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Abstract—We describe efficient path-based Byzantine routing
protocols that are secure against fully Byzantine adversaries.
Our work is in sharp contrast to prior works which handle a
weaker subset of Byzantine attacks. We provide a formal proof
of correctness of our protocols which, to our knowledge, is the
first of its kind. We implement and evaluate our protocols using
DeterLab, demonstrating that our protocols are as efficient as
those secure against weaker adversaries and our protocols can
efficiently and correctly detect routers that fail arbitrarily.

I. INTRODUCTION

In this paper, we revisit the problem of path-based Byzantine
message routing, where a strong Byzantine adversary could
coordinate corrupted routers to disrupt message delivery.

We study the classic setting for asynchronous networks with
bounded delays [8, 18, 21], a setting that captures most of
practical communication networks (e.g., Internet, data center
networks, ad hoc networks). For these communication net-
works, the most time and communication efficient end-to-
end message routing approach is single-path-based routing,
sending messages over a fixed and short path from source to
destination. Moreover, there are many additional benefits of
path-based routing, such as directly enabling “first-in, first-
out” message service [10, 28, 34, 45].

If along the path a link or a router fails, a new (and less
optimal) path may be selected. However, it is unnecessarily the
case that a new path is always available. Besides, it is equally
vital to detect, locate, and recover failures for ensuring long-
term network resilience and maintaining delivery efficiency.
Therefore, Byzantine routing typically needs to address failure
detection.

While Byzantine routing could be also achieved using
flooding or multicast [2, 3, 9, 19, 24, 41], these protocols are
significantly more expensive in terms of communication com-
plexity. In this paper, we focus our attention on efficient path-
based Byzantine routing.

Issues on path-based Byzantine routing. Despite an im-
pressive amount of papers on path-based Byzantine message
delivery and Byzantine routing ([5, 7, 15, 28], to cite just a
few), these protocols handle only a limited, weaker subset
of Byzantine attacks and do not tolerate fully Byzantine
adversary that coordinates multiple corrupted routers along the
path.

As the three most representative protocols, ODSBR [7],
AKWK [5], and HK [28] assume that the links are “well-
behaved” in the sense that the links either work or failures
can be detected [11, 25, 49]. This model, however, captures
only a rather limited subset of Byzantine attacks. ODSBR, for
instance, cannot handle more than one intermittently Byzantine
routers. AKWK and HK rely on intermediate routers to detect
failures, but do not deal with the scenario that malicious
routers can frame correct routers.

As another example, Bradley et al. [15] describe a router
monitoring approach where malicious routers can only fail by
dropping or misrouting packets but not modifying packets.
Additionally, their approach assumes there is at least one
nonfaulty neighbor router to a faulty router that drops packets,
which appears to be a very strong assumption that may not
hold in general network environments.

Besides, all these protocols are analyzed for independent
router failures. None of them formally consider a strong
Byzantine adversary that can coordinate multiple corrupted
routers to disrupt message delivery without being detected.

To our knowledge, while path-based Byzantine routing has
been extensively studied, there are no satisfactory Byzantine
routing protocols that are provably secure against arbitrary
attacks.

Our approach. Our work distinguishes prior works on path-
based routing in two main aspects.

First, in contrast to prior approaches that consider a weaker
subset of Byzantine attacks, we levy no restrictions on the
behavior of an adversary. In our model, the adversary may fail
to send the routing messages in time (e.g., dropping packets) or
frame other nonfaulty routers. The adversary may coordinate
multiple corrupted routers to disrupt routing while keeping
faulty routers from being detected. The adversary may behave
consistently faulty, or intermittently faulty (to avoid being
detected).

Second, while previous works use informal arguments
or/and experimental evaluation for the correctness of the
protocols, we advocate a rigorous provable-security treat-
ment of Byzantine routing, as other primitives in dependable
distributed systems such as Byzantine agreement [33] and
Byzantine fault-tolerant state machine replication [17]. To this
end, we formalize the security notions under fully Byzantine
adversary in the customary sense and provide efficient con-978-1-5386-7659-2/18/$31.00 ©2018 IEEE



structions meeting the security notions we defined.

Our contributions. We summarize our contributions as fol-
lows:

We review and analyze the most representative path-based
Byzantine routing protocols (ODSBR [7], AKWK [5],
HK [28]), and show why they handle only a subset of
Byzantine attacks.
We provide formal security definitions of Byzantine rout-
ing that covers general Byzantine attacks. We propose
new and efficient Byzantine routing protocols that are
secure under the definitions of security we formalized.
We consider timer setup issues related to our protocols,
guiding practical parameter selection.
We implement and evaluate our protocols. We show that
our protocols are at least as efficient as existing ones
that are insecure or defend against weaker adversaries.
We also show our protocol can efficiently detect various
Byzantine failures.

Our protocols in a nutshell. We present three Byzantine
routing protocols — BR1, BR2, and BR3. BR1 assumes
the source and the destination are nonfaulty, a conventional
scenario as in previous works. BR2 handle the case where
the destination is Byzantine faulty and may cause correct
routers to be falsely detected. To our knowledge, this scenario
has not been studied in the literature. BR3 is an efficient
hybrid Byzantine routing protocol that improves BR2 in its
failure-free scenarios. Both BR1 and BR3 use only symmetric
cryptography in their gracious executions.

II. RELATED WORK

Byzantine routing: path-based vs. multicast based. Byzan-
tine routing can be generally divided into two categories:
single-path-based (or simply path-based) [5, 7, 15, 28] and
multicast-based [2, 3, 9, 19, 24, 41].

Path-based routing starts with a single and short path. If
a failure occurs along the path, a new path is selected. The
protocols can route packets as long as there exists one non-
faulty path between the source and the destination. Our work
falls into the category of path-based Byzantine routing.

