine them for their performances for range queries, bulk

loading, data insertion/deletion, and maintenance of piggy-

backed data aggregates. The original kdB-tree suffers from

a cascade splitting problem of data insertion for the purpose

of keeping the tree height-balanced. The problem causes

unpredictable performance of data insertion. Another prob-

lem is bulk loading. Since the traditional sort-based ap-

proach is not applicable, high dimensional bulk loading are

primarily buffer-based and sample-based. Techniques for

bulk loading need to be studied together with node splitting

strategy for loading large relational data sets.

An additional advantage of multi-resolution data repre-

sentation is that it provides support to preserve the privacy

of individual data records. Data resolution gives a new di-

mension for privacy preservation where permissions can be

granted to users according to data resolutions. In this way,

a multi-resolution data representation enables permissions

to each user to access the data within a specific range of

resolutions and, therefore, preserves the privacy of individ-

ual data records in a radical way. This approach for privacy

preservation deserves further investigation.

Another concern is to decide a set of data aggregate mea-

sures that should be kept in each tree node. The set of

aggregate measures should be enough to answer most user

queries and still small enough in size so that each internal

page keeps a high fan-out degree. Gray et al. [5] has classi-

fied aggregate measures into three categories: distributive,

algebraic, and holistic. Distributive and algebraic mea-

sures in an index node can be directly computed from the

corresponding distributive aggregate measures in its child

nodes. An important decision is therefore to choose a set

of distributive aggregate measures to be kept in tree nodes

and to make clear what analytical and mining queries can

be answered using the measures without accessing individ-

ual data records. In data clustering, for example, BIRCH

[13] uses cluster features (CFs) to summarize a data clus-

ter and CF-trees to represent hierarchical cluster structures.

CFs consist of count, sum, and squared sum of data points.

Such a compact representation of data is powerful enough

to compute cluster center, radius and diameter, L1 and L2

distances between cluster centers, average inter-cluster dis-

tance, average intra-cluster distance, etc. If we keep count,

sum of attribute values, and sum of squared attribute val-

ues, we would be able to compute most linear and quadratic

statistical functions directly from the aggregate measures.

3. Enabled Applications

Data aggregation tree may provide a common density

representation of large relational data for a variety of de-

cision making applications. Multi-resolution data aggre-

gation offers a new format of data input and opens a new

arena of research in data reporting, analytical processing,

data mining, and data exploration. One important issue is

how to process efficiently data aggregation queries, OLAP

queries, and data mining queries as index-only queries on

data aggregation trees. There are also other operations (for

example, local magnification and brushing in visual data ex-

ploration) that issue more complex queries to be answered

by accessing data aggregation trees.

Multi-resolution data aggregation brings unique oppor-

tunities to data mining algorithms and techniques. Specif-

ically, we are interested in developing density-based and

grid-based data mining techniques using multi-resolution

data aggregation as data input. For this purpose, some ex-

isting data classification techniques as well as hierarchical

and grid-based approaches for data clustering may poten-

tially be extended to work with multi-resolution data aggre-

gation. These areas deserve further investigation.

Issues remaining are how to reduce the I/O cost and

how to optimize these queries with proper buffer manage-

ment and pre-fetching strategy. One way to improve the

response time of data access is to make database systems

act in advance of the user action. Specific tasks include ef-

fective memory management and buffer replacement strate-

gies, and data pre-fetching and caching. Existing tech-

niques in query processing and buffer management may still

be useful in the context of data aggregation tree.

4. Visual Data Exploration: A Case Study

Large relational data challenge visual data exploration in

terms of both data size and dimensionality. A fundamen-

tal problem is the conflict between a large number of data

records and the user’s requirement for interactivity. For vi-

sual data exploration, data aggregation tree provides a good

representation of data where data exploration queries can

TPIE

Access Method Interface

kdB-tree

Disk

K

D

B

M

S

KDBMS Server

kdb> running

kdb> list connections

 1: abc@12.14.56.56 asdas

 2: def@14.133.22.33 asd

kdb>

n23Tool Client

Computer

Network

Figure 3. n23Tool system architecture.

(a) Footprint splatting. (b) Density-based ||-coords.

Figure 4. Enabling visualization techniques.

be expressed as index-only queries. From the visualization

perspective, data aggregates are high dimensional volume

data where each data aggregation entry represents a high di-

mensional hyperrectangle with aggregate measures of data

points in the hyperrectangle. To visualize aggregated data,

we have combined [12] grand tour and footprint splatting

and have extended parallel coordinates to a density-based

version. Both techniques can visualize data by directly ac-

cessing data aggregates stored in internal pages of a data

aggregation tree. Zooming is supported through accessing

data aggregations in internal nodes at different levels of the

tree.

To demonstrate the feasibility of this idea, we have de-

veloped a software system n23Tool for visual exploration

of large relational data sets. Figure 3 depicts its current

client/server system architecture. On the server side, we

use kdB-tree as an external high dimensional index to or-

ganize multiresolution data aggregations, to support visual

browsing and zooming, and to facilitate range queries for

user visual interaction. The kdB-tree Management System

(KDBMS) implements the tree index on top of TPIE [1],

which provides a set of template classes and functions for

efficient disk I/O. On the visualization client side, two visu-

alization techniques, footprint splatting and density-based

parallel coordinates, are extended and integrated to accept

aggregated data. Figure 4 shows screen snapshots of the

two visualization techniques on the Boston housing data set.

