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Abstract

We initiate the study of unique group signature such that signatures of the same message by
the same user will always have a large common component (i.e., unique identifier). It enables
an efficient detection algorithm, revealing the identities of illegal users, which is fundamentally
different from previous primitives. We present a number of unique group signature schemes
(without random oracles) under a variety of security models that extend the standard security
models of ordinary group signatures. Our work is a beneficial step towards mitigating the
well-known group signature paradox, and it also has many other interesting applications and
efficiency implications.
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1 Introduction

Group signatures, introduced by Chaum and van Heyst [25], are very useful tools in applications
where the signer’s privacy should be protected and in case of abuse some authorities can identify the
misbehaving user. However, a well-known group signature “paradox” is that it is difficult for the
group manager to identify a “misbehaving” user since all of signatures are anonymous. The group
manager obviously cannot afford to open all of group signatures signed, for this is inefficient, and
more importantly, it would compromise the privacy of every signer. Typically, the group manager
identifies possible misbehaving users by observing whether some surprising documents are signed,
or a huge amount of documents are signed within a short period, or some other “rules” are broken.
These empirical test methods only provide the group manager with rough estimation about what
signatures are suspicious. Trying to open and reveal the identities of suspicious signatures has a
risk of jeopardizing legal users, while the illegal users may still be well-hidden.

Let us consider the motivating example of group signature due to Chaum and van Heyst [25]:

“A company has several computers, each connected to the local network. Each de-
partment of that company has its own printer (also connected to the network) and
only persons of that department are allowed to use their department’s printer. Before
printing, therefore, the printer must be convinced that the user is working in that de-
partment. At the same time, the company wants privacy: the user’s name may not be
revealed. If, however, someone discovers at the end of the day that a printer has been
used too often, the director must be able to discover who misused that printer, to send
him a bill.”

The above opening policy, in practice, is problematic: it is not fair to reveal all identities of the
persons who use the printer that is “used too much”, since the identities of legal users might as well
be revealed. It does not even make sense to say what is “used too much”, as a dedicated adversary
might use the same printer every day such that the times of uses are always slightly below the daily
threshold, while the others would not dare to use the printer.

In this case, the rule that this company would like to enforce is to limit the number of times
within some period that group members can use the service. If anyone who accessed the service
beyond the allowed quota then its identity should be revealed by the group authority. At the
same time, it is equally desirable for this company to detect other malicious printing any time—for
instance, one printing process that uses up all the paper—which is prohibitive. In other words, once
a user signs a message more than a predetermined value then it shall be almost always (efficiently)
detected, but the group manager can always open signatures any time in case of other misbehavior.

We define unique group signature as a first step towards mitigating this paradox. We may
say that a group signature scheme is “unique” if it is computationally infeasible for a signer to
produce two different group signatures of the same message, such that both will pass the verification
procedure (by analogy with the well-studied notion of uniqueness for ordinary signature schemes).
We adopt a less stringent but more general definition such that if a signer produces two different
group signatures of the same message, then both signatures will always have a large common
component (hereinafter unique identifier) which is otherwise highly unlikely to occur. Ideally, if
one user indeed signs two different signatures on one message then there should be an (efficient)
detection algorithm that can reveal the identity of this user. With carefully defined other security
notions, this primitive (still called unique group signature) serves as a perfect solution of dealing
with the above problem.

In fact, a closely related question was first asked by Damg̊ard, Dupont, and Pedersen [26] in
their paper on unclonable group identification scheme. An unclonable group identification scheme
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enables a user to authenticate to a server with complete anonymity provided that no other users
try to use the first user’s secret key to authenticate to the server within the same time period
(“cloning attack”), while allowing the user’s identity to be traced if they do misbehave in this
way. In the introduction of their paper, Damg̊ard et al. point out the inadequacy of existing group
signature schemes for this purpose: “One may also consider using group signatures and have users
identify themselves by signing a message chosen by the verifier (using his current system time, for
instance). This achieves anonymity but does not protect against cloning. To do this, one would
need the property that if the same user signs the same message twice, this would result in signatures
that could be detected as coming from the same user. This. . .is actually false for known schemes,
since these are probabilistic and produce randomly varying signature even if the message is fixed. A
similar comment applies to identity escrow schemes. . ..” Our work on unique group signature can be
deemed as important progress on this interesting open question, and it also has many applications
beyond unclonable group identification.

Informally speaking, unique group signatures (suitably defined) are adequate for unclonable
group identification. For example, the user might send identification requests that include a signed
message of the form “service name || date” where || denotes concatenation. The server accepts if the
signature is valid, and if it doesn’t have the same large common component as another identification
request received earlier in the day. For this application (and many others), we further need a non-
colliding property for a unique group signature. A unique group signature is non-colliding if two
different signers almost never produce the same unique identifier of the same message.

In another application, the user might send authentication requests that include a signed mes-
sage of the form “service name || date || j”, where j is any integer between 1 and the (daily)
authentication bound k. The server accepts if the signature is valid, and if it doesn’t have the same
large common component as another authentication request from earlier in the day. This yields
a variant of periodic k-times anonymous authentication scheme [18, 51, 53, 54]. Of course, many
variations are possible by varying the space of messages to be signed.

Notice that for both of these applications, the server can choose whether or not to ask the
group manager to reveal the identities of misbehaving users. For minor misbehavior (such as an
attempt to authenticate to a service a few more times than the allowed bound, which might be due
to innocent human or software or network error) the extra attempts could be detected and ignored.
This lets the service provider reserve the relatively harsh penalty of anonymity revocation for more
significant (sustained and persistent) misbehavior.

Also note that the deterministic and uniqueness property of our unique signature can lead
to very fast processing of data. For example, a service provider carrying out a “first come, first
kept” policy on a stream of ` requests would need only O(` log `) operations (via appropriate tree
structures), or O(`) expected operations (via hash tables). This is particularly useful when there
are many users to be processed.

Though it can also deal with some applications that k-times anonymous authentication and more
generalized e-token system [18] can, our primitive (even in this respect) is in essence a different one
with distinct features and benefits (further discussion and comparison coming shortly).

Two models. This paper studies both the static group signature setting due to Bellare, Micciancio,
and Warinschi (BMW) [8] and the dynamic group signature setting due to Bellare, Shi, and Zhang
(BSZ) [9]. Intuitively, the static setting has a single authority (called the group manager), which
the dynamic setting splits into two: an issuer for enrolling members, and an opener for tracing
identities.

One might feel that studying static setting is not quite necessary as one could focus on the
more involved and generalized dynamic group signature setting. First, this does not make sense
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syntactically, since a dynamic group model is not simply an extension of a static group model.
Static group signature models realistic scenarios that the group manager takes full control of the
group user generation, and the secret signing key is distributed to each member, preferably, without
interaction. (Otherwise, the members have to be supported by a trusted PKI, which usually is not
the case in such a setting.) Instead, in the dynamic group setting, PKI support and interactive
Join/Issue between the group issuer and group users are both inevitable. Second, this does not
make sense technically, as we shall see, asking for non-interaction raises a few subtle issues in the
static setting, making constructing an efficient scheme equally difficult. Third, we believe that
static group signature is still conceptually more simple and starting from such a non-trivial point
will make our presentation much clearer. Last, constructionally, our results for static unique group
signature are both general and more efficient, while for the dynamic group setting our results are
only semi-modular and a little less efficient.

