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Abstract—Cloud storage services are the way of the future, if
not the present, but broad adoption is limited by a stark trade-off
between privacy and functionality. Many popular cloud services
provide search capabilities, but make only nominal efforts to keep
user data fully private. Alternatives that search private user data
on an untrusted server sacrifice functionality and/or scalability.

We describe Norton Zone, Symantec’s secure and scalable
public storage system based on our valet security model. Whereas
most commercial cloud storage systems secure user data with
access control and legal mechanisms, Zone’s cryptographic
techniques provide proven privacy guarantees. This gives users
an extra layer of security without compromising functionality.
Zone’s performance is comparable to unencrypted cloud storage
systems that support search and sharing. We report on the design
of Zone and the lessons learned in developing and deploying it in
commercial, distributed datacenters scalable to millions of users.

I. INTRODUCTION
Both consumers and enterprises are increasingly drawn

toward public cloud storage systems, but trade-offs between
privacy and functionality keep many from uploading their data
to the cloud. Today’s sophisticated users are often unwilling
to sacrifice either one.

A fully featured cloud storage system [28] must provide
data confidentiality and integrity, efficient data sharing and
searching, and service availability and reliability. However,
despite significant effort from both industry and academia, a
fully functional and scalable cloud storage system is not yet
practical.
Commercial, secure cloud storage systems. Most of the
existing commercial “secure” cloud storage systems use en-
cryption to protect user data. These systems can be roughly
divided into two categories. One is off-premise security (data
in the service provider’s control) and the other is on-premise
security (data in the customer’s control). The most popular file
hosting and sharing services, such as Dropbox [11], Box [8],
Microsoft OneDrive [32], and Google Drive [22], fall into the
first category. These services generate and keep users’ keys.
Data security and privacy rests on trust in the service and its
employees rather than cryptographic guarantees. One simple
way to determine if a service belongs to this category is to see
if it supports password reset. This is only possible if the service
has its users’ keys. Off-premise security has been strongly
criticized for the fact that the service can see user data and
can potentially leak user keys or the keys for encrypting them
(“a vicious circle”). These keys are protected only by legal
and physical mechanisms.

Some less popular file hosting and sharing services, such
as Mega [31], SpiderOak [40], and Wuala [44], provide on-
premise security. These systems guarantee much better user
privacy. They simply allow clients to encrypt their own data
and then upload the ciphertext. These services have no access
to user plaintext, so they cannot search user data with a
strictly server-side implementation. None support encrypted
search, perhaps because of its complexity or perhaps because
of the computational requirements it puts on the client. This
requirement is particularly prohibitive for devices such as
tablets and mobile phones.
Techniques from academia. The academic world has put
significant effort into building techniques for securing data
in the cloud. Such systems tend to be prototypes and most
address only one or two specific problems for cloud storage
systems. Many challenges inhibit real-world deployment of
academic techniques:
TECHNIQUE COMPATIBILITY. Techniques such as encrypted
search, convergent encryption [4, 10] (to achieve secure dedu-
plication), and secure file sharing are usually considered in iso-
lation. Only a handful of conceptual constructions (e.g., [28])
are proposed to attain all of these goals. Though these tech-
niques may work well by themselves, they are not necessarily
compatible with each other and often complicate each other.
SEARCH FUNCTIONALITY. The search patterns enabled by
the existing “practical” encrypted search schemes are limited,
mainly focusing on keyword search and simple derivatives.
However, customers demand the same experience as with
unencrypted services, with metadata search, faceted search,
disjunctive and conjunctive search, wildcard search, auto-
complete, etc. Moreover, enterprise search engines are typ-
ically complex and even distributed across machines and
applications. Note that fully homomorphic encryption [16] and
oblivious RAM [21] are general enough to support this range
of functionality, but are highly inefficient.
SPACE OVERHEAD. Though disk is becoming less expensive,
space is still extremely precious in cloud computing. Two
space factors inhibit the wide adoption of secure storage
systems. First, search indexes have private data and must also
be encrypted. Encrypted search often takes significantly more
space. For instance, to encrypt SQL queries, CryptDB [36]
has 4.21× space overhead. Second, when files are shared, the
recipients must also be able to search these documents. If the
system redundantly indexes shared documents, index space



will quickly eclipse that of the indexed documents.
MOBILE ACCESSIBILITY. Modern cloud storage systems make
data accessible from many platforms. Making secure data
available on mobile devices is difficult, since they have limited
computational ability.
SCALABILITY. Scalability is an important goal for practical
cloud storage systems. Many schemes are not practical simply
because they fail to scale. As a fully functional storage
system is complex, theoretical analysis or even prototype
implementation does not usually suffice to verify if the system
is scalable. One must make sure the system can efficiently
support millions of users simultaneously and work well on
distributed datacenters.

This paper provides a meaningful trade-off between func-
tionality and privacy. We advocate a new model—the valet
security model, which lies in between off-premise security
and on-premise security—and describes Norton Zone, a full-
featured file sharing application secured by this model. Zone
guarantees confidentiality, supports secure file sharing and en-
crypted search, and provides high availability and scalability.
In particular, it is designed to handle frequent file sharing and
provides all the search patterns that other commercial search
engines implement. It is practical in the sense of computational
and space efficiency and it adds moderate overhead compared
to unencrypted, conventional file systems. It is highly scalable
in the sense that it can support millions of users.

Zone’s implementation included secure sharing, interfaces
on Windows, Mac, web, and mobile, and many other features
common to cloud storage platforms, plus enhanced security
guarantees from our valet security model. We implemented
and tested secure searching functionality, but we did not have
time to integrate it.