Instead, multicast-based routing is based on the use of
multicast communication (may it be one-to-many or many-
to-many communication). While these protocols can be used
for applications that require strong reliability, these protocols
need significantly higher bandwidth, storage, and system I/O.

Our work is a sharp contrast to prior works on single-
path-based Byzantine routing [5, 7, 15, 28, 37] which deal with
only a weak subset of Byzantine failures. Meanwhile, these
prior practical solutions argue the security of their protocols
assuming a single Byzantine failure per path (explicitly or
implicitly). We do provide a formal proof considering an
arbitrary number of failures in a path.

There are some other secure routing protocols that leverage
additional infrastructure [39] or trusted computing base [47].
Obenshain et al. [39] built intrusion-tolerant networks that use
an additional overlay running on top of multiple IP networks

to prevent various attacks. SCION [47] relies on a number of
trusted, top-tier ISPs in the trust domain to achieve reliable
end-to-end communications.

Byzantine routing: external vs. internal adversary Byzan-
tine routing relies on message authentication mechanism to
prevent packets from being altered. A large number of routing
protocols addressed how to achieve message authentication
and packet integrity [27, 29, 30, 40, 43, 44].

Using authentication mechanism mainly defends against
“external” adversary that oversees and controls the network.
However, it is just one step towards secure routing, as there
are “internal” routers that can still behave maliciously, e.g.,
dropping packets, framing other routers, failing to send ac-
knowledgments in time. Addressing internal router failures,
however, depend on concrete authentication mechanisms.

BGP and S-BGP. One direction that is somewhat related
to routing and Byzantine routing is BGP (border gateway
protocol) [42] and S-BGP (Secure-BGP) [32]. BGP manages
inter-domain routing on the Internet but uses the hearsay
information to update routing tables. S-BGP provides route
authentication to prevent malicious routers from injecting false
information. One can use digital signatures to authenticate
each router along the path. There exist more efficient solutions
using aggregated signatures (e.g., [48]).

Aliph Chain, BChain, and Byzantine chain replication.
Although not explicitly mentioned anywhere, Byzantine rout-
ing shares some similarities with chain-based Byzantine fault-
tolerant (BFT) protocols [23, 26, 46], where fully connected
servers are organized in a metaphorical chain to exploit
pipelined executions for higher throughput. In these BFT
protocols, clients requests should be routed to follow exactly
the path decided by the leader (the source). Among the three
protocols, BChain [23] (adopted in Hyperledger Iroha [31])
achieves Byzantine failure detection for a fully Byzantine
adversary. However, there are at least three major differences
between the failure detection mechanism in Byzantine routing
and the one in BChain. First, Byzantine routing typically
assumes that the source is correct, while the source in BChain
(and BFT) may be malicious. Second, BChain can work in
partially synchronous environments [22], where the bound
on message delays may be unknown. (BChain does this via
view changes, a mechanism that does not exist in Byzantine
routing). Third, different from BChain, Byzantine routing does
not in principle need to adhere the exact path decided by the
source, as long as either messages can arrive at the destination
or failures can be detected.

Secure route discovery. Our Byzantine routing protocol is
general and does not depend on any particular Byzantine route
discovery protocol. That said, one could combine our protocol
with any existing Byzantine route discovery protocol [7, 16,
27, 30, 35, 37, 40, 44].

III. NETWORK AND THREAT MODEL

The setting. We consider standard dynamic networks [1, 8],



where the network topology may change over time and nodes
and edges may come and go (e.g., Internet, local area net-
works, ad hoc wireless networks). We consider asynchronous
networks with bounded delays [8, 18, 21] as considered in most
prior, path-based Byzantine routing protocols [5, 7, 15, 28].

We represent the network using an undirected graph G =
(V,E), where V is the set of nodes (routers) and E is the set
of edges (links).

For two non-negative integers a ≤ b, let [a..b] denote the
set of integers {a, a+1, · · · , b}, and let [Ta..Tb] denote the set
of elements {Ta, Ta+1, · · · , Tb}. We also write [Tb..Ta] (for
a ≤ b) to denote the set of elements {Tb, Tb−1, · · · , Ta}.

Similarly, let [pa..pb] denote of the sequence of nodes
(pa, pa+1, · · · , pb). A sequence of nodes P = [p0..pn] is a
path if ∀i ∈ [0..n−1], pi and pi+1 are neighbors. In our model,
given a pair of source and destination (s, d), the source may
select a path P = [p0..pn] so that s = p0 and d = pn.

For a router pi (i ∈ [0..n − 1]) in P = [p0..pn], we define
its successor

⇀

p i as its subsequent router pi+1. For a router
a router pi (i ∈ [1..n]), we define its predecessor

↼

p i as its
preceding router pi−1. For each pi (i ∈ [1..n]), we define its
predecessor set P(pi) as [p0..pi−1]. For each pi (i ∈ [0..n−1]),
we define its successor set S(pi) as [pi+1..pn].

Threat model. We study message routing (i.e., packet routing)
in the Byzantine failure model.1 Message routing includes path
selection and message forwarding. Path selection selects (one
or many) paths from source to destination, while message
forwarding forwards messages to destination over the selected
paths. This work considers single-path message routing.

A routing protocol accepts a message from some higher
level layer in the source, and delivers a message to the higher
layer in the destination. We may simply say that the source
accepts a message and the destination delivers a message.

Our goal is to ensure source to destination message delivery
with Byzantine failure detection. Detecting failures in Byzan-
tine routing enables correct and more efficient message deliv-
ery, and enables failure isolation and recovery for achieving
long-term robustness.