How to model unique group signature? As an extension of group signature with an efficient
detection algorithm, we provide the syntax and security definitions by extending ones for group
signatures. We offer the “strongest” achievable definitions of security for both settings, but here
we only highlight the case of dynamic model. On the one hand, the security requirements of
dynamic unique group signatures are all simple and clear. Three of them (i.e., CCA-anonymity,
traceability, and non-frameability) are based on previous security definitions of ordinary group
signatures, while the uniqueness requirement is a quite natural and intuitive one. This is good,
whether for understanding the definitions, or for designing the constructions. The uniqueness
security notion formalizes the intuition that one signer can only sign one message once. Jumping
ahead, we argue that defining uniqueness in the group signature setting raises subtle issues that
must be carefully treated. The partly deterministic property of our unique group signature implies
that we cannot target for the CCA-anonymity as formalized in [9]. We can still model the strongest
achievable anonymity definition (which we still call CCA-anonymity): as long as the secret keys of
challenge identities are not revealed and they did not sign the same message twice, no privacy is
leaked, even if adversary fully controls the issuer and corrupts all the other users.

On the other hand, they are in fact very carefully defined on the whole. Recall that our goal
is to present a group signature system where each group member can only sign any message once,
equipped with an (efficient) detection algorithm such that the identities of ones who disobey such a
rule can be revealed and should otherwise be never leaked. All of definitions of security are designed
to this end. A few seemingly reasonable variants of definitions turn out to be inadequate.

The detection algorithm of our dynamic CCA-anonymous unique group signature is as simple as
one could imagine: if the detection authority (i.e., the opener) ever found two different valid group
signatures on the same message with the same unique identifier, then it runs the opening algorithm
Open to extract their identities i and j (possibly i equals j), and adds them (it) to the misbehaving
user set. However, all of these on detection algorithm have to be formally defined, otherwise it
leaves one without any notion for what it means to have a good detection algorithm. Also note that
our defined security properties do not even involve any properties of detection algorithms. Instead,
we show that once the group system satisfies the four basic security requirements, it gives rise to a
good (complete and sound) detection algorithm. We regard this particularly different strategy of
dealing with security definitions as an important contribution of the paper.

Relaxations and Separations. We build the strongest achievable notions that we can imagine
for our unique group signatures, and show that they meet our need. But there might be circum-
stances where one does not need such strong definitions. Also, one might be able to come up with
more efficient constructions with relaxed security notions. Therefore, we consider various meaning-
ful relaxations of secure unique group signatures. We give constructions for them and also show

4



separation results on definitions. We stress that these results actually serve to motivate our final
instantiations.

Constructions. In this paper, we present both the general constructions and efficient instantia-
tions for both static and dynamic group models without relying on random oracles.

In the static setting, our general scheme follows the BMW two-level signature construction but
uses a verifiable random function (VRF) [50] as the second-level signature. We also give a simpler
construction for a unique group signature that is secure in a relaxed yet reasonable model. They
together lead to our final efficient instantiation using Groth-Sahai proof system [40]. All of our
constructions (either general or specific) are constant-size, and the instantiation is as efficient as
the-state-of-the-art. We still find room for improvement to the first-level signature for all of the
above, showing that a signature that is secure in the sense of unforgeability under random-message
attacks suffices.

Our construction for the unique group signatures in the dynamic setting is semi-modular, and
can be instantiated efficiently. The construction can even admit efficient concurrent-join which
allows many entities concurrently engage in the Join/Issue protocol with the issuer.

In building the schemes, we identify new and useful techniques that we believe can be used
in other privacy-preserving primitives. We highlight two of them. The first one is a PRF with
NIZK proof that can degenerate into a unique signature. In many signature-related primitives, one
not only need prove a deterministic function in a zero-knowledge sense but also prove knowledge
of input to the function. There are many existing techniques, but ours gives the constructions
that can be more efficient and rely on weaker assumptions. The other technique is what we call
“double-chaining certification,” which is used to achieve our unique group signature in the dynamic
setting. In essence, this allows us to separate the unique identifier generation process from tracing
process, thereby resulting in efficient and intuitive constructions.

Applications and Comparison between other primitives. Our primitive is designed to
mitigate the group signature paradox and also motivated by other privacy-preserving constructions,
such as k-times anonymous authentication, unclonable group identification protocol, and more
generalized e-token systems (periodic k-times anonymous authentication) [18]. The latter primitives
are closely related to group signatures, but do not have an opening authority that can always de-
anonymize signed messages.

On the other hand, our primitive can be as well used in applications where (periodic) k-times
anonymous authentication is needed as illustrated earlier. Indeed, one can simply use a range proof
to extend unique group signature to handle cases for k > 1, or one can easily achieve constant-size
scheme by registering k public keys for one user at a time. (Note one of our instantiations supports
efficient concurrent-join.) However, our primitive, in this respect, has distinct features.

First, the detection algorithms for other primitives are made public, meaning that if the a user
signs more than the authentication bound k then its identity can be publicly known. This can be
both good and bad : if an honest user accidentally signs slightly more than what is required because
of hardware breakdown or clock desynchronization, then the public identity disclosure might not be
the most reasonable choice. In fact, we are not aware of any implementations with such stringent
mechanisms in real applications. Our unique group signature in the dynamic group setting supports
in essence a different identity disclosure strategy where the detection authority (other than the group
provider) is responsible to detect and reveal disobeyers by the detection algorithm Det. Anyone
including the group provider and group members can find publicly misbehaving signatures and
report to the detection authority. In our setting, this algorithm is even coupled with a detection
proving algorithm DetProve that ensures the detection authority to behave correctly with a proof
that the revealed identities are ones of the disobeyers. The opener reserves the right to open
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persistent misbehaving users to the public, or contact and warn them privately, or send the identity
and the corresponding proof into court as it sees fit. As far as we are concerned, two flavors of
revelation are both interesting and should be used depending on specific applications.

Second, it was argued in [53], for their applications only, of course, that it is preferable that the
users (who honestly follow the protocol specification) should enjoy anonymity even from the group
provider. For the traditional group signature schemes, this requirement is not satisfied. But in the
dynamic group model, the group provider might be a distinct entity from the opener who acts as
the detection authority. Indeed, the reliance on some other party is inevitable if we do not want to
enforce public identity discovery.

Third, in the context of k-times anonymous authentication, to the best of our knowledge,
all previous constructions (e.g., [18, 51, 53, 54]) uses an idea originally from e-cash system. The
detection algorithm of our primitive is fundamentally different from those. It turns out, perhaps
somewhat counter-intuitive, that modeling and achieving “right” detection without using public
discovery is actually more challenging (which has been highlighted earlier and see Section 3.3 for
our treatment).

Last, as mentioned earlier, our primitives can be used in a more efficient way such that no
detection algorithm is involved. Namely, the deterministic and unique property of our unique
signature lead to very fast processing of data—on a stream of ` requests it would need only O(` log `)
operations via appropriate tree structures, or O(`) expected operations via hash tables. We are
not aware of other primitives admitting such efficient detection.

Further related work. The topic of unique signatures and verifiable random functions have
been an active research branch, which are of great value from both theoretical and applied perspec-
tives [1, 17, 24, 27, 28, 41, 49, 50].

For a long time, most of the proposed group signatures rely on random oracles. Bellare, Mic-
ciancio and Warinschi [8] gave security definitions for group signature in the static setting where all
members were given their signing keys and provided a trapdoor-permutation based construction.
Boneh and Waters [15, 16] proposed group signatures under a weaker version of the BMW model
where for the anonymity notion the adversary is not given any openings of group signatures [13].
The setting of dynamic groups was formalized by Bellare, Shi and Zhang [9], and they also offered
a trapdoor-permutation based construction. Groth [38] suggested the first constant size group sig-
nature scheme without random oracles in the BSZ model but the constant is huge and the scheme
is not yet practical. Groth [39] proposed a practical and fully anonymous group signature without
random oracles. Recently, Abe et al. [2] proposed group signatures with efficient concurrent join.
Traceable signatures, introduced by Kiayias, Tsiounis, and Yung [44], extend group signatures by
enabling an efficient tracing of all signatures by a misbehaving party without revealing identities
of any other users in the system. Chow [52] studied real traceable signatures that are essentially
non-interactive k-times anonymous authentication schemes. Jarecki and Shmatikov [42] studies
the linkable but anonymous authentication in the context of transaction escrow scheme. Similar
notions also appear in the ring signature setting (i.e., linkable ring signatures and traceable ring
signatures [5, 32, 33, 48, 55]).