Zone started production in May 2013. At the peak time Zone
had about 300,000 accounts. It was terminated in August 2014
because the company decided to focus on its key strengths
in security and information management and deprioritize its
engagement in the file sync and share market [33]. We report
on the design of Zone and the lessons learned in developing
it.

II. THE VALET SECURITY MODEL
The distinctive capabilities of Zone rest on our new security

model. Off-premise security, nearly universal in commercial
file sharing applications, supports development of rich func-
tionality by giving the service provider full access to the user’s
plaintext. Our security model supports the same functionality
(with a few exceptions), but with significant additional security
guarantees. Its guarantees are not as strong as those of on-
premise security—guarantees preferred in academia and by the
highly security conscious; however, the valet security model
trades off a small amount of functionality for considerable
additional security.

We compare the valet security model to on-premise and off-
premise security for the following categories of attacks: 1) An
attacker (whether a malicious insider or an external adversary)
accesses to server storage a limited number of times. 2) An
attacker has repeated or continual access to server storage.

3) An attacker accesses server memory and storage a limited
number of times, but cannot alter server executables. 4) An
attacker (or a service provider who breaks trust) has persistent,
full access to the server.

On-premise security places no trust in the server and can
be secure against all of these attacks. Off-premise security
trusts the server fully; thus, any breach of server security can
be extremely damaging. The valet security model trusts the
server in a limited scope. This allows it to provide full security
against two categories of attacks and partial protection against
one more.

The core principle of the valet security model is that the
server only has access to a user’s keys and plaintext while
the user is logged in. The user generates and stores his own
master key and gives it to the server on login. The server keeps
this key, and other keys and any of the user’s plaintext, only
in memory and uses them only as directed. All data written
to disk is encrypted (with keys secured by the master key,
as described in §III). On logout, the server flushes the user’s
keys and plaintext from memory. If the user trusts the server
on these two points, he may have full confidence in his data’s
security while logged out.

This need for trust lacks the elegant simplicity of the on-
premise security model. It seems to come down to the same
assumptions as the off-premise model: that the system is
designed as advertised and implemented soundly, that good
security practices are in place and effective against external
attackers, and that employees are trustworthy. None of these
can be guaranteed. If an off-premise system encrypts user
data with system or user keys, it must also store these
keys. An attacker who breaches security far enough to access
ciphertext must only take a few more steps to get the plaintext.
Cryptography in the off-premise security model raises the bar
against intrusion only quantitatively.

In one respect, the valet security model is similar. The users
need to trust a system in this model in a more limited way
because that keys and plaintext are never stored on disk and are
flushed from memory when the user logs out. This reduces the
amount of the system that is vulnerable, but that part may still
be subverted by poor implementation or by attackers. This is
merely a quantitative protection. It is no different from an off-
premise system with encryption: the whole system’s security
rests on a component that stores system and user keys, yet
that component is not itself protected by cryptography.

Yet the valet security model also qualitatively reduces the
scope of potential vulnerabilities. If the system is compro-
mised, the attacker cannot access logged out users’ data. No
preceding point made the valet security model particularly
noteworthy, but protection against two and a half of the
four attack categories is a significant advance. It is a unique
and valuable trade-off, supporting a range of functionality
(encrypted search and other, arbitrary processing of user data)
and also cryptographically provable security guarantees.

We will now discuss generally how systems built in the
valet security model (and not Zone specifically) resist the
attack categories listed above: 1) If an attacker accesses server



storage a limited number of times, he cannot access any user
plaintext. All data is encrypted by a tree of keys whose root
user key is not stored on the server. Adversary can find the
amount of data each user has and, depending on the system,
perhaps broken down by type. 2) Repeated access to server
storage does not help an attacker much. He can see when
each user adds, modifies, and removes data. A system in
the valet security model could conceal even this metadata by
appropriately encrypting its file system, though we did not
implement that. 3) A moderately sophisticated attacker might
be able to access memory and disk once or a few times (e.g.
by subverting the system into misusing other users’ keys), but
not alter executables. In this case, he can pull logged in users’
keys from memory and get (or alter) all their data. He can
replace a logged out user’s public key(s) so that, when other
users share files with this user (or the server receives user
data from some external system), the files or their encryption
keys are encrypted with the substituted public key. He cannot,
however, read data for any user that wasn’t logged in during
an intrusion (except for files shared with logged in users). This
considerably limits the damage from moderately sophisticated
attacks. 4) Suppose an attacker (perhaps the service provider
itself) has continuous access to the system or, equivalently,
he can replace running binaries. Such an attacker can get
virtually all user data. The system still protects the small
number of users who have not logged in since the system
was first breached. This only benefits users that are willing
to abandon their data so that others cannot access it (e.g.
users who believe their data may have been requested by a
subpoena). Otherwise, the valet security model is vulnerable
to highly sophisticated attacks.

In general, the valet security model’s encryption require-
ment need not slow down processing very much. In a hybrid
encryption system, most encryption is symmetric and adds
limited overhead to the accompanying file system and network
operations; however, the impact will be disproportionate when
loading data from particular file locations if the system must
decrypt an entire file. §IV describes how we solve this.

In the valet security model, Zone aims to achieve confiden-
tiality with a fully range of search modes, integrity, secure
and efficient sharing, mobile accessibility, fault tolerance,
scalability, and other security requirements in a time and space
efficient manner.

III. DESIGN OF ZONE

Norton Zone is a fully functional, secure, and scalable
cloud storage system. It distinguishes itself from other sys-
tems in three aspects: First, it securely supports industry-
level search engines allowing a variety of search patterns
that other encrypted search systems do not enjoy. Second, it
addresses space complications incurred by scalable sharing
and searching and explores meaningful trade-offs between
security, efficiency, and space overhead. Third, it also supports
several novel and user-friendly applications that were not
explored before, including securely processing incoming data
for logged out customers and secure multi-tenant search. Zone
is secure in our valet security model.