We consider a Byzantine adversary that may coordinate
multiple Byzantine nodes to disrupt end-to-end communica-
tion without being detected. The Byzantine attacks consid-
ered in the paper are ones in the customary sense, just as
in Byzantine fault-tolerant protocols [17, 33]. As mentioned
in §II, the Byzantine attacks include external ones targeting
message authentication, and internal ones where an adversary
deviates the protocol arbitrarily, including dropping packets,
framing other routers, etc.

The attacks considered here are not exhaustive. For instance,
we do not address denial of service (DoS) attacks and BGP
hijacking. We comment that there are known techniques that
can be used to mitigate the attacks, as discussed in [5, 39].

1In the paper, we use message and packet interchangeably.

We assume “minimum” network connection: there exists at
least one path from source to destination.2

We assume that 1) every router in the network has a
certified public/private key pair and 2) every two routers
share a pairwise key for MAC (message authentication code).
We assume that the attacker cannot break the cryptographic
mechanisms used in the paper. Jumping ahead, our protocol
does not use expensive asymmetric cryptography in common,
failure-free scenarios.

We do not specify any key distribution algorithms. The key
setup can be easily realized by standard infrastructures and
mechanisms.

We also do not specify any particular Byzantine route
discovery protocol. Our protocol is compatible with existing
route discovery protocols. Note that Byzantine routers could
act normally during route discovery protocols but later exhibit
malicious behavior during the routing stage [5].

For ease of presentation, we do not explicitly consider
buffering and packet loss rate. (We do consider this for our
implementation.) We assume that the routers have adequate
storage and computational capacities, and the network has
adequate bandwidth. When we say “a node p does not receive
an acknowledgment from another node p′ in time,” we actually
mean “a node p keeps track of the number of acknowledgment
message losses from p′, and the losses exceed the tolerable
threshold before the timer expires.”

Definitions of security. We define the following definitions
of security for a secure Byzantine routing. All the definitions
should be satisfied for an arbitrary network with faulty routers
and links and for every execution of the routing protocol [28].

Liveness: If the source and the destination are nonfaulty,
the messages accepted at the source will be eventually
delivered at the destination.
Safety: If the source and the destination are nonfaulty
and the destination delivers a message, the message was
accepted at the source.
Detection: If the path from source to destination has
failures, at least one failure will be detected.
Accuracy: If failures (either link or router failures) are
detected for an execution of the protocol by the source,
the detected links or routers were faulty for the execution.

Complexity measures. The time complexity is the worst-
case value over all executions of the time since a message
is accepted at the source until either a message is delivered
at the destination or a failure is detected. The communication
complexity is the worst-case value over all executions of the
number of messages transmitted by nonfaulty routers. Note
that the time complexity is computed when the source and
the destination are both nonfaulty, and the communication
complexity should not count the messages sent by faulty
routers.

2We note that while there are works that ensure message delivery even
if there may not be a moment when a correct path from the source to the
destination exists, they all rely on expensive multicast-based (flooding-based)
routing.



IV. REVIEWING AND ATTACKING PRIOR PATH-BASED
BYZANTINE ROUTING PROTOCOLS

We review three representative path-based Byzantine rout-
ing protocols, and demonstrate why they fail to deal with some
active Byzantine failures.

We begin with a protocol using a simple time-out mech-
anism (ODSBR [7]), then a protocol with a more complex
time-out approach (AKWK [5]), and then one that carries the
time-out idea “to the extreme” (HK [28]).

ODSBR. ODSBR [7] relies on acknowledgements and probes
to detect failures. In ODSBR, the source sets up a timer for
a path. If it does not receive an acknowledgement from the
destination before the timer expires, the source knows there
is a failure and it starts to locate the failure. To this end, the
source issues a number of probes to gradually identify the
failure. Specifically, ODSBR embeds “probes” in the packets.
The probes specify the list of intermediate nodes that need to
send acknowledgements in addition to the destination.

We first describe ODSBR’s authentication mechanism —
the MAC chain. Given a path P = [p0..pn] (where p0 is the
source and pn is the destination), for i ∈ [1..n], let ki be
the key shared between p0 and pi. To route a message M
over the path P , p1 computes for the message M a MAC
chain [σn..σ1], where the MACs are computed sequentially
from the destination to the source: σn = MACkn(M),
σn−1 = MACkn−1

(M,σn), σn−2 = MACkn−2
(M,σn, σn−1),

· · · , σ1 = MACk1
(M, [σn..σ2]). Upon receiving a MAC chain,

an intermediate node pi verifies and strips the corresponding
MAC σi, and sends the remaining message (M, [σn..σi+1])

to its successor
⇀

p i. To distinguish instances of execution, M
includes the path information and a unique sequence number.

Note that the MAC for each node pi to verify in the path
depends on the MACs of its successor set S(pi) in the path.
Assuming the length of the MAC is l, the length of the MAC
chain to be verified by successive routers over the path is from
nl to l.

p0 p1 p2 p3 p4 p5 p6

p0 p1 p2 p3 p4 p5 p6

p0 p1 p2 p3 p4 p5 p6

p0 p1 p2 p3 p4 p5 p6

Fig. 1. Failure detection in ODSBR.

Figure 1 demonstrates how ODSBR works using an example
for a path P = [p0..p6]. Suppose the link between p3 and p4
is faulty. If the source does not receive an acknowledgement
in time, a binary-search like probing mechanism kicks in.

The source first adds a probe in the middle of the path (i.e.,
p3), expecting an acknowledgement from p3. In this case, a
response will reach the source, as the nodes at the first half
of the path (i.e., p1 and p2) are all nonfaulty. The source then
adds a probe in the middle of the second half the path (i.e.,
p4), which will fail to respond. The source now knows the
link between p3 and p4 is faulty.