(a) Overview of all housing units. (b) Outliers eliminated. (c) Old houses in the state of NY. (d) Energy usages of 3-bedrooms.

Figure 5. Screen snapshots as we drill­down the 1% PUMS housing unit data of US Census 2000.

Opacity of each visual element (voxel in volume rendering

and horizontal band in parallel coordinates) was assigned

as a function of aggregate measures (usually count of data

records) in the corresponding data hyperrectangle.

As an example, Figure 5 gives four screen snapshots of

visualizing 1.25 million housing unit records in the 1% Pub-

lic Use Microdata Sample files made public by the US Cen-

sus 2000. Twelve variables (including four utility usage

variables — electricity, gas, water, and oil) have been cho-

sen. The first three screen snapshots visualize data in paral-

lel coordinates, each of which shows a gray data selection

band across all coordinates. Each data selection band spec-

ifies a query region. The query region is used to retrieve a

subset of data, which are visualized in the next screen snap-

shot.

An important issue of future research is to evaluate exist-

ing multidimensional data visualization techniques for their

effectiveness to convey multi-resolution data aggregation

information. Other issues include interactive picking and

brushing, distortion techniques, and so on.

5. Summary

Large relational data bring fundamental challenges to an-

alytical data processing. This paper addresses these chal-

lenges and proposes to use multi-resolution data aggre-

gation piggybacked on multidimensional tree index as a

generic common representation of data for decision support

applications. This paper further investigates techniques in

analytical processing, data mining, and data exploration to

take advantage of this multi-resolution data representation.

In particular, it studies interactive visual exploration of large

relational data, which is a key and somewhat neglected area

in data mining and information visualization.

References

[1] L. Arge, O. Procopiuc, and J. S. Vitter. Implementing I/O-

efficient data structures using TPIE. In Proc. 10th European

Symp. Algorithms, pp. 88–100, Rome, Italy, Sept. 2002.

[2] K. Beyer and R. Ramakrishnan. Bottom-up computation

of sparse and iceberg cube. In Proc. ACM SIGMOD Conf.

Management of Data, pp. 359–370, June 1999.
[3] A. Casali, R. Cicchetti, and L. Lakhal. Extracting seman-

tics from data cubes using cube transversals and closures.

In Proc. ACM Inter. Conf. Knowledge Discovery and Data

Mining, pp. 69–78, Washington, DC, Aug. 2003.
[4] M. Ester, J. Kohlhammer, and H.-P. Kriegel. The DC-tree: A

fully dynamic index structure for data warehouses. In Proc.

Inter. Conf. Data Engineering, pp. 379–388, San Diego, CA,

Mar. 2000.
[5] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Re-

ichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data

cube: A relational aggregation operator generalizing group-

by, cross-tab, and sub-totals. Data Mining and Knowledge

Discovery, 1(1):29–53, Mar. 1997.
[6] J. Han, J. Pei, G. Dong, and K. Wang. Efficient computa-

tion of iceberg cubes with complex measures. In Proc. ACM

SIGMOD Conf. Management of Data, pp. 1–12, Santa Bar-

bara, CA, June 2001.
[7] C.-T. Ho, R. Agrawal, N. Megiddo, and R. Srikant. Range

queries in OLAP data cubes. In Proc. ACM SIGMOD Conf.

Management of Data, pp. 73–88, Tucson, AZ, May 1997.
[8] J. T. Robinson. The K-D-B-tree: A search structure for large

multidimensional dynamic indexes. In Proc. ACM SIGMOD

Conf. Management of Data, pp. 10–18, Apr. 1981.
[9] N. Roussopoulos, Y. Kotidis, and M. Roussopoulos. Cube-

tree: organization of and bulk incremental updates on the

data cube. In Proc. ACM SIGMOD Conf. Management of

Data, pp. 89–99, Tucson, AZ, May 1997.
[10] G. Sathe and S. Sarawagi. Intelligent rollups in multidi-

mensional OLAP data. In Proc. Inter. Conf. Very Large

Databases, pp. 531–540, Roma, Italy, Sept. 2001.
[11] D. Xin, J. Han, X. Li, and B. W. Wah. Star-cubing: Comput-

ing iceberg cubes by top-down and bottom-up integration.

In Proc. Inter. Conf. Very Large Databases, pp. 476–487,

Berlin, Germany, Sept. 2003.
[12] L. Yang. Visual exploration of large relational datasets

through 3D projections and footprint splatting. IEEE

Trans. Knowledge and Data Engineering, 15(6):1460–1471,

Nov./Dec. 2003.
[13] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an ef-

ficient data clustering method for very large databases. In

Proc. ACM SIGMOD Conf. Management of Data, pp. 103–

114, Montreal, Canada, June 1996.