A. A Toy Framework with Secure Sharing
We begin with a description of a simple but less efficient

method that only supports secure sharing.Each customer i
has a password pwi for logging into the system. We adopt
the conventional logging method by verifying the customer’s
password hash hki. The server can then securely and deter-
ministically derive a customer master key mki from pwi. To
enable secure file sharing, the service provider additionally
generates an associated public/secret key pair (pki, ski). The
provider further encrypts ski using the customer’s master key
mki to get symmetric ciphertext ci, which is stored on disk.
The system encrypts each user file f with a separate file key
kf to facilitate efficient file sharing and enable secure file
deduplication. It encrypts a user’s file key with pki and stores
the resulting cif (and the encrypted file) on disk. All decrypted
keys (including pwi, mki, and ski) exist only temporarily and
only in memory. They will be deleted when the customer logs
out or does not perform operations for a long time. Finally,
the customer i’s system identifier is SIi = (pwi, hki, pki, ci).

Each time user i logs into the system, he or she needs
to provide his or her password pwi to get the access token
Tokeni. This access token has the form (flagi,mki, ski),
where flagi is binary flag representing whether i is granted
access to its file service, mki is deterministically generated
from its password, and ski is obtained by decrypting ci using
mki. Tokeni will be used to perform subsequent file operations
(e.g. sharing files, decrypting and reading the user’s own
encrypted files, and retrieving files shared with the user).

When an originator i shares a file f with a recipient j, the
system first retrieves cif and decrypts it with ski to get the
file key kf . It then encrypts kf with j’s public key pkj to
get a ciphertext cjf . When j logs into the system and obtains
his access token of the form Tokenj = (flagj ,mkj , skj),
the system can decrypt cjf using j’s secret key skj and
then decrypt the encrypted file and return f . The customer
login password, its commands, and results returned can be
transmitted via SSL or other secure means.

The file key kf can either be derived from the file’s metadata
using a PRF (so that it does not need to be stored), by
randomly and uniformly sampling from a particular space (in
which case it is easier to implement and especially to support
secure sharing), or from the hash of the file (to enable secure
file deduplication). Throughout our implementation, we use a
combination of the latter two—popular or large files generating
keys via their hashes and otherwise via uniformly producing
the keys.

This system satisfies our valet security model. User in-
formation is fully secured against outside adversaries if the
server is honest—all files are encrypted and only the intended
recipients are able to get the shared files. If the server is
compromised, data of the users who have not logged in will
still be confidential. The service provider cannot respond to
subpoenas, since it does not retain customer keys. Any request
for the plaintext data must be made to the user.

However, there are at least three problems with the above
framework. First, the public key encryption is relatively ex-



pensive. Each time a user shares files, the originator must
perform a public key encryption operation. Furthermore, each
time a recipient accesses a file (shared or not), the system
must perform a public key decryption operation. Second, we
note that for each shared file and each recipient, the system
must store the file’s key encrypted with the recipient’s public
keys. If a user shares many files with many users, this can
use a large amount of space. For instance, assuming public
keys are 1024 bits long (and symmetric keys are shorter),
sharing 5,000 files with 2,000 users will use 1.192GB. Third,
the framework does not extend to protecting and scaling
search indexes. Indexes contain much of the indexed files’
confidential information, so they must also be encrypted. They
are typically 15%-30% of the size of indexed files, so if
a shared file is indexed redundantly in many users’ search
indexes, the indexes’ total size will quickly exceed the original
files’ size. All of these problems place severe practical limits
on sharing files.
B. Zone Sharing

We use three novel techniques to address the problems.
Symmetric cryptography for logged in users. To minimize
the performace overhead from asymmetric cryptography, we
change the toy model in a few ways: First, each user has an
additional symmetric key k′i that encrypts the user’s file keys.
When a user accesses his own file, the system performs a
symmetric key operation to get kf . Second, when sharing a
file with a recipient j that is logged in, the system can encrypt
kf with k′j . When a recipient is logged out, we must still use
public key cryptography, but our third improvement is that
the first time j accesses the file, we will re-encrypt kf with
k′j so that subsequent file operations require only symmetric
cryptography. This may also be done during idle time after the
recipient logs in, if latency is more important than processing
time and it is sufficiently likely that the recipient will open
the file.
Sharing via combination keys. To reduce the space and time
cost of sharing files to the sum (rather than the product) of
the number of recipients and the number of files shared, we
introduce another layer of encryption that uses combination
keys. When a user shares a file, we first identify the set
(or combination) of users that will be able to access the
file (including the recipients, the sharing user, and any users
that could already access the file). We create a symmetric
combination key ck for this set of users, if one does not
already exist. We then store an encrypted copy of ck for each
user. For the originator and any other users that are logged in,
we encrypt ck with each user j’s k′j . For all other users, we
encrypt ck with their public keys. As above, when a recipient
j logs in (and accesses a shared file), we can re-encrypt ck
with k′j . If ck was previously created for this set of users,
then each user already has an encrypted copy of ck. We then
encrypt the keys of the shared files (the file keys—not the files
themselves) with ck. We store them in a central location, so
that any user with ck can access and decrypt these file keys.
Now we return to our example. If a user shares 5,000 files
with 2,000 users, with 128-bit symmetric cryptography, the

space for storing keys (we still assume users are logged out)
is 0.0025GB, instead of 1.192GB.