ODSBR relies on symmetric MACs only, and is highly effi-
cient in its failure-free scenarios. In case of a failure, ODSBR
takes Θ(log n) probes to identify the faulty link. Therefore,
the probing mechanism becomes rather time-consuming and
bandwidth expensive.

Besides the efficiency issue, ODSBR fails to address the
following Byzantine attacks: 1) ODSBR only considers Byzan-
tine link failures that are “well-behaved”: the links either
work well or their failures are detected.3 2) ODSBR does not
explicitly mention how to detect multiple Byzantine failures
within a path.

It is easy to give simple but effective attacks on ODSBR.
Let’s consider a path P = [p0..p7] where p2 and p5 are Byzan-
tine faulty. If p2 and p5 take turn to exhibit faulty behavior by
not forwarding messages or sending acknowledgements, the
probes become useless and no failures can be identified.

AKWK. AKWK [5] uses a more involved time-out mecha-
nism, and can therefore detect failures more efficiently com-
pared to ODSBR. In AKWK, each node, not just the source,
needs to set up a timer. Let ∆ be the time-out bound on the
transmission delay between two connected neighbor routers.
Each node pi (where i ∈ [0..n−1]) sets the delay as 2(n−i)∆.
If a message is sent by pi over the path P at a time t, expecting
an acknowledgement before t + 2(n − i)∆. Like ODSBR,
AKWK uses the same authentication mechanism (i.e., the
MAC chain).

While AKWK is more efficient than ODSBR, AKWK has
a number of issues, as discussed below.
Issue 1. The main detection idea in AKWK is simple: if a
router does not receive the corresponding acknowledgement
message in time, the router issues a fault announcement mes-
sage for its successor. The source will mark the suspected node
as faulty. Therefore, AKWK uses the same “well-behaved”
link assumption as in ODSBR.
Issue 2. AKWK does not address framing attacks. What if in
AKWK some faulty router deliberately frames its successor
even if the successor behaves correctly? In this case, some
nonfaulty routers will be falsely detected.

It is important to note that ODSBR does not have to address
this type of attacks, as the source is the only one which can
decide which intermediate routers are malicious.
Issue 3. As in ODSBR, AKWK does not explicitly address
multiple failures in a single path. It is unclear how the AKWK
protocol handles such scenarios.
Issue 4. There are other issues in AKWK. In the originally
proposed scheme [5], fault announcement messages are issued

3In fact, the assumption dates back to 1980s [11, 25, 49].



by intermediate nodes using the MAC chain. However, the
authors of AKWK pointed out in an amendment of the original
publication [6] that the nodes issuing fault announcements
might be malicious, causing correct nodes to be falsely ac-
cused. In the same amendment, the authors proposed a solution
using hash functions. There is, however, no security proof of
the amended proposal. There is even no description on what
security properties the underlying hash function should have.
While we cannot verify the correctness of the scheme, we find
that the amended solution does not address issues 1−3.

HK. Herzberg and Kutten [28] studied two main protocols,
including one that has the same time-out mechanism as
AKWK. Here we focus on the second protocol (which we
term HK), which uses a more tight time-out check to enable
more timely failure detection.

Let’s first consider the mechanism as in AKWK, where pi
disconnects from

⇀

p i if it does not receive the acknowledgment
in 2(n− i)∆. To ensure a more timely detection, HK takes a
more aggressive approach: once receiving a message package,
each router needs to immediately send acknowledgements to
all predecessor routers over the path. If a router pi does not re-
ceive any of the acknowledgments from k = i+2, i+3, · · · , n
after 2(k − i)∆, it knows it gets disconnected from its
successor. The more timely detection comes at the price of
much more messages.

Like AKWK, HK relies on the assumption that routers
are well-behaved. Moreover, it does not address the issue
when there are more than one fully Byzantine routers. We
also comment that HK does not specify the authentication
mechanism used, and it is unclear how to instantiate HK
efficiently.

V. THE PROTOCOLS

In this section, we present our Byzantine routing protocols
— BR1, BR2, and BR3. BR1 and BR2 handle the case where
the destination is nonfaulty and Byzantine faulty, respectively.
BR3 is an efficient hybrid Byzantine routing protocol that
improves BR2 in its failure-free scenarios.

We use MAC chain as those of ODSBR and AKWK [5, 7]),
and we now give a detailed description.

Given a path P = [p0..pn] (where p0 is the source
and pn is the destination), for i ∈ [1..n], let ki be the
key shared between p0 and pi. To route over the path P
a message M which includes the path information and a
sequence number, p1 computes for the message M a MAC
chain [σn..σ1], where the MACs are computed sequentially
from the destination to the source: σn = MACkn

(M),
σn−1 = MACkn−1

(M,σn), σn−2 = MACkn−2
(M,σn, σn−1),

· · · , σ1 = MACk1(M, [σn..σ2]). Upon receiving a MAC chain,
an intermediate node pi verifies and strips the corresponding
MAC σi, and sends the remaining message (M, [σn..σi+1]) to
its successor

⇀

p i. An example is illustrated in Fig. 2
While ODSBR and AKWK use the same MAC chain

mechanism, there is no formal security claim or any proof
of correctness. We provide a proof of correctness of the
mechanism in Section VI.

p0
3 2 1M 3 2M 3M

p1 p2 p3
3 21= MAC  (M,     ,     )k1

?
32= MAC  (M,    )k2

?
3= MAC  (M)k3

?

Fig. 2. Message pattern using MAC chain.