2 Preliminaries

Notations. If x is a string then |x| denotes its length. The empty string is denoted ε. If S

is a set then |S| denotes its size and s
$← S denotes the operation of selecting an element s of S

uniformly at random. ∅ denotes the empty set, while Ø denotes a vector of empty sets. If n
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is an integer [n] denotes the set {1, 2, · · · , n}. If A is a randomized algorithm then we write
z

$←A(x, y, · · · ) to indicate the operation that runs A on inputs x, y, · · · and a uniformly selected r

from an appropriately required domain and outputs z. We write z
$←AO1,O2,···(x, y, · · · ) to indicate

the operation that runs A having access to oracles O1,O2, · · · on inputs x, y, · · · and outputs z. A
function ε(λ): N→ R is negligible if, for any positive number d, there exists some constant λ0 ∈ N
such that ε(λ) < (1/λ)d for any λ > λ0.

2.1 Primitives

Pseudo-random function. Pseudo-random function (PRF) was first introduced by Goldreich,
Goldwasser, and Micali [35]. We define a PRF family F : S × X → Y where S is the key space, X
is the message space, and Y is the range. We write Fs(·) to denote a PRF for every s ∈ S. Let Γ
be the set of all functions from X to Y. Define the PRF advantage of A against F as

Advprf
F (A) = Pr[ s $←S : AFs = 1 ]− Pr[ f $← Γ : Af = 1 ].

Digital signatures. A digital signature DS consists of three algorithms (Gen,Sig,Vrf). A key
generation algorithm Gen takes the security parameter λ and generates a verification key vk and
a signing key sk. A signing algorithm Sig computes a signature σ for input message m us-
ing the signing key sk. A verification algorithm Vrf takes as input vk and a message-signature
pair (m,σ) and outputs a single bit b. It is required that for all the messages m it holds that
Pr[Vrf(vk, m,Sig(sk, m)) = 1] = 1. The standard security notion of a digital signature is existential
unforgeability against adaptive chosen message attacks [36]. Formally, given a signature scheme
DS, we associate to an adversary A the following experiment:

Experiment Expuf
DS(A)

(vk, sk) $←DS.Gen(1λ)

(m,σ) $←ASig(sk,·)(vk)
if Vrf(vk, m, σ) = 0 then return 0
return 1

where m was not a query of A. We define the advantage of A in the above experiment as

Advuf
DS(A) = Pr[Expuf

DS(A) = 1].

We also consider two less stringent notions of security which we call existential unforgeability under a
weak chosen message attack (a.k.a. a generic chosen message attack), and existential unforgeability
under a random message attack [29]. In a weak chosen message attack, we require that the adversary
submit all signature queries before seeing the verification key vk. In a random message attack, the
adversary given vk has access to an oracle that on query i returns a message-signature pair (ri, σi)
where each of the ri’s is uniformly and independently from the message space. We will also use a
strong one-time signature scheme. It is secure against weak chosen message attack if no probabilistic
polynomial-time adversary that has access to a single weak chosen message attack oracle can create
a new message-signature pair (m,σ).

We also need a notion of unique signature (or verifiable unpredictable function), which asks that
for any message there exists only one signature that can pass the verification algorithm.

Verifiable random function. Verifiable random function (VRF), introduced by Micali et
al. [50], combines the properties of PRF and digital signature. Namely, a VRF is a PRF with
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a non-interactive proof of the correctness of the input. A VRF VRF consists of four algorithms
(Gen,Eva,Prove,Ver) with input domain X and output range Y. A key generation algorithm Gen
takes the security parameter λ and outputs a pair of keys (vk, sk) (where we use the same notation
as digital signature, and there should be no ambiguity from context). An evaluation algorithm Eva
takes as input sk and some x and outputs a value y. A proving algorithm Prove takes as input sk
and some x and outputs ν which is the proof of correctness. A verification algorithm Ver takes as
input vk and (x, y, ν) and outputs a single bit b. Formally, we require:

Provability/Correctness. If y ← Eva(sk, x) and ν
$← Prove(sk, x) then Ver(vk, x, y, ν) = 1.

Unconditional Uniqueness. There do not exist (vk, x, y1, y2, ν1, ν2) such that y1 6= y2, but
Ver(vk, x, y1, ν1) = Ver(vk, x, y2, ν2) = 1. Note that uniqueness in the definition above can be
relaxed so as to hold computationally as opposed to unconditionally.
Pseudorandomness. We associate to an adversary A the following experiment:

Experiment Exppr
VRF (A)

(vk, sk) $←VRF .Gen(1λ)

(x, s) $←AEva(sk,·),Prove(sk,·)(pk)

y0 ← Eva(sk, x); y1
$←Y

b
$←{0, 1}; b′ $←A(yb, s)

if b′ 6= b then return 0
return 1

where the adversary did not query its oracles with x. We define the advantage of A in the
above experiment as

Advpr
VRF (A) = Pr[Exppr

VRF (A) = 1]− 1/2.

A VRF scheme VRF is said to have the pseudorandomness property if for any polynomial-time
adversary A the function Advpr

VRF (A) is negligible in the security parameter.

2.2 Complexity Assumptions

Bilinear groups. We recall the definition of a bilinear group (q,G1,G2,GT , e, g, h) where G1,
G2, and GT are cyclic groups of prime order q, g and h generate G1 and G2, respectively, and
e: G1 ×G2 → GT is an efficiently computable bilinear map. We call a bilinear group symmetric if
G1 = G2, otherwise we call it asymmetric. All of assumptions that we use should hold in certain
bilinear groups. We refer the reader to [34] for details.

Symmetric eXternal Diffie-Hellman assumption (SXDH) [56]. Given a bilinear group of
prime order as described above, the symmetric external Diffie-Hellman assumption is that the DDH
problem is hard in both G1 and G2. This setting implies that there are no efficiently computable
homomorphisms between G1 and G2.

Decisional Linear assumption (DLIN) [13]. This assumption is first proposed in the setting
of symmetric bilinear groups of prime order: Given (g, gα, gβ, grα, gsβ , gt), it is computationally
hard to distinguish whether t = r + s or t is random. This assumption can be generalized to hold
in other settings.
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Diffie-Hellman Inversion assumption (DHI) [28]. Given g, gα, gα2
, · · · , gαl ∈ G, where

α
$← Zq, it is computationally hard to compute g1/α. For our constructions, we require that this

assumption holds in G1 or G2.

Decisional Diffie-Hellman Inversion assumption (DDHI)[7, 19]. Given input g, gα, gα2
, · · · ,

gαl ∈ G, where α
$← Zq, it is computationally hard to distinguish g1/α from a random element of G.

This assumption is generically false in the symmetric setting. We require that this assumption
holds either in G1 or G2. Also note that this assumption is slightly stronger than the DBDHI
assumption in [12, 28].

Strong Decisional Diffie-Hellman Inversion assumption (SDDHI) [18]. This assumption
is proposed in standard groups. Given a random generator g, gα ∈ G where α

$← Zq, and an oracle
Oα that on input m outputs g1/(α+m), it is computationally hard to distinguish g1/(α+m′) from
random on a new m′. Apparently, this assumption can be generalized to hold in a group with a
bilinear map (which must not be symmetric).