The second purpose of introducing the combination key is
to encrypt the index key which is used to encrypt the index.
Space-efficient search with sharing. To make our search
indexes space-efficient, Zone creates one search index (and
corresponding encryption key) per combination of users that
share files. Suppose that Alice shares file f1 with Bob and
shares files f2 and f3 with Bob and Charlie. Bob shares file
f4 with Alice. Alice and Bob also have files they share with
no one. Charlie has no files of his own. The system will then
have these indexes: a) Index 1 for Alice and Bob: files f1 and
f4; b) Index 2 for Alice, Bob, and Charlie: files f2 and f3; c)
Index 3 for Alice only: Alice’s private files; and d) Index 4
for Bob only: Bob’s private files.

When a user searches, we must check several search in-
dexes. For example, when Alice searches, we must check three
indexes; when Bob searches, we must check three indexes;
and when Charlie searches, we must check only one index.
In general, we must check search indexes for every user
combination to which a user belongs where there is a shared
file. In general, this can be exponential in the number of users,
but cannot be more than the number of files in the system.

Undersharing and oversharing are two techniques for re-
ducing search time for users that share files with many com-
binations of users. They trade space or security for better query
time. In undersharing, we eliminate an index and redundantly
index its contents in several existing, less shared indexes.
The union of these indexes’ user combinations equals the
eliminated index’s user combination. For example, we might
eliminate index 1 in the example above and add f1 and
f4 to indexes 3 and 4. When Alice or Bob queries, they
must check one fewer index. In oversharing, we merge an
index with another index shared by a proper superset of
the eliminated index’s user combination. This unfortunately
means that we must check access rights when we search. For
example, to overshare index 1, we merge it with index 2. As
with undersharing, Alice’s and Bob’s queries must check one
fewer index. Charlie’s queries check the same indexes, but we
must test whether he should be able to see each search result
from index 3. This can be especially expensive when the query
term is common in documents Charlie cannot access. As this
example shows, oversharing has both positive and negative
effects on search time.
Zone algorithms. The Zone algorithms are depicted
in Figure 1 using pseudocode.
C. The Underlying Searchable Encryption

Our goal is to provide encrypted search with speed, rea-
sonable space overhead, security, and updatability. As we will
discuss in §VI, no academic encrypted search algorithm can
do this in a commercially accepted manner, mainly due to
their stricter security model that does not trust the server. Our
intermediate security model makes this possible.

A simple but impractical approach is to encrypt the whole
search index, decrypt it into memory when the user logs in, and
clear it from memory when the user logs out. Searches would



00 Alg CInit(i, pwi)

01 hki ← H(pwi)

02 mki ← KDF(pwi)

03 ki ← Fmki
(“0”)

04 (pki, ski)
$← PKG(1n)

05 ci ← SKEki
(ski)

06 SIi ← (hki, pki, ci)

07 return SIi

10 Alg TokenGen(pwi, SIi)

11 if H(pwi) = hki then

12 flagi ← 1

13 mki ← KDF(pwi)

14 ki ← Fmki
(“0”)

15 k′i ← Fmki
(“1”)

16 ski ← SKE−1
ki

(ci)

17 Tokeni←(flagi,ki,k
′
i, ski)

18 return Tokeni

20 Alg CKGen(1n,Π)

21 return ck
$← LPCG(1n,Π)

30 Alg FileEnc(SIi,Tokeni,f)

31 kf ← SKG(1n, f)

32 cif ← LPCk′
i
(kf )

33 Cf ← SKEkf
(f)

34 return (cif , Cf )

40 Alg Sharing(Π, SIΠ,F, ck)

41 cΠ ← ε

42 for f ∈ F do
43 mcf ← LPCck(kf )

44 mcF ← mcF ||mcf

45 for j ∈ Π do
46 if flagj = 1 then
47 cjΠ ← LPCk′

j
(ck)

48 else cjΠ ← PKEpkj
(ck)

49 cΠ ← cΠ||cjΠ
50 return (mcF , cΠ)

60 Alg PKCTrans(cjΠ, Tokenj)

61 ck ← PKE−1
skj

(cjΠ)

62 return cjΠ ← LPCk′
j
(ck)

70 Alg IndexEnc(Π, SIΠ,F, ck)

71 I ← Indx(Π,F)

72 ik ← LPCG(1n,Π)

73 cI
$← LPCck(ik)

74 CI
$← ESik(I)

75 return (cI , CI)

80 Alg Search(mode, w1,· · · ,wt)

81 ik ← LPC−1

k′
j

(cjI)

82 R← Search(CI , ik, mode(w1,· · · ,wt))

83 return R

90 Alg RetrSharedFile(cjΠ, Cf ,mcjΠ, Tokenj)

91 ck ← LPC−1

k′
j

(cjΠ)

92 kf ← LPC−1
ck (mcjΠ)

93 return f ← SKE−1
kf

(Cf )

Fig. 1. Zone algorithms. Let F(·) be a PRF. Let KDF(·) be a key derivation function. Let (SKG, SKE,SKE−1) and (LPCG, LPC, LPC−1) denote a
length-expanding encryption scheme and a length-preserving cipher, respectively. Let (PKG,PKE,PKE−1) be a public-key encryption scheme. To encrypt
popular files, we employ message-locked encryption [4], where the key generation algorithm is deterministic and depends on files (see Line 31). Let Π denote
customers who share files and let SIΠ = {SIi}i∈Π denote their identifiers.

be fast, updates would be easy, and the index would be secure
while the user is logged out. As a bonus, we could use an
off-the-shelf search engine. Unfortunately, this design would
create considerable latency between logging in and doing a
first search.

Our approach does treat search index files like a black box,
but it encrypts files in such a way that any part of the files can
be independently decrypted. (Plaintext is still stored only in
memory and flushed when the user logs out.) We run an off-
the-shelf search engine and hook its disk reads and writes,
respectively decrypting or encrypting disk contents. Using
symmetric encryption, encryption takes not much longer than
disk I/O. This preserves the search engine’s functionality and
speed without creating latency before the first search.