A. BR1: Byzantine Routing with Nonfaulty Destinations

BR1 is a path-based Byzantine routing protocol, levying
no assumptions on how Byzantine adversary can behave, and
capturing adversary that can corrupt multiple routers simul-
taneously. BR1 is thus a significant improvement to AKWK,
correcting all its issues as described in Section IV.

p3p2p1p0 p4 p5 p6

ROUTE

ACK

p3p2p1p0 p4 p5 p6

SUSPECT   

ROUTE

Fig. 3. BR1 message flow. The figure (for the failure case) shows only one
possible failure scenario.

Fig 3 depicts the message flow of BR1. BR1 has three
types of messages: 〈ROUTE〉, 〈ACK〉, and 〈SUSPECT〉. Initially,
a 〈ROUTE〉 message is sent by the source along a selected
path to the destination. Meanwhile, each node, not just the
source, maintains a timer. Upon receiving a 〈ROUTE〉 message,
an 〈ACK〉 message will be sent by the destination. If an
intermediate node does not receive the corresponding 〈ACK〉
before the timer expires, a 〈SUSPECT〉 message will be issued
by the node. 〈ROUTE〉 and 〈ACK〉 use MAC chains, while
〈SUSPECT〉 uses digital signatures. BR1 only uses symmetric
cryptography, and digital signatures are needed only when a
failure occurs. The time and communication complexity of
BR1 is proportional to the number of nodes in the path.

We assume that the source knows the topology of the
networks. The source maintains a local state st, initially, the
network topology. The source takes as input detected failed
linked and routers, and outputs a new path.4 We describe the
sequence of steps of BR1.
Step 0: The source s selects a path P = [p0..pn] to the
destination d. The source s takes as input a local state st and
outputs a path P = [p0..pn] where the source s = p0 and the
destination d = pn.
Step 1: The source computes and sends 〈ROUTE〉 with a MAC
chain. Given a path P = [p0..pn], p0 computes for a message
M a MAC chain [σn..σ1]. Here, M = (m,P, seq), where m is
the message to be sent, P is the ordered nodes, and seq is an
increasing sequence number used to distinguish instances of

4If equipped with a routing discovery protocol, the state also depends on
information collected through routing discovery.



the routing.5 It then sends its successor p1 a routing message
(〈ROUTE〉,M, [σn..σ1]). Meanwhile, it sets a timer, expecting
an 〈ACK〉 message or a 〈SUSPECT〉 message.
Step 2: Intermediate nodes verify and forward 〈ROUTE〉. For a
node pi (i ∈ [1..n−1]), upon receiving (〈ROUTE〉,M, [σn..σi])
from pi−1, pi (with the key ki) verifies if σi =
MACki(M, [σn..σi−1]. If it holds, pi strips σi and sends
(〈ROUTE〉,M, [σn..σi+1]) to pi+1. Each time a router pi sends
a message to its successor

⇀

p i, it sets up a timer, expecting an
〈ACK〉 message or a 〈SUSPECT〉 message.
Step 3: Destination computes and sends backwards an 〈ACK〉.
Upon receiving (〈ROUTE〉,M, σn) from pn−1, the destination
pn (with kn) verifies if σn = MACkn(M). If it holds, pn
computes an 〈ACK〉 message that includes a MAC chain for
the reverse of the path PR = (pn, · · · , p1) and sends its
predecessor pn−1 a message (〈ACK〉, seq, [τ0..τn−1]).
Step 4: Intermediate nodes verify: forwarding 〈ACK〉 or
issuing 〈SUSPECT〉.

If pi receives a valid 〈ACK〉 before the timer expires,
it cancels its timer, strips the corresponding MAC, and
forwards the rest of 〈ACK〉.
If pi does not receive an 〈ACK〉 message or a 〈SUSPECT〉
message before the timer expires, it cancels it timer, and
signs a 〈SUSPECT〉 message accusing its successor

⇀

p i of
the form (〈SUSPECT〉, seq, P, pi, pi+1). (Note that a node
can suspect its successor and its successor only.)
If pi receives a 〈SUSPECT〉 but no 〈ACK〉 before the timer
expires, it verifies that 1) it has seq in its buffer, 2) the
accuser is the predecessor of the accused, and 3) the sig-
nature is correct. If all conditions are satisfied, it cancels
its timer, and forwards 〈SUSPECT〉 to its predecessor.6

Step 5: The source accepts an 〈ACK〉, or a failure is detected
and a new path is selected.

If the source s (i.e., p0) receives the corresponding 〈ACK〉
message before the timer expires, the source cancels its
timer and the message is successfully delivered.
If the source does not receive a 〈ACK〉 or a 〈SUSPECT〉
message, the source marks p2 as faulty and marks all
the links connecting p2 as faulty. The source chooses a
new shortest path excluding the node and links marked
as faulty.
If the source receives only 〈SUSPECT〉 messages7 the
source deals with 〈SUSPECT〉 message that is closest to the
source, say, pi accusing pi+1. s marks the link between
pi and pi+1 as faulty, and makes all the other inks
connecting pi and pi+1 as potentially faulty. The source
selects a new shortest path excluding the link between
pi and pi+1, and if possible, the other links connecting

5M should include a message type; however, for ease of presentation, we
choose not to include the message type in M .

6Another designing choice that works is that no matter if the timer expires,
intermediate routes already forward 〈SUSPECT〉 message if the conditions
discussed above are satisfied.

7Receiving more than one 〈SUSPECT〉 messages is possible if the adver-
sary controls the traffic and mounts a “black-hole” attack.

the two nodes marked as potentially faulty. If it is not
possible, the source selects randomly a short path with
links marked as potentially faulty.

We have the following theorem:

Theorem 1. Assuming the unforgeability of the underlying
MAC, BR1 satisfies liveness, safety, detection, and accuracy.