Strong Diffie-Hellman Inversion assumption (SDHI). The above SDDHI assumption sim-
ply asks the function g1/(α+·) to behave like a “random” function, but for our constructions, we need
a weak version of the assumption that we call strong Diffie-Hellman inversion assumption (SDHI)
where the above function is only needed to be “unpredictable”: Given a random generator g, gα ∈ G
where α

$← Zq, and an oracle Oα that on input m outputs g1/(α+m), it is computationally hard to
compute g1/(α+m′) on a new m′.

2.3 Groth-Sahai Proof System and Related Tools

Groth-Sahai proof system [40] provides efficient (composable) NIWI proofs and NIZK proofs1 in the
common reference string model for a large set of statements involving bilinear groups, including pair-
ing product equations, multi-scalar multiplication equations, and quadratic equations. This system
can be instantiated under three assumptions: SXDH assumption (in asymmetric bilinear groups),
DLIN assumption (in symmetric bilinear groups), and subgroup decision assumption (in composite
order bilinear groups). There are two types of common reference strings (which are computation-
ally indistinguishable) yielding perfect soundness and perfect witness-indistinguishability (or zero-
knowledge) respectively. A Groth-Sahai proof system consists of four algorithms (Gen, P, V, Extr).
The key generation algorithm Gen takes a security parameter and outputs a common reference
string crs together with an extraction key xk. The prover P takes as input crs and witnesses of
equations and outputs a proof π. The verifier V takes as input crs and π and outputs a bit b
with respect to a set of equations. The Extr algorithm taking as input the extraction key xk can
extract the group elements witnesses. Therefore, for the equations whose witnesses are group ele-
ments the above proof as well provides proofs of knowledge(PoK). Such NIZKPoK proof systems are
powerful tools to construct signature-related protocols. However, it cannot extract the witnesses
which are scalars but some function f of the scalar witnesses. This is formally called f -extractable
non-interactive proofs of knowledge [6]. It therefore entails stronger F -unforgeability notion (to con-
struct their P -signature scheme). The other solution is to use structure-preserving signatures [2]
which are compatible with Groth-Sahai proof system. A signature scheme is structure-preserving
if its verification keys, messages, and signatures are group elements and verification algorithm is a
set of pairing product equations.

We shall use the blind signature scheme by Fuchsbauer [31]. We briefly recall this primitive as
follows. The protocol is run between a signer who has the secret key x and a user who wants to get

1See Appendix A for standard notions of NIWI and NIZK proofs.
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a blind signature on (M, N) which is a DH pair w.r.t. two fixed random generators g and h. The
user sends a randomized message and obtains a pre-signature from the signer, and eventually the
user can produce a blind signature on (M, N). The security of this scheme (as a blind signature
and as a “signing on committed value” protocol [20–22]) can be justified under ADH-SDH and
SXDH (or ASH-SDH, WF-CDH and DLIN in symmetric groups) assumptions [31].

We also use two other tools related to Groth-Sahai proof system. One is a PRF with a NIZK
proof by Belenkiy et al. [7], which builds on a VRF by Dodis and Yampolskiy [28]. It can be
instantiated in both the SXDH and DLIN setup. We will use a variant of this function.

The other tool is Kiltz’s selective-tag weakly CCA-secure encryption [46]. We now recall
the scheme in the context of symmetric bilinear groups (q,G,GT , e, g). The public key pk is
(X1, X2, Y1, Y2) ∈ G4 and the secret key is (x1, x2) ∈ Z2

q such that X1 = gx1 and X2 = gx2 . To en-
crypt a message m with a tag t, one computes ciphertext C = (Xr1

1 , Xr2
2 , (gtY1)r1 , (gtY2)r2 , gr1+r2m)

where (r1, r2) ∈ Z2
q are randomness used. Given a ciphertext (c1, c2, d1, d2, c0), the validity is pub-

licly verified by checking if e(X1, d1) = e(c1, g
ty1) and e(X2, d2) = e(c2, g

ty2). If this is the case
then the receiver (owning the secret key) computes m = c0c

−1/x1

1 c
−1/x2

2 . The scheme is selective-tag
weakly CCA-secure under DLIN assumption. Groth [39] used it to construct a CCA-anonymous
group signature scheme.

3 Unique Group Signature Models

In this section we present models of unique group signatures in the static setting (following
BMW [8]) and in the dynamic setting (following BSZ [9]).

3.1 Static Setting Model

Following [8], a static group signature scheme SGS consists of four algorithms (GK,GS,GV,Open).
There is only one group authority which we call the group manager. The group key generation
algorithm GK takes as input the security parameter λ to form a fixed-size group with n members
where n may be related to λ, returning a tuple (gpk, gmsk, gsk), where gpk is the group public
key, gmsk is the group manager secret key, and gsk is an n-vector of secret signing keys with
gsk[i] for each user i. The secret keys are usually distributed to members without interaction.
The group signing algorithm GS takes as input gsk[i] and a message m to return a signature σ
under gsk[i]. The group verification algorithm GV takes as input the group public key gpk, a
message m, and a signature σ for m to return a single bit b. We say that σ is a valid signa-
ture of m if GV(gpk, m, σ) = 1. The opening algorithm Open takes the group public key gpk,
group manager secret key gmsk, a message m, and a signature σ to return an identity i or ⊥
(indicating failure). Basic correctness property is required: for all security parameter λ and in-
teger n, all (gpk, gmsk, gsk) $← GK(1λ), all i ∈ [n], and all message m ∈ {0, 1}∗, it holds that
GV(gpk, m,GS(gsk[i],m)) = 1 and Open(gpk, gmsk, m,GS(gsk[i],m)) = i.

For our purposes, we consider static unique group signatures where the signatures should have the
form of (m,σ) = (m, τ, ψ) where τ is the unique identifier for the message m and some group
member i, and ψ is the rest of the signature. (One can view the unique identifier as a special tag.)
We define for static unique group signature three security requirements: uniqueness, anonymity,
and traceability. The uniqueness requirement formalizes the intuition that one user can only sign
one message once, while the last two requirements are adapted from ones for the regular static
group signatures with the restraints of being unique.2

2For this reason, we choose to first present the uniqueness property.
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Uniqueness. Unlike defining uniqueness for a stand-alone signature (i.e., unique signature), it
is “tricky” to do so in the context of group signature that involves multiple users. We achieve
this goal step by step. In general, uniqueness is to protect the system from adversarial group
members. In this setting, any single group member should not generate more than one valid
signatures for any message m. In this sense, we may say that a group signature SGS satisfies the
uniqueness requirement, if for any polynomial-time adversary A in possession of a secret signing
key for member j, it holds that

Pr[(m,σ1 = (τ1, ψ1), σ2 = (τ2, ψ2))
$←A(gpk, gsk[j])

: τ1 = τ2 and GV(gpk, m, σ1) = GV(gpk, m, σ2) = 1] ≤ ε(λ).

The above formalization captures the spirit of the uniqueness property of group signatures by
analogy with the well-studied notion of uniqueness for ordinary unique signature schemes. However,
it is not quite adequate, for, an adversary may (adaptively) corrupt multiple group members to gain
an additional advantage. We thus give adversary access to a user secret oracle, USK(·), which, when
queried with an identity i ∈ [n], answers with the secret signing key gsk[i] for user i. In the static
group signature setting, once the secret key of a user is revealed then it is said to be corrupted.3

We let CU denote a set of corrupted users. Since the group has a fixed-size n, a set of uncorrupted
(i.e., honest) users is [n]/CU. The adversary is also given access to a user signing oracle, GS(·, ·),
which when queried with an identity i of a user and a message m, returns GS(gsk[i],m). Note that
we do not require that adversary only ask uncorrupted users for this oracle. Let GS denote a set
of message-signature pairs queried via the GS(·, ·) oracle. We write GSm to denote a set of users
with which adversary calls GS(·,m). We write GSM where M is a set of the messages queried to
denote a vector of sets with GSm for each m ∈ M. For maximal security, we also provide adversary
with the secret of the group manager gmsk. Formally, given a static signature scheme SGS of a
fixed-size n, we associate to an adversary A the following experiment:

Experiment Expunique
SGS,n(A)

(gpk, gmsk, gsk) $←SGS.Gen(1λ); CU← ∅; GS← ∅
(m,σ1, · · · , σ|CU|+1)

$←AUSK(·),GS(·,·)(gpk, gmsk)
for i ← 1 to |CU|+ 1 do

if GV(gpk, m, σi) = 0 or (m,σi) ∈ GS then return 0
for i, j ← 1 to |CU|+ 1 do

if i 6= j and τi = τj then return 0
return 1

where, above, each σi is of the form (τi, ψi). We define the advantage of A in the above experiment
as

Advunique
SGS,n(A) = Pr[Expunique

SGS,n(A) = 1].