A search index consists of a number of files created by the
core search engine. We encrypt index files with CTR$. All
files in a single index share a 128-bit AES key. (We store
this key in the same way as regular file keys, as described in
the previous section.) Each file has its own random 128-bit
IV. Although the core search engine can update its indexes, it
never modifies an index file after initially writing it. Thus, our
search indexes have indistinguishability from random bits.

We actually divide index files into chunks that are encrypted
separately. (The reason for this is described in §IV.) Each
chunk (except the last) is of a fixed, configurable size. It is
encrypted with CTR$, using the file’s IV plus the chunk’s
block offset in the ciphertext file (i.e. its byte offset divided
by the block size). The probability that these counter ranges
overlap is negligible, so this wrinkle does not change our
system’s security.

D. Confidentiality Analysis
Zone is designed to achieve “hedged” confidentiality goals:

It is secure against outside adversaries, protecting everything
including access tokens. Even if the server is compromised,
it still provides security for users who are not logged in. See
our full paper for analysis.

E. Zone’s Other Functions and Features
Private and public sharing. The product supported two
sharing modes. The first is “private sharing,” which has been
discussed in detail. It required a two-step initiation process
in which a sharer sent invites to recipients and authenticated
recipients had to accept or deny the invite. In case of invite
acceptance, either the sharer or the recipients could upload
files to the shared folder.

The other mode of sharing, “public sharing,” was via web
links. A sharer could create a URL to a resource to be shared
and then send the URL to recipients out of band. Sharing
via web links proved to be by far the most popular sharing
use case, but it also was the most problematic from the
security point of view. To raise the bar and adhere to the
security guarantees of our in-between security model, we did
the following: During the web link generation, the sharer had
access to file key kf . The system generated a one-time key
(otk) and used it to encrypt kf , i.e. cf = LPCotk(kf ). Then
cf and a reference to the file record (file id) were recorded
into a special database table. The primary key of the record
(an integer) and the 128-bit otk were parts of the URL.

Therefore, after the request was finished, the stored infor-
mation (cf , and the file id) was insufficient to decrypt the file
preserving our system guarantees.



When the intended recipient sent a request to the provided
URL, the system parsed the HTTP parameters, retrieved the
primary key of the record and the otk, retrieved cf and the file
id from the database table and recovered kf = LPCotk(cf ).
Using kf , the file could be decrypted and sent to the recipients.

Another security issue with web links was logistical: they
might get into wrong hands. This risk grew with time. To
mitigate this, we provided UI controls so sharers could restrict
the time when the link was valid and limit the maximum
number of downloads allowed via the link.
Processing incoming data for logged out customers. Many
applications require that the server process incoming data,
even when the customer is logged out. One major scenario is
backing up user content from other services, such as email and
social networks. Startups may not have the best data retention
practices and even Gmail has come close to losing user
accounts [18]. Another scenario is processing this information
for immediate use after the customer logs in. In the case of
Zone, we would want index new content as it comes in so that
a customer’s first search does not have high latency or missing
results.

Extending Zone and its security model to backup is straight-
forward. For each file (or unit of data that will be encrypted
together), we generate a new file key, encrypt and store the
file, and encrypt the file key with the customer’s public key
and store that. This minimizes the duration when the server
has access to customer data.

We must make additional provisions for efficiently indexing
a stream of content. If we simply index each incoming
batch of files separately, we will wind up with a very large
number of indexes, which can slow down information retrieval
considerably. We cannot access the existing, main search index
or any indexes for incoming files that we previously wrote. To
mitigate this, we will fix a time or size threshold for incoming
data. When the user searches, Zone will search all of these
indexes. Furthermore, it will begin merging indexes as soon as
the user logs in. Lucene already has functionality for merging
many indexes while supporting queries, though it may need
tuning for this use case.
Secure multi-tenant search. A multi-tenant search index
stores data for multiple users. §III-B described how Zone uses
multi-tenant indexes. In common practice, searches on a multi-
tenant index filter out other users’ results (as in our oversharing
refinement) or search by the user’s id as well as by keyword(s).
A multi-tenant index may be more practical because it reduces
space redundancy for common keywords and also because
it may be faster and easier than juggling a large number of
indexes, especially if these single-tenant indexes would each
be small. Furthermore, the security penalty of oversharing in
some applications (e.g., among an enterprise’s employees) may
be a lesser concern.

Consider the following scenario: an enterprise customer
has a small number of divisions, each of which has its
own data. Maintaining per-employee or per-division indexes
for the enterprise will lead to space consumption because
of redundancy in indexed keywords. Also, if an enterprise

administrator wishes to search across all content, the time
will be proportional to the number of the indexes. Multi-tenant
search will allow more space-efficient and time-efficient search
by maintaining a single index for a many users. (Note that it
still has a performance penalty from filtering out results the
searching user cannot access.) It is important to note that a
naive implementation of multi-tenant search will compromise
user privacy. Any user who can access the index can learn
other users’ data.

There are a number of ways to secure multi-tenant indexes,
though they trade off some of the benefits listed above. We
can process each user’s indexed keywords with a PRF, using
that user’s key. Each keyword in Lucene’s “dictionary” points
to result information, such as the list of documents containing
this keyword. We can encrypt this result information with a
key based on the keyword’s keyed PRF value. Lucene has
hooks (different from the one Lucene Transform uses) that
can support these modifications.

This allows us to effectively store multiple independent
search indexes in one real index, gaining some time efficiency;
however, because a keyword will have a different PRF value
for each user, this scheme does not reduce redundancy in
Lucene’s dictionary. Furthermore, hashing keywords destroys
some of Lucene’s rich search functionality, such as fuzzy
spelling and auto-complete. It also reintroduces sharing prob-
lems. As in §III-B, we can mitigate redundancy and perfor-
mance problems with combination keys, undershared keys, and
overshared keys.