Discussion. In the presence of Byzantine adversary, neither
MAC chains nor signatures will make the messages follow
exactly the path selected by the source. For instance, an ad-
versary may force 〈ROUTE〉 messages to skip some nodes over
the path, while still allows these nodes’ nonfaulty successors
to accept the messages. While this seems to create “black
holes,” it actually causes no harm.8 Recall that our goal is
not to ensure each router has a consistent state but rather to
successfully transmit the messages. This is in sharp contrast to
chain-based BFT protocols, and one reason why we can design
more efficient solutions than the ones trivially obtained from
chain-based BFT protocols.

B. BR2: Byzantine Routing with Fault Destinations

The correctness of BR1 relies on the fact both the source and
the destination are nonfaulty, which is a typical setting studied
in previous works. A malicious destination may, however,
cause nonfaulty to be falsely detected, a situation that we need
to avoid. To see this, a faulty destination in BR1 may compute
an ill-formed MAC chain so that a nonfaulty router will accuse
its nonfaulty successor. (Note that it is also possible to relax
the assumption that the sources are nonfaulty as discussed
in [39] which aimed to mitigate the damage caused by faulty
sources.)

We thus propose BR2 to deal with the case of faulty
destination. BR2 is identical to BR1 in the message forwarding
phase. However, for the reverse direction, the destination
instead directly uses signatures to sign acknowledgments.

C. Setting Time-Out Values

This section discusses how to set time-out values of routers
in BR1 and BR2.

Let ∆ be the time-out bound on the transmission delay
between two connected neighbor routers. In our protocols,
each node pi (i ∈ [0..n − 1]), according to the specification
of our protocols, sets the delay as 2(n − i)∆. Namely, if a
message is sent by pi over the path P at a time t and but no
〈ACK〉 or 〈SUSPECT〉 message arrives at time t+ 2(n− i)∆, a
〈SUSPECT〉 message should be issued.

The above procedure, however, considers only transmission
delay but not computational delay. Specifically, the 〈SUSPECT〉
messages are signed using public key cryptography. It is
computationally more expensive than conventional 〈ROUTE〉
and 〈ACK〉 messages. With modern platforms, computing a
MAC is many orders of magnitude faster than computing a
signature. We need to add extra delay δ for nodes generating

8Byzantine black holes or rushing attacks can be harmful to route discovery
protocols, where the attacks can result in establishing adversarial controlled
paths.



TABLE I
CHARACTERISTICS OF PATH-BASED BYZANTINE ROUTING PROTOCOLS. THE COLUMNS LABELED “FULLY BYZANTINE,” “FORMAL PROOF,”

“BYZANTINE DESTINATION,” AND “EFFICIENT INSTANTIATION” SPECIFY IF THE SCHEME TOLERATES FULLY BYZANTINE ADVERSARY, HAS A FORMAL
PROOF, TOLERATES BYZANTINE DESTINATIONS, AND HAS AN EFFICIENT INSTANTIATION, RESPECTIVELY. ∗HK ALLOWS FASTER DETECTION BY

SIGNIFICANTLY INCREASING MESSAGE COMPLEXITY BY USING STRONG ASSUMPTIONS ON HOW ROUTERS MAY FAIL.

Fully Byzantine Formal proof Byzantine destination Efficient instantiation Failure detection efficiency
ODSBR [7]

√
Θ(logn) rounds

AKWK [5]
√

1 round
HK [28]

√
1 round∗

BR1 (this paper)
√ √ √

1 round
BR2 (this paper)

√ √ √ √
1 round

BR3 (this paper)
√ √ √ √

2 rounds

and verifying digital signatures. Meanwhile, as we need to
consider the worst-case time-out values, we, in fact, need
to add extra delay for any nodes potentially generating and
verifying digital signatures.

In BR1, each node pi (i ∈ [0..n − 1]) sets the delay as
2(n− i)∆+(n−1− i)δ. In BR2, each node pi (i ∈ [0..n−1])
sets the delay as 2(n−i)∆+(n−i)δ. The minor difference (i.e.,
δ) is due to the fact that the destination in BR2 is potentially
faulty and should use digital signatures, while the destination
in BR1 is assumed to be nonfaulty and can use MACs.

D. BR3: Hybrid Byzantine Routing

In case of failures, the sources in BR1 and BR2 have to
wait until the timer expires and then take actions. However, the
time-out values for BR2 are set to be larger ones for the worst
case scenario where the destination needs to use signatures.
Meanwhile, the performance of BR2 is also affected by using
signatures for 〈ACK〉. We thus present BR3, a hybrid Byzantine
routing protocol that relies on symmetric cryptography only
and is as efficient as BR1 in its failure-free cases.

BR3 has two modes. In mode 1, only the source sets up a
timer, and both the source and the destination use MAC chains
to send 〈ROUTE〉 and 〈ACK〉 messages. If the source does not
receive the 〈ACK〉 in time, the source will switch to mode 2,
where the protocol is the same as BR2 and each router, not
just the source, needs to set up an appropriate time. The mode
is decided by the source, and the mode type is inserted in the
packet before applying the MAC chain.

E. Summary

Table I compares ODSBR, AKWK, HK, and our protocols
(BR1, BR2, and BR3).

VI. CORRECTNESS PROOF

Proof of Theorem 1: We begin with a lemma on MAC chain
and then proceed to our main proof.

Lemma 2. For the direction from source to destination (resp.,
from destination to source), any modification of a MAC chain
by a faulty router pi will be detected by the first nonfaulty
router in pi’s successor set S(pi) (resp., in pi’s predecessor
set P(pi)).