In the above experiment, adversary is expected to output exactly |CU|+1 new and valid signatures
which have distinct unique identifiers with respect to the same message.

A caveat. We first emphasize that the above notion is the one that we shall use in this paper.
However, we do point out some “inadequacies” by considering the following scenario: it is possible
to design a scheme such that a single user can only sign any message once, but when they collude

3Jumping ahead, we stress that this is not the case for the dynamic group signature scheme, and the circumstances
there are more complex.
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they are able to gain an additional advantage. (In Appendix B, we give a separation result, showing
that there exist schemes satisfying a weakened uniqueness definition where the adversary can only
corrupt one user but not the standard uniqueness that we defined.) Our security experiment above
does not well capture this situation. Informally speaking, it is entirely possible that some of keys
correspond to one same unique identifier (i.e., they “collide”), while some other keys might generate
more unique identifiers than required. To put it differently, it might be the case that a set of users
of size k who do not collude ought to create k−1 unique identifiers as two of them collide, but when
they collude they can create k unique identifiers. This does not contract our uniqueness security,
but such a collusion clearly makes them sign messages beyond their own.

Non-colliding property. In light of this (and as required by some applications mentioned in
the introduction), we impose a restriction on our static unique group signature. We say that a
group signature is non-colliding if any of two different (honest) signers (who follow the scheme
specification) almost never produce the same unique identifier of the same message. We stress that
one should think of this as a correctness property rather than a security notion. More formally, for
all security parameter λ and integer n, all (gpk, gmsk, gsk) $← GK(1λ), all i, j ∈ [n] and i 6= j, and
all message m ∈ {0, 1}∗, it holds that

Pr[(τi, ψi)
$← GS(gsk[i],m); (τj , ψj)

$← GS(gsk[j],m) : τi = τj ] ≤ ε(λ).

Above, the probability is taken over the coins of the group key generation algorithm and group
signing algorithm.

The above requirement can resolve the “issue” above. Indeed, if the above-mentioned circum-
stance happens then an adversary who corrupted a set of group members can always “honestly”
generate signatures again and pick “enough” signatures with different unique identifiers to attack
the uniqueness property. It also makes our primitive justifiable in a few applications—only via
this property one can safely achieve the functionality of restricted anonymous authentication (as
mentioned in the introduction). Jumping ahead, we claim that the non-colliding property is needed
as well in justifying the security of the detection algorithm of unique group signature.

One may also consider a natural way of solving this problem by formalizing the intuition that
even a collusion of group members cannot produce more unique identifiers than they are able to
(if they follow the specification of the protocols). This is not that easy to formalize, and more
importantly, this is not really about uniqueness.

Another natural concern is what if the adversary both asks the HSK(·) and GS(·, ·) for some
user i. Recall that the adversary is expected to output new message-signature pairs. Following
our uniqueness definition, the adversary should not output the signatures returned by the GS(·, ·)
for some corrupted users. (We stress that this requirement is crucial for our formalization.) This,
however, does not restrict the adversary’s capability of attacking the uniqueness experiment, since
it can easily honestly generate other signatures using the secret key for the corrupted user as long
as the group signature algorithm is not fully deterministic.

Discussion. Since the main goal of setting up the uniqueness requirement is to protect the system
from the dishonest users, it is debatable whether or not to provide adversary with the group manager
secret key gmsk. It does make sense and suffices for many applications if we did not give adversary
this secret, but this provides a less strong definition. A natural separation result regarding this will
be provided in Section 4.

Our uniqueness definition is described in a computational sense where it should hold for polyno-
mial time adversaries. This can, however, be easily defined in the unconditional setting to protect
against all-powerful adversaries—as usually required in the conventional uniqueness definition of
security for a unique signature scheme.
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Note that this definition remains non-trivial even when the adversary has made the maximum
number of corruption queries (i.e., when |CU| = n).

In defining the above experiment, we could let the adversary output N signatures (rather than
exactly |CU| + 1 signatures). We impose no further restrictions on N as long as it contains valid
signatures which has |CU| + 1 different unique identifiers. (Also note we do not even need to ask
N ≥ |CU| + 1—which has to be the case if an adversary is intended to win.) To allow flexible
verification queries turns out to be a slightly stronger definition. But this definitional choice is
nonsignificant since the advantage of an adversary in this alternative definition can increase by at
most N .

In fact, there are other seemingly “correct” definition of uniqueness. The reason why we do
not choose them is due to the overall consideration of a “good” detection algorithm as we shall
describe shortly. Namely, some of these definitions (even with carefully defined other definitions)
do not seem to lead to a provably secure detection algorithm.

Anonymity. Due to the uniqueness property, we cannot achieve the strongest anonymity definition
of security as defined in BMW [8]. (The group signature signed by each member i is a partly
deterministic function of the gpk, gsk[i], and the message m. If the adversary is given all of the
secret keys gsk then it can attack the full-anonymity game simply by re-computing.) Thus a slightly
weaker yet still very strong anonymity security notion is used: the adversary can adaptively corrupt
the users of the group; for uncorrupted users, adversary is given a signing oracle; in the challenge
stage, adversary is not allowed to submit challenge queries with identities of corrupted users, and
not allowed to submit challenge queries with at least one of the identities and the message being the
same as ones queried before. We write Open(·, ·) to denote the opening oracle, which when queried
with a message m and a candidate signature σ, answers with Open(gpk, gmsk, m, σ). Specifically,
given a static group signature scheme SGS of a fixed-size n, we associate to an adversary A the
following experiment:

Experiment Expanon
SGS,n(A)

(gpk, gmsk, gsk) $←SGS.Gen(1λ); CU← ∅; GSM ← Ø

(i0, i1,m, s) $←AUSK(·),GS(·,·),Open(·,·)(find, gpk)

b
$←{0, 1}; σ

$← GS(gsk[ib],m)

b′ $←AUSK(·),GS(·,·),Open(·,·)(guess, σ, s)
if b′ 6= b then return 0
return 1

where it is mandated that for each d ∈ {0, 1} we have id /∈ CU and id /∈ GSm, and in the guess
phase the adversary A did not query Open(·, ·) with m and σ. We define the advantage of A in the
above experiment as

Advanon
SGS,n(A) = Pr[Expanon

SGS,n(A) = 1]− 1/2.

The above formalization considers the strongest possible anonymity definition in the context of
static unique group signature. The adversary is given access to the opening oracle in both phases
of the experiment.

We use the term “CPA-anonymity” to denote the following weakening of the security defini-
tion for anonymity in the static setting [13]: The adversary is never given access to the opening
oracle (but otherwise the definition is identical). For consistency, we interchangeably use “CCA-
anonymity” and “anonymity” to describe the stronger anonymity definition (with access to the
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opening oracle).