F. Limitations and Discussion
This section discusses the limitations of Zone. One fre-

quently mentioned limitation is Zone’s weaker confidentiality
properties, compared to an ideal cloud storage system. We
have written enough about the tradeoff between functionality
and privacy in our valet security model, but we have not
explored similar tradeoffs. For example, a slightly different
security model might keep the user’s master key and other
high level keys strictly on the client, giving the server only
lower level keys. The client could decrypt file keys for the
server as needed. This moves some computation from the
server to the client and adds latency, as the client must request
file key ciphertexts and send decrypted keys to the server.
Alternatively, we might replace user i’s k′i with several keys
for different types or folders of content. This limits the server’s
access to a logged in user’s content, while reducing the number
of round trips for key decryption (especially since users tend
to work on related files, rather than a random sample of files
from across the system). These alternatives make fine-grained,
though still significant privacy-versus-functionality tradeoffs
with Zone.

Zone does very little to guarantee the authenticity of user
data. It would be easy to guarantee authenticity while the
user is logged out, e.g. by storing file MACs. It would be
interesting to explore how to integrate practical integrity-
preserving techniques such as provable data possession [3],
proof of retrievability [26], and Byzantine fault tolerance [24].



We favored conventional replication over erasure-coded
replication due to bandwidth and system I/O consideration.

Another direction which we have not explored is to protect
the customer anonymity from service provider in the valet
security model. In our current design, the provider actually
stores unencrypted user metadata (though it still cannot access
encrypted content when the user is offline). Ideally, it could
be enhanced by providing anonymity against the provider.

IV. IMPLEMENTATION
We implemented and deployed major components of Zone.

Our implementation stack included Java with Tomcat, Spring,
and Hibernate. The main components of our backend architec-
ture were: 1) The application tier responsible for file upload,
download, sync, and share. 2) The object store responsible
for storing customer data on disk. 3) The metadata database
(RDBMS) that contained user account information, a map
from users to their files, and sharing information. In industry,
a common technique for storing encrypted files on disk is to
store encrypted keys as the first part of the encrypted file.
However, since we re-encrypt file keys during sharing, we
ruled out this approach and stored encrypted file keys in the
metadata database. 4) The notification tier used to promptly
notify clients of changes to their data. Clients maintain per-
sistent connections to it. When a new event occurred at the
application tier, notification servers alert the affected clients.
This improved responsiveness of sharing and collaboration. 5)
The search tier. We implemented the encrypted search tier and
we will describe our implementation in detail below.

To achieve high scalability, we did not store session state
at the application tier. Also, we did not use client IP address
affinity at the load balancer; however, since we used HTTP 1.1
with persistent connections, the majority of sequential client
requests arrived at the same application server. This implicit
connection affinity helped performance by increasing the cache
hit rate at the application tier. This design choice allowed us
to achieve both good performance and good scalability with
the penalty of some code complexity.

To achieve high availability and fault tolerance, we relied
on the cross-datacenter replication capabilities of the object
store and the metadata database and the high redundancy of
application servers at each datacenter. The load balancer and
application service tier did not persist any state, so we did not
need to replicate sessions. The worst penalty of an application
server failure was extra latency as the client re-established the
connection. We relied on Global Server Load Balancing [23]
to mitigate catastrophic failures at the datacenter level. If a
datacenter did go down, the client’s DNS lookup would resolve
to an IP address of an active datacenter.
Encrypted search tier implementation. Our encrypted
search implementation has two main challenges: to provide
a commercial-grade suite of search functionality and to im-
plement proven cryptographic security. Open source tools
provide all of the former and a framework for the latter. Our
modifications build proven security guarantees into the system.

The first open source tool, Lucene [1], is a very popular
Java-based search engine. It provides efficient search for

keywords, phrases, and wildcards, it ranks search results, and
has many other features needed for commercial-grade search
functionality. Lucene itself has limited support for scaling to
multiple machines, but a number of tools (e.g. Solr [2] and
Elasticsearch [12]) wrap this functionality around Lucene.

Most relevant to our encryption scheme is that, while
Lucene indexes are dynamic (i.e. they efficiently support
intermixed queries and index modifications), index files are
static (i.e. never changed after they are initially written). A
Lucene index consists of many segments. Each segment has an
inverted index and other data structures that support efficient
search. All of a segment’s data files are static. A segment is
also static, except that its documents may be deleted. New
deletions are recorded in a new deleted documents file, so this
is no exception to the rule that Lucene index files are static.

The other open source tool is Lucene Transform [30], a
plug-in that hooks into Lucene’s file I/O layer. It breaks every
file up into chunks of configurable size and transforms each
chunk, compressing or encrypting it (or both). Within a chunk,
it can use a variety of modes of encryption, including CBC and
CTR. It also caches decrypted chunks and provides a number
of other useful services.

We made a number of changes to Lucene Transform. The
first two implemented the security properties described in the
design section.

Lucene Transform did support CTR$, but each file reused
the same initialization vector with all chunks. Therefore, the
encryption mode for chunks (with respect to the overall file)
was ECB, which is insecure. Our change modifies the IV
for each chunk, ensuring that counter values used for CTR
mode encryption are unique. We begin with an IV for the
whole file. To compute a chunk’s IV, we divide the chunk’s
byte offset in the ciphertext file by the cryptographic block
size and add that to the file IV. We round this down,
if necessary, and encrypt the chunk’s first few bytes by
XORing them with the last few bytes of the encrypted value
of the chunk’s IV.
Lucene Transform stored an unencrypted CRC for each
chunk. This was quite useful for debugging, so instead of
removing it, we made it optional. The experiments in the
next section do not have CRCs.
We fixed deadlocks and a few other bugs; we reuse certain
cryptographic objects that are expensive to initialize, which
improved performance significantly; and we optionally use
AES-NI.