Specifically, for the direction from source to destination, if
pi is a malicious router that modifies the MAC chain (either

the message part or any MACs in the chain), the probability
of the following event is negligible: some nonfaulty routers in
S(pi) accept the MAC chain, but some following nonfaulty
router rejects the MAC chain. Jumping ahead, the lemma
actually shows that the use of MAC chain prevents the scenario
that some nonfaulty routers could falsely accuse some other
nonfaulty routers.

As an example, consider a path P = [p0..p7] with p2 being
malicious. If p2 modifies the MAC chain, then its successor p3
will reject the message directly. As another example, for a path
P = [p0..p7] with p2 and p3 being malicious, if p2 modifies the
chain and p3 strips the corresponding MAC (without verifying
its correctness) and passes on the remaining MAC chain, p4
will reject the message.
Proof of Lemma 2: We only need to prove the case for the
direction from source to destination, and the proof for the
reverse direction is symmetric.

We prove the claim using standard cryptographic reduction.
We show that if an adversary A that corrupts some router pi
managed to modify the MAC chain that can be accepted by a
nonfaulty router in it successor set S(pi), we can construct
another adversary B that attacks the unforgeability of the
underlying MAC scheme.

More formally, B runs A and constructs the environment
for A. In the beginning, B has to “guess” which nonfaulty
router is the “victim” one that accepts the modified MAC
chain. Specifically, B simulates an environment for A with
a path P = [p0..pn], and randomly guesses a victim correct
router, say, pj , where j

$← [1..n − 1]. Then B generates the
cryptographic keys for routers except for the nonfaulty source,
the nonfaulty destination, and the nonfaulty victim router.
Clearly, B does not have the key shared between the source and
the victim router. When needed, B uses the keys generated by
itself and runs the underlying MAC to simulate the messages
along the path P . It is easy to see that the simulation is perfect
from the perspective of A.

When A outputs a modified MAC chain, B outputs the
corresponding MAC that pj should verify as a forged MAC.
Thus, the advantage of B is at least equal to that of A
provided that B guesses the right victim router. The probability
of the B guessing the victim router correctly is 1/(n − 1).
Therefore, if the adversary A’s advantage is Adv(A), then
the adversary B’s advantage of forging a MAC is at least



1/(n− 1) ·Adv(A).9 The lemma now follows. 2

We are now ready to prove Theorem 1.
Liveness. As our protocol will eventually traverse each possi-
ble path and there is at least one nonfaulty path, the message
accepted at the source will be sent along a nonfaulty path and
eventually delivered at the destination.
Safety. If the destination delivers a message, according to the
specification of the protocol, the corresponding MAC was
verified correctly by the destination for the specific sequence
number and the path. As the source and the destination are
nonfaulty, the adversary does not have access to the key shared
between them. Therefore, the probability that a delivered
message at the destination was not accepted at the source is
at most the probability of adversary forging a MAC, which is
negligible. It is easy to turn the intuition to a formal proof,
which is a simplification of that of Lemma 2.
Detection. It is easy to see that the detection is a liveness
property. We distinguish two cases: 1) all the intermediate
nodes are nonfaulty; 2) at least one intermediate node is faulty.

For the first case, according to our protocol, each interme-
diate node can correctly verify the correctness the MAC and
forward the message to the destination which will deliver the
message.

For the second case, we just need to show that at least one
failure will be detected. We divide the faulty nodes into two
types: a) Type-I failure: a router that does not behave according
to the protocol so that the router’s predecessor fails to receive
a valid 〈ACK〉 message in time. We call this type of failures
as timing failures. b) Type-II failure: a router that sends a
〈SUSPECT〉 message maliciously, regardless of the correctness
of its successor. We call this type of failures as framing
failures.10 It is clear that the characterization includes all
possible failure types in the setting of asynchronous networks
with bounded delays.

For both Type-I and Type-II failures, a 〈SUSPECT〉 message
will be issued by some intermediate router and will arrive
at its predecessor before any 〈ACK〉 message arrives. This is
straightforward for the Type-II failures, and we just need to
justify the case for the Type-I failure. In fact, with a timing
failure, a modified MAC chain or an empty message will be
received the faulty node’s predecessor. According to Lemma
2, the predecessor will indeed reject the message.

We further consider two cases: there are no malicious
routers over the path from the router which issues the first
〈SUSPECT〉 message to the source; there are some other ma-
licious routers over the path. For the first case, it is clear
the 〈SUSPECT〉 message will be received by the source, as all
nodes in its predecessor set are nonfaulty and will forward

9More formally, our definitions and proof should include a security param-
eter. and the probability should be taken over the security parameter.

10Strictly speaking, there is one more type where a malicious router may
send both 〈ACK〉 and 〈SUSPECT〉 message altogether. If the 〈ACK〉 arrives
first, then the router appears to behave correctly. Otherwise, the case is
identical to the case of Type-II failures. This is because according to our
protocol, once a 〈SUSPECT〉 message arrives first, all the 〈ACK〉 messages
will be ignored.

the signed message. For the second case, if a malicious router
does not forward the 〈SUSPECT〉 message, a new 〈SUSPECT〉
message will be issued by the malicious router’s predecessor.
Note the according to Lemma 2, the above malicious router
cannot correctly compute a valid 〈ACK〉 message. (Here, the
predecessor receives no valid MAC; one may view the empty
message as the modified MAC chain, and Lemma 2 easily
applies.) Therefore, for both types of failures, a 〈SUSPECT〉
message will be received by the source. According to our
protocol, the source will mark some links and routers as faulty
once receiving any 〈SUSPECT〉 message.
Accuracy. In case of failures, BR1 waits for suspect messages
to arrive until the timer expires. BR1 handles the 〈SUSPECT〉
message that is the closest to the source, and for each
execution, BR1 reports one link failure and two detected nodes
(which are neighbors). We will show that the detected link was
indeed faulty, and at least one of the two detected nodes was
indeed faulty.