Traceability. The traceability security definition is the same as one in BMW [8]. We recall it by
considering the following experiment that is associated to an adversary A:

Experiment Exptrace
SGS,n(A)

(gpk, gmsk, gsk) $←SGS.Gen(1λ); CU← ∅; GSM ← Ø

(m,σ) $←AUSK(·),GS(·,·)(gpk, gmsk)
if GV(gpk, m, σ) = 0 then return 0
if Open(m,σ) = ⊥ then return 1
if Open(m,σ) = i and i /∈ CU and i /∈ GSm then return 1
return 0

The advantage of A in the above experiment is defined as

Advtrace
SGS,n(A) = Pr[Exptrace

SGS,n(A) = 1].

It is in fact possible to combine the uniqueness and traceability definitions of security to form
an integrated one, but we choose not to, for we think that this may give readers less intuitive
definitions. (A similar argument applies to the dynamic case.)

Remark and Discussion. BMW [8] shows that anonymity and traceability imply all existing
(informal) security requirements. Specifically, unforgeability, exculpability, functional traceability,
coalition resistance, framing are implied by traceability, while anonymity (without opening oracle)
and unlinkability are implied by anonymity. In our setting, the former clearly holds as well, since
our traceability definition is the same as the one in BMW. On the other hand, we intentionally want
to link two signatures signed by the same user on the same message. The uniqueness definition is
a step to achieve this goal. Our anonymity definition is the strongest achievable one (that we can
imagine) with the restrains of being unique. In BMW, the authors comment that “· · · anonymity
and unlinkability are technically the same property, and only the easier to define anonymity property
needs to be included in the security definition.” While we consent this viewpoint if one pursues
complete anonymity, our results (in the following sections) in fact show that one can achieve
meaningful linkability with still strong and maximal anonymity.

3.2 Dynamic Setting Model

In the dynamic group setting, there are two more features: it allows one to add members to the
group; the authority is separated into the opener and the issuer. An issuer is responsible to enroll
members, while an opener traces the identities of signatures signed by the users enrolled. The
signatures of members should be otherwise anonymous. The issuer maintains a registry reg which
contains information that both the issuer and user agree on. The registry reg is a vector with
reg[i] containing the identification information of member i. We assume, without loss of generality,
that the content in reg[i] is signed by the user i (using, for instance, its external PKI secret key).
Enrollment involves an explicit Join/Issue protocol, at the end of which the user will get its secret
signing key gsk[i].

A dynamic group signature scheme DGS = (GK, Join/Issue,GS,GV,Open, Judge) is specified as
follows:
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GK: The group key generation algorithm takes as input the security parameter λ outputs a
group public key gpk, the issuer key ik that is provided to the issuer, and the opening key ok
that is provided to the opener.
UK: A user i who wants to join the group runs the user key generation algorithm taking as in-
put the security parameter λ, and outputs the user public and private key pair (upk[i], usk[i]).
Join/Issue: This is an interactive algorithm between a user and the issuer. If being successful,
they register user’s public key in reg[i], and the user obtains its secret signing key gsk[i].
GS: The group signing algorithm GS takes as input gsk[i], and a message m to return a
signature σ under gsk[i].
GV: The group verification algorithm GV takes as input the group public key gpk, a message m,
a signature σ for m to return a single bit b. We say that σ is a valid signature of m if
GV(gpk,m, σ) = 1.
Open: The opener, who has access to the registration table reg and takes as input the group
public key gpk, its opening key ok, a message m, and a valid signature σ on m to output
(i, ω). If i > 0 then it means the opener identifies that user i produced the signature; ω is a
proof to support its claim that user i indeed signed the message. If i = 0 then it is claiming
that the issuer forged (m,σ).
Judge: The judge algorithm, taking as input gpk, the opening (i, ω), a message m, and a valid
signature σ of m, is to verify that openings of signatures are indeed correct. We say that the
opening is correct if the judge algorithm returns 1.

As in this static setting, we also consider dynamic unique group signatures where the signatures
should have the form of (m,σ) = (m, τ, ψ) where τ is the unique identifier for the message m
and some group member i, and ψ is the rest of the signature. A secure unique group signature in
the dynamic setting should satisfy correctness and four security notions: uniqueness, anonymity,
traceability and non-frameability.

We write HU and CU to denote a set of honest users and corrupted users respectively. Below, we
briefly recall the oracles provided to adversaries. Please refer [9] for further details.

• AddU(·)–add user oracle: adversary can add user i to the honest user list. We do not consider
honest users who do not faithfully complete the Join/Issue protocol.

• Crpt(·, ·)–corrupt user oracle: adversary corrupts user i who wants to join the group and sets
its user public key as upk[i].

• SndToI(·, ·)–send to issuer oracle: adversary runs a corrupted user i to run Join/Issue algorithm
with the honest issuer.

• SndToU(·, ·)–send to user oracle: adversary uses a corrupted group issuer to run Join/Issue
algorithm with an honest user i.

• USK(·)–user secret keys oracle: adversary can call this oracle to get the user signing key gsk[i]
and user private key usk[i] of i. (In this setting, obtaining the secret keys of the user does
not mean that it corrupted the user which can only be achieved via Crpt(·, ·) oracle.)

• RReg(·)–read registration oracle: adversary can call it with argument i to read the content
of reg[i].

• WReg(·, ·)–write registration oracle: adversary is given a write access to the content of reg[i]
by calling the oracle with argument i.

• GS(·, ·)–signing oracle: adversary is given the group signature for an honest user i and mes-
sage m.

• Open(·, ·)–opening oracle: given a message-signature pair, this oracle outputs the identity of
signer and the corresponding proof.
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Note that we do not include challenge oracle, for we would like to defer it to the anonymity game.
We write GSm to denote a set of honest users which adversary calls GS(·, ·) on m. We write GSM

where M is a set of all messages queried to denote a vector of sets with GSm for each m ∈ M.
We also use the notation USK-HU to denote a set of honest users whose secret keys are given to the
adversary.

Correctness. The correctness requirement asks that the signature should be valid on even ad-
versarially chosen message, the opening algorithm should identify the real signer, and the judge
algorithm should accept the opening. For a dynamic group signature scheme DGS, we formalize
correctness using the following experiment involving a computationally unbounded adversary A:

Experiment Expcorrect
DGS (A)

(gpk, ik, ok) $←DGS.Gen(1λ); CU← ∅; HU← ∅
(i,m) $←AAddU(·),RReg(·)(gpk)

σ
$← GS(gsk[i],m)

if GV(gpk, m, σ) = 0 then return 1
Open(gpk, ok, reg ,m, σ) = (j, ω)
if i 6= j then return 1
if Judge(gpk, (i, ω),m, σ, reg) = 0 then return 1
return 0

We define the advantage of A in the above experiment as

Advcorrect
DGS (A) = Pr[Expcorrect

DGS (A) = 1].

We say that DGS is correct if Advcorrect
DGS (A) = 0 for any computationally unbounded adversary A.

Uniqueness. Compared to the uniqueness definition in the static group signature, the case here is
more involved and the adversary is also provided a few additional attack capabilities. For clarity,
consider the following typical scenario: A service provider has a list of registered public keys
corresponding to all users who have purchased a single access to some confidential service for that
day (requiring anonymous authentication). It is important that no set of users could sign messages
beyond their own, since otherwise that set of users could purchase the daily service legitimately,
and then maliciously gain more daily accesses than they paid for.