Our implementations use SHA1 as the hash function for
convergent encryption, PKCS#5 as the key derivation function,
HMAC-SHA1 as the underlying PRF, RSA-1024 as the public
key encryption algorithm, CBC with ciphertext stealing as the
symmetric encryption mode to encrypt files, and CTR$ as the
symmetric encryption mode to encrypt index segments.
Defending against various attacks. Zone also implemented
practical approaches to defend against other threats such as
access token misuse, browser session cookie stealing, and
various denial of service (DoS) attacks. See our full paper.



V. PERFORMANCE EVALUATION
This section focuses on evaluation on share and search

functionalities. Evaluation on basic operations can be found
in our full paper. Our encrypted search tests use up to
400 MB of emails. This seems modest, but most test data
(everything except email headers) is processed text. Although
users commonly store many GB in cloud services, the vast
majority of that is picture or video data; and in many file
formats that carry text (e.g. PDF, Word), the actual text content
is a small fraction. We believe these sizes cover the actual
amounts of text data that real users upload to cloud services.
Index sharing evaluation. We ran a series of tests to explore
various sharing schemes’ space vs. time trade-offs. Different
applications will have a wide variety of sharing patterns, so
we created only a simple test setup that we hoped would
yield a qualitative understanding of these trade-offs. We ran
these tests (and those in the following section) on an Intel(R)
Xeon(R) CPU E3-1270 V2 3.50GHz machine with 8 total
cores and 16 GB of RAM. It had two hard drives: a 7,200
RPM conventional hard drive and a solid state disk. To isolate
the impact of search-related disk operations, we created search
indexes on the spinning drive and loaded input documents
from the SSD.

Our experimental setup has four users, Alice, Bob, Charlie,
and David, who share documents. Three test configurations
used different total sizes of indexed documents. We used the
same test machine described in §IV. The setup is detailed
as follows: Each user has 1.72 MB, 8.6 MB, or 43 MB of
unshared documents (for the three test configurations). The
following pairs of users share 1.72 MB, 8.6 MB, or 43 MB of
documents: Alice and Bob, Alice and Charlie, Bob and David,
and Charlie and David. Alice, Charlie, and David share 0.84
MB, 4.2 MB, or 21 MB of documents, as do Bob, Charlie,
and David. All users share 0.56 MB, 2.8 MB, or 14 MB of
documents.

This adds up to 16 MB, 80 MB, or 400 MB of documents.
Our experiments measure the total index space for all users
and test query time for Alice. In Zone’s default scheme, she
must check 5 indexes (out of 11 total, for all users).

The sharing schemes we tested, from least to most sharing,
are: 1) Unshared—Each user has his or her own index with all
shared documents redundantly indexed. 2) Undersharing—
We undershare the 3- and 4-user file sets. Each 3-user file set
was duplicated into a 2-user file set and that of the remaining
user. The 4-user file set was duplicated in two 2-user file
sets. To query for Alice, we check 3 indexes. 3) Zone—Zone
creates one search index per combination of users that share
files. 4) Oversharing—We overshare the 2-user file sets. Most
will go into into 3-user file sets, but files shared by Alice and
Bob and Bob and David must go into the 4-user file set. In
the latter case, we filter out search results for files not shared
with Alice. To query for Alice, we check only 4 indexes. 5)
Single index—A single search index serves all users. As with
oversharing, this index must check access information.

Undershared and unshared indexes show the expected trade-
offs with Zone: faster queries for greater space usage. Un-

Zone 

Unshared 

Undershared 

Overshared 

Single index 

0

25

50

75

100

6 8 10 12

Q
u

e
ry

 t
im

e
 (

m
ic

ro
se

co
n

d
s)

 

Total index size (MB) 

Lucene Transform

Lucene

Zone 

Unshared 

Undershared 

Overshared 

Single index Zone 
Overshared 

Single index 

0

50

100

150

20 25 30 35 40 45 50 55

Q
u

e
ry

 t
im

e
 (

m
ic

ro
se

co
n

d
s)

 

Total index size (MB) 

Lucene Transform

Lucene

Zone 

Unshared 
Undershared 

Overshared 

Single index 

Overshared 
Single index 

0

200

400

600

96 128 160 192 224 256

Q
u

e
ry

 t
im

e
 (

m
ic

ro
se

co
n

d
s)

 

Total index size (MB) 

Lucene Transform

Lucene

Fig. 2. Search with sharing when size varies.

dersharing is a particularly good trade-off. Just 11-14% more
space gets queries that are 21-35% faster. Moreover, unshared
indexes look attractive, though with a higher sharing factor,
they will often be out of the question.

Undersharing seems worthwhile when combined with a
strategy for cherry-picking certain indexes to undershare. A
simple strategy would be to undershare indexes that would
produce the least redundant indexing. Eliminating small in-
dexes may, however, have small time savings—if a small index
is frequently used, it may be cached in memory. The best
undersharing strategy may be application-specific. Overshared
and single indexes show the expected speed improvement only
for small indexes. With medium and large indexes, the benefit
of checking fewer indexes is outweighed by the additional cost
of filtering out search results the user cannot access. The worst
case illustrates this: a user searches for a term that has only a
few results in his documents, but many results in inaccessible



documents. In this case, we must filter out a potentially huge
number of inaccessible results.

These tests show the pitfalls of oversharing, although a good
oversharing strategy could conceivably be worthwhile, even
on a very large system. It would need to be able to identify
which indexes are small enough that the gain from checking
fewer indexes would outweigh the cost of filtering. Also, other
filtering strategies might be faster than ours.