For various types of Byzantine failures, here we only need
to consider failures that exhibit Byzantine behavior for this
specific execution.11 Fixing a path from source to destination,
we distinguish three cases: 1) There is a single faulty router
over the path that has a timing failure; 2) There is a single
faulty router that is a framing failure; 3). There are more than
one failures over the path.

Case 1: In this case, the predecessor of the timing failure
will issue a 〈SUSPECT〉 message which will be forwarded to
the source. This includes the scenario where the faulty node
sends a modified MAC chain, and according to Lemma 2, the
modified MAC chain will be rejected by its successor and a
〈SUSPECT〉 message will be issued. The source will mark the
link between the faulty router and its predecessor as faulty, and
mark both the accuser and the accused as potentially faulty.

Clearly, the link between the faulty router and its predeces-
sor was indeed faulty. And one of the two routers detected,
the accused, was faulty.

Case 2: With a framing failure, a 〈SUSPECT〉 message is
issued even if its successor is actually nonfaulty. In this case,
the detected link was faulty, as one of the endpoint routers
was faulty. Meanwhile, one of the two routers detected, the
accuser, was faulty.

Case 3: Suppose that there are more than one faulty routers
which exhibit Byzantine behavior. This may lead to more
than one 〈SUSPECT〉 messages. However, only the 〈SUSPECT〉
message related to the faulty node that is closest to the source
(which we term as the “last 〈SUSPECT〉 message”) will be
handled, according to our protocol. This essentially allows us
to reduce the case 3) to the case 1) and the case 2). Clearly, at
least one of the two routers in the last 〈SUSPECT〉 message is
faulty. If both of the neighbor routers for the last 〈SUSPECT〉
message are faulty, both will be marked as potentially faulty.

The theorem now follows.

11If Byzantine nodes do not exhibit Byzantine behavior, then the messages
will be correctly forwarded and the nodes are technically nonfaulty for the
specific execution.



VII. IMPLEMENTATION AND EVALUATION

A. Implementation

Our experiments are carried out using DeterLab [13]. Our
test setting comprises a cluster of 50 machines (2.13GHz Xeon
processor, 4GB RAM). We create a pseudo-random graph with
at most 20 machines over the longest path.

Each machine runs an instance of our application and acts
as a router. Our application is written in Java, and the source
code is available at: github.com/sid15g/SecureRouting

Fig. 4. Application Stack

Fig. 4 depicts our application stack. The Network interface
is responsible for sending and receiving datagrams. We use
UDP sockets to handle each type of datagram. Packet fail-
ures and acknowledgments are handled using our application.
While we only implement a UDP-based solution, our system
can be extended to use TCP as well.

The topology of our network is maintained using a matrix A,
where the entry A[i][j] defines the weight of the link between
the node pi and the node pj . The source updates the topology
state based on the 〈SUSPECT〉 messages received.

We do not implement any particular key distribution algo-
rithm; for simplicity, we hardcode and maintain the keys in a
key manager. We use HMAC as the MAC scheme and ECDSA
as the digital signature scheme.

Our route discovery implements the shortest path algorithm
over the graph maintained by the topology manager. Timer
manager maintains timers for messages transmitted. We im-
plement three different handlers for three types of messages:
〈ROUTE〉, 〈ACK〉, and 〈SUSPECT〉. All the actions related to a
datagram is defined in its respective handler. Our processing
engine maintains a buffer where all the incoming datagrams
are pushed. The engine pops the datagrams and processes it
sequentially, using the datagram handlers.

B. Evaluation

In our configuration, the average network latency is about
4 ms. We first assessed two settings where the MAC chain
is used and cryptography is not used at all, respectively. We
observed no obvious performance difference between the two
settings. Therefore, the overhead incurred by the MAC chain
is negligible. This is because modern hardware can process

symmetric cryptography insanely fast. (One thousand 128-
bit AES calls can be proceeded around 20 µsec using a
commodity Intel processor.) For the same reason, there is no
need to compare our work with ODSBR or AKWK in failure-
free cases, as their system performance is at best as efficient
as that without using cryptography.

We then evaluated the robustness and effectiveness of our
protocols in the presence of various failures and attacks.
Specifically, we consider the following scenarios: 1) there is
one timing failure over the path; 2) there is one framing failure
over the path; and 3) there are more than one failures over the
path. For all the cases, we injected random failures and tried
to see how our protocol reacts. Our protocol can effectively
detect the failures within the time-out value set by the source,
as analyzed in our protocol and our proof. For all the above
cases, the source has to wait for the timers to expire to decide
the failures, the detection time equals the time-out value of
the source. While this shows the robustness of our protocol,
there is nothing interesting to report.
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Fig. 5. The latency in failure-free scenarios.
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Fig. 6. The latency in failure scenarios.

Last, we reported the average round-trip latency for failure



and failure-free scenarios in Fig. 5 and Fig. 6, respectively.
Specifically, for the failure cases, we measured the latency as
the time period from the time the source sends a message to the
time the source receives the corresponding acknowledgment.
This includes the time period that it has to wait to detect a
failure for one path and that it selects another path to transmit
the same message.

VIII. CONCLUSION

We revisit the problem of efficient, path-based Byzantine
routing. We first analyze representative path-based Byzantine
routing protocols and demonstrate why they only deal with a
weaker subset of Byzantine attacks. We then devise the first
provably secure, path-based Byzantine routing protocols that
are secure against fully Byzantine adversary in the customary
sense of dependable distributed systems. We implement and
evaluate our system, showing our protocols are both highly
efficient and robust.
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