The adversary is not given issuer key ik, otherwise it can create arbitrarily many dummy honest
users and easily attack the uniqueness property. Instead, the adversary is allowed to create honest
group members using AddU(·) oracle, and obtains both of personal private key and user signing key
of a user using USK(·) oracle and obtains signatures of an honest user using GS(·, ·). The adversary
is also allowed to run RReg(·) oracle. Besides, it can corrupt users and interact with the issuer
using Crpt(·, ·) and SndToI(·, ·) oracles. We consider the following experiment Expunique

DGS (A):

Experiment Expunique
DGS (A)

(gpk, ik, ok) $←DGS.Gen(1λ); CU← ∅; HU← ∅; GS← ∅
(m,σ1, · · · , σ|CU|+|USK-HU|+1)

$←AUSK(·),GS(·,·),SndToI(·,·),AddU(·),RReg(·),Crpt(·,·)(gpk, ok)
for i ← 1 to |CU|+ |USK-HU|+ 1 do

if GV(gpk, m, σi) = 0 or (m,σi) ∈ GS then return 0
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for i, j ← 1 to |CU|+ |USK-HU|+ 1 do
if i 6= j and τi = τj then return 0

return 1

where, above, each σi is of the form (τi, ψi). We define the advantage of A in the above experiment
as

Advunique
DGS (A) = Pr[Expunique

DGS (A) = 1].

Non-colliding property. The same caveat applies to dynamic unique group signatures. One
may think that it would not be adequate to define only the non-colliding property for an honest
user (who follows the protocol) as we did in the static group setting since the secret signing key or
a group signing algorithm of a corrupted user in this case is not even well-defined. In fact, we only
have to define the non-colliding property. It would be the adversary’s own failure if, via interacting
with an honest issuer, the adversary gets a key (if this key really exists) and signs a signature that
collides with some other group signature (whether that other signature was honestly generated or
not).

We formally define non-colliding property for unique signature in the dynamic setting involving
an adversary:

Experiment Expnc
DGS(A)

(gpk, ik, ok) $←DGS.Gen(1λ); CU← ∅; HU← ∅
(i, j, m) $←AAddU(·),RReg(·)(gpk) where i 6= j

(τi, ψi)
$← GS(gsk[i],m); (τj , ψj)

$← GS(gsk[j],m)
if τi = τj then return 1
return 0

We define the advantage of A in the above experiment as

Advnc
DGS(A) = Pr[Expnc

DGS(A) = 1].

We say that DGS is non-colliding if Advnc
DGS(A) ≤ ε(λ) for any polynomial-time adversary A.

Anonymity. The basic idea is the same as the one for the static group signature setting. We
cannot target the strongest anonymity definition as defined in BMW [8] due to the uniqueness
property. Nevertheless, we still provide the strongest achievable anonymity definition that we can
imagine. Given a dynamic group signature scheme DGS, we associate to an adversary A the
following experiment:

Experiment Expanon
DGS(A)

(gpk, ik, ok) $←DGS.Gen(1λ); CU← ∅; HU← ∅; GSM ← Ø

(i0, i1,m, s) $←AUSK(·),GS(·,·),Open(·,·),Crpt(·,·),SndToU(·,·),WReg(·,·)(find, gpk, ik)

b
$←{0, 1}; σ

$← GS(gsk[ib],m)

b′ $←AUSK(·),GS(·,·),Open(·,·),Crpt(·,·),SndToU(·,·),WReg(·,·)(guess, σ, s)
if b′ 6= b then return 0
return 1
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where it is mandated that for each d ∈ {0, 1} we have id ∈ HU and id /∈ GSm, and in the guess phase
the adversary A did not query Open(·, ·) with m and σ. We define the advantage of A in the above
experiment as

Advanon
DGS(A) = Pr[Expanon

DGS(A) = 1]− 1/2.

Discussion. Note that the adversary is given the issuer key ik, as considered for a conventional
dynamic group signature in BSZ [9]. It turns out that giving adversary such an attack capability
would complicate our construction by much. One can consider a weakening of definition that we
call CPA-anonymity where the adversary is never given access to the opening oracle.

Traceability and Non-frameability. The traceability and non-frameability definitions are the
same as ones in BSZ [9], which we recall here. First consider an experiment involving some trace-
ability adversary A.

Experiment Exptrace
DGS (A)

(gpk, ik, ok) $←DGS.Gen(1λ); CU← ∅; HU← ∅
(m,σ) $←AAddU(·),USK(·),Crpt(·,·),SndToI(·,·),RReg(·)(gpk, ok)
if GV(gpk, m, σ) = 0 then return 0
(i, ω) ← Open(gpk, ok, reg ,m, σ)
if i = 0 or Judge(gpk, i, reg ,m, σ, ω) = 0 then return 1
return 0

We define the advantage of A in the above experiment as

Advtrace
DGS,(A) = Pr[Exptrace

DGS (A) = 1].

We now recall the non-frameability definition by considering the following experiment involving an
adversary A.

Experiment Expnf
DGS(A)

(gpk, ik, ok) $←DGS.Gen(1λ); CU← ∅; HU← ∅
(m,σ, i, ω) $←AUSK(·),GS(·,·)Crpt(·,·),SndToU(·,·),WReg(·,·)(gpk, ik, ok)
if GV(gpk, m, σ) = 0 then return 0
(i, ω) ← Open(gpk, ok, reg ,m, σ)
if i ∈ HU and i /∈ USK-HU and i /∈ GSm and

Judge(gpk, i, reg ,m, σ, ω) = 1 then return 1
return 0

We define the advantage of A in the above experiment as

Advnf
DGS(A) = Pr[Expnf

DGS(A) = 1].

3.3 Detection Algorithms

We show how our security definitions in both settings imply efficient detection algorithms that can
find who do not follow the algorithm specification and disobey the rule that one group member
can only sign any message once. Here we only focus on the more involved dynamic setting, and
one can easily get similar (but weak) results for the static group setting.
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The detection algorithm Det takes as input two different group signatures σ1 and σ2 for the same
message m and outputs ⊥ or I or (b, i, j, θ) for b ∈ {0, 1}. The algorithm returns ⊥ if at least for one
of σ1 and σ2 it holds that GV(gpk, m, σt) = 0 (t ∈ {0, 1}). If b = I then the detection algorithm is
claiming that at least one of the two signatures was not generated by the group members registered
in the reg . (Note that group issuer can always generate group signatures on his own by adding
dummy users.) In this case, it might have an additional output µ that is a proof that at least one
of the signatures was generated by the group issuer. If b = 0 then it is claiming that two signatures
were generated by two different signers—a rule that the system would like to enforce. In this case,
it does not need a proof of the claim. (But one could ask a proof if desired.) In case b = 1, it is
claiming that two signatures were generated by rule disobeyers i and j, where i, j ≥ 1, i could be
equal to j, and θ is a proof of this claim that is verified by the DetProve algorithm.4

The detection proving algorithm DetProve takes as input the group public key gpk, two valid
signatures σ1 and σ2 of m, and a vector (b, i, j, θ) output from Det(m,σ1, σ2) where b = 1, i, j ≥ 1,
and θ is a non-empty string to output a single bit d indicating whether θ is a correct proof that
both of i and j disobey the rule.

The detection algorithm should satisfy completeness and soundness properties described below.

Completeness. The set LU of legal users (who follow the rule that one signer can only sign one
message once)5 will almost never be wrongly detected by the detection algorithm.

Soundness. If Det(m,σ1, σ2) = (1, i, j, θ) and DetProve(gpk, m, σ1, σ2,Det(m,σ1, σ2)) = 1 then
both i and j are illegal users (who did not follow the specification of the protocol or the rule).6

Discussion. The soundness definition is strong in the sense that once the detection algorithm
outputs two different identities with a correct proof of this claim then neither of them followed the
specification of the protocol or the rule. The detection algorithm would not work well if only one
of the two users is dishonest but the other still follows the rule, since in this case the latter user is
actually framed by some adversary.