Overshared and single indexes are slightly more space-
efficient than Zone’s indexes, despite the fact that each of these
schemes indexes each document only once. This is because the
size of one of Lucene’s index components is proportional to
the number of unique keywords. Thus, fewer bigger indexes
use less space. Also, merging two large document sets gives
a smaller benefit than merging two smaller document sets,
because keyword storage is a smaller part of the overall index
size. This explains why the space savings are smaller with
medium indexes and tiny with large indexes.
Encrypted search evaluation. We compared Zone’s perfor-
mance against regular, unencrypted Lucene on document sets
of varying sizes, performing various operations. The document
sets were 16 MB, 80 MB, and 400 MB of emails from the
public Enron corpus [13]. One test timed indexing a document
set using 8 threads. Another tested the number of queries
the index could perform in one minute using 8 threads. The
last simulated a real world scenario for a dynamic index:
adding data to an existing index (using 8 threads) while
simultaneously querying (using 8 threads). It added the same
amount of data as was originally indexed. We ran each test 10
times. Lucene caches grow proportionately with the number
of documents and keywords, on the order of a few bytes and
a few bits each, respectively. We kept the Lucene Transform
cache (of decrypted chunks) constant at a modest 128 kb.

Figure 3(a) and Figure 3(b) show that Lucene Transform in-
creases query time only by roughly 50%, but increases index-
ing time 80% to 175%. Query overhead is quite small for 16
MB tests, probably because Lucene Transform caches a higher
fraction of decrypted chunks. Indexing shows much larger
overhead. The combined tests increase indexing times for
Lucene and Lucene Transform by similar absolute amounts,
mitigating the overhead there. Querying most likely has lower
overhead than indexing as it requires many more disk seeks.

Table I shows Lucene Transform’s space overhead, relative
to unencrypted Lucene, to be quite modest — around 2%. It
would be even lower with a larger chunk size. In ad hoc tests,
AES-NI improved indexing time, but actually increased query
time. Moving from Java to native code to decrypt each chunk
took more time than was saved in decrypting more quickly.
We were optimizing for queries over indexing, so we discarded
this optimization.

VI. RELATED WORK
There is extensive research on secure network file systems

with secure file sharing and secure file systems with encrypted
search, but they are almost always considered independently
of each other. Secure sharing and secure encrypted search turn
out to complicate each other considerably. Only a handful of
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Fig. 3. Encrypted search evaluation.

TABLE I
INDEX SIZES (IN MB) AND OVERHEAD. LT STANDS FOR LUCENE

TRANSFORM.

Indexing test Combined test
Data Lucene LT Overhead Lucene LT Overhead
16 6.0042 6.1273 2.05% 12.47 12.71 1.9%
80 29.373 30.006 2.158% 57.1 58.269 2.0%
400 141.54 144.60 2.16% 289 295 1.8%

schemes (e.g., [28]) meet both of these goals, but they are just
proofs of concept.

Most existing secure network file systems (e.g. [17, 20, 27])
only support limited or less scalable file sharing and they
only support search on file metadata (filenames, creation dates,
etc.), if at all. They are not designed for frequent file sharing;
however, cloud computing, and especially social cloud storage,
demand more efficient and scalable file sharing services.

The idea of sharing files at the group level is first used
in Cryptfs [45] and subsequently in [27, 38]. Our idea of
introducing the combination key for sharing files resembles
an idea in Cepheus [15]: the “lockbox” for symmetric keys
used to encrypt files. The key for a lockbox can be shared
with different users. Our file sharing procedure is most similar
to that of Plutus [27], where a lockbox stores encrypted file
keys. The key for a lockbox is shared at the group level
and file keys are used to encrypt files; but there are three
differences. First, Plutus uses a lockbox to keep file keys,
instead of files themselves, to prevent a potential vulnerability
to known plaintext/ciphertext attacks. By contrast, we do so to



enable secure deduplication. Second, Plutus uses out-of-band
communication to share the group key. Instead, we directly
encrypt combination keys with the recipients’ public keys or
secret keys if they are logged in. Last, unlike the lockbox keys
in Plutus, our combination keys also encrypt our index keys.

Existing encrypted search algorithms use a strong security
model with an untrusted server. These include fully homo-
morphic encryption [16], oblivious RAM [21] , public key
encryption with keyword search [7], searchable symmetric
encryption (SSE) schemes (see [9, 41] and references therein),
private information retrieval [34], etc. Briefly speaking, to
keep user data private in this stricter security model, pub-
lished encrypted search algorithms cannot meet both goals.
At most, they support only one of the two. Despite a weaker
security model, Zone is superior to practical systems such as
CryptDB [36], MONOMI [43], and Mylar [37], in terms of
performance, search functionality, and scalability.

VII. CONCLUSION
Motivated by the gap between the ideal of a scalable and

fully functional cloud storage system that runs securely on
untrusted servers and the present situation, we advocate a
valet security model. This model lies between off-premise
security and on-premise security. With this model, we designed
a practical scheme, Zone, that enables efficient file sharing,
supports a wide range of search patterns, minimizes space
requirements, and provides easy accessability and reliability.

We have described our dedicated implementation in a mod-
ern datacenter designed to support millions of customers. As
we have shown, despite our weaker security notion, designing
and implementing such a system has proven extremely chal-
lenging. Security experts and cryptographers can sometimes
lose sight of the big picture when they design and implement
secure cloud storage schemes. We have therefore reported on
the design of Zone and the lessons learned in its implemen-
tation. Zone is by no means the ultimate realization of the
academic and commercial communities’ goals; however, we
believe that Zone is a very useful improvement on existing
off-premise secure cloud storage systems, in both security and
functionality. Moreover, it is our hope that our design and
implementation could lead to an ideal, fully functional cloud
storage system.
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