Unique group signature implies an efficient detection algorithm. Our dynamic CCA-
anonymous unique group signature immediately has an efficient complete and sound detection
algorithm Det coupled with a detection proving algorithm DetProve. In a nutshell, the detection
algorithm takes as input the group opening key and proceeds as follows: If ever found two different
valid group signatures on the same message with the same unique identifier, then it runs the
opening algorithm Open to extract their identities i and j (where possibly i equals j) and their
corresponding proofs θi and θj , and adds them (it) to the misbehaving user set. Anyone can run
the Judge algorithm as the DetProve algorithm. More specifically, given a dynamic unique group
signature, we have the following detection algorithm Det and detection proving algorithm DetProve
as illustrated in Figure 1.

We stress that the completeness and soundness properties of the above detection algorithm are
not guaranteed by merely using uniqueness property. For instance, we cannot rule out that there
is an adversary who obtains one signature that points to some honest user i who has not been
queried with USK(·) oracle and can forge a different signature still with the same unique identifier
that points to the same user i. Clearly, in this case, it does not contradict the uniqueness property,
but such an adversary successfully frames user i. In what follows, we formally justify the detection
algorithm by providing the following theorem (with proof in Appendix C.1).

4Note that in the static group setting we do not have such an algorithm.
5This set does not mean only the honest user set HU but a set of corrupted users who still follow the algorithm.
6Recall that i could be equal to j.
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Algorithm Det(m, σ1 = (τ1, ψ1), σ2 = (τ2, ψ2))

if GV(m,σ1) = 0 or GV(m,σ1) = 0 then
return ⊥

(i, ωi) ← Open(m,σ1); (j, ωj) ← Open(m,σ2)
if i = 0 or j = 0 then

return (I, µ)
if τ1 = τ2 then

return (1, i, j, (ωi, ωj))
return (0, ε)

Algorithm DetProve(m, σ1, σ2)

if Det(m,σ1, σ2) 6= (1, i, j, (ωi, ωj)) then
return 0

if Judge(gpk, (i, ωi),m, σ1, reg) = 1 and
Judge(gpk, (j, ωj),m, σ2, reg) = 1 then
return 1

return 0

Figure 1: Det and DetProve algorithms. If Det identifies that one of signatures was produced by the group
issuer then it can also output µ which is either ε or a proof of the claim, depending on what the system
requires.

Theorem 1 Given a dynamic unique group signature DGS, if it is correct and non-colliding, and
satisfies CCA-anonymity, uniqueness, traceability, and non-frameability requirements, then the Det
algorithm given in Figure 1 is complete and sound.

Further Comments. It is quite easy to generalize the results to handle more complex privacy-
preserving circumstances as we have done in the introduction. It is also possible to provide some
privileges to a small set of members who pay more by providing them with more uniqueness keys.

Note that identity detection algorithm is optional. It makes sense that the system only prevents
repeated unique identifers (and denies the request for service), and no further action is taken. As
we mentioned in the introduction, if revealing the identities of misbehaving users is not a must
then this variant leads to an extremely efficient construction.

4 Unique Group Signature Construction – Static Setting

In this section, we first present general constructions for CCA-anonymous unique group signature
and for its meaningful relaxations in the static setting. They together motivate efficient instantia-
tions by using Groth-Sahai proof system.

4.1 A General CCA-Anonymous Unique Group Signature

Our construction basically follows the general two-level signature constructions of [8]. The difference
is that we replace the second-level signature with a verifiable random function, where its public
key is signed by the certification key of group manager. Normal CPA-anonymous group signatures
are studied in [13, 15, 16]. It is pointed out by [15, 16] that it is not necessary to use a full-fledged
adaptive chosen message attack secure signature for the first level. The construction in [16] uses a
first-level signature that provides security against a special form of random message attack.7 This
random message attack is slightly non-standard, namely, it only provides the adversary with random
signatures but not the message. This observation gives greater flexibility and more candidates in
designing static group signature, yielding efficient constructions. It is interesting to know whether
using signature schemes secure under weaker attacks for the first level is possible for unique group
signature.

We give our general construction using a first-level signature scheme that provides security
against standard random message attacks. To make it easier to understand, we present our re-

7Precisely, the signature is based on a q-type assumption and the hidden scalars are not necessarily uniformly
distributed. However, asking them to be chosen uniformly at random is a typical choice.
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Algorithm GK(1λ)

R
$←{0, 1}p(λ)

(vk, sk) $←DS.Gen(1λ)
(ek, dk) $←E .Gen(1λ)
gpk ← (R, ek, vk)
for i ← 1 to n do

(ski, vki)
$←VRF .Gen(1λ)

certi
$← Sig(sk, vki)

gsk[i] ← (ski, vki, certi, gpk)
reg[i] ← vki

gmsk ← (dk, reg)
return (gpk, gmsk, gsk)

Algorithm GS(gsk[i], m)

τ ← Eva(ski,m); ν
$← Prove(ski,m)

C ← Enc(ek, r, (vki, ν, certi))
π

$← P1(R, (m, vk, ek, τ, C), (r, vki, ν, certi))
σ ← (τ, C, π)
return (m,σ)

Algorithm GV(gpk, m, σ)

return V1(R, (m, vk, ek, τ, C), π)

Algorithm Open(gpk, gmsk, m, σ)

if V1(R, (m, vk, ek, τ, C, π)) = 0 return ⊥
(vk′, ν′, cert) ← Dec(dk, C)
if vk′ = reg[i] then return i

Figure 2: General construction for static unique group signature SGS1 = (GK,GS,GV,Open). We write reg
to denote reg[1] · · · reg[n]. R is the common reference string for the underlying NIZK proof system (P1, V1).
SGS1 is a secure CCA-anonymous unique group signature, if DS is unforgeable under random message
attacks, E is CCA-secure, and VRF is a verifiable random function, and (P1, V1) is a one-time simulation-
sound NIZK proof system. SGS1 is CPA-anonymous, if E is semantically secure and (P1, V1) is a regular
NIZK proof system.

sult using a combination of an encryption scheme and a NIZK proof system, instead of using an
equivalent notion of NIZKPoK. Define a verifiable random function VRF = (Gen,Eva,Prove,Ver)
with input domain X and output range Y (which is also the domain and range of unique iden-
tifier respectively). Let DS = (Gen,Sig,Vrf) be a signature scheme. Let E = (Gen,Enc,Dec)
be a public key encryption scheme. Let (P1, V1) be a NIZK proof system for a language L1 :=
{(m, vk, ek, τ, C)|∃(r, vk′, ν ′, cert)[Vrf(vk, vk′, cert) = 1,Ver(vk′,m, τ, ν ′) = 1, and C =Enc(ek, r, (vk′,
ν ′, cert))]} where we write Enc(ek, r,M) for the encryption of a message M under the public
key ek using the randomness r. We define a group signature scheme SGS1 = (GK,GS,GV,Open)
in Figure 2. The following theorem establishes its security:

Theorem 2 If VRF is a verifiable random function, DS is a secure signature against random mes-
sage attack,8 E is a CCA-secure encryption scheme, and the underlying NIZK proof system (P1, V1)
is adaptively sound and adaptively zero-knowledge and one-time simulation-sound then the construc-
tion SGS1 in Figure 2 is a secure CCA-anonymous unique group signature in the static setting.

4.2 Relaxations and Separations

The above construction is general but does not seem to immediately give rise to efficient instantia-
tions. This is due, first, to the fact current simulation-sound NIZK proof systems are not efficient—
even for the Groth-Sahai instantiations for some specific languages [14, 38]. This is further due to
the fact that the VRF proof ν may be incompatible with the efficient proof systems.

In light of this, we consider two meaningful relaxations of CCA-anonymous unique group sig-
nature. The first natural relaxation is to consider CPA-anonymous unique group signature where
the anonymity adversary is never given the opening oracle. This immediately helps avoid using
simulation-sound property of NIZK proof system and chosen ciphertext security for the underlying

8We require an additional but natural property for the underlying second-level VRF scheme, where each pair of
VRF public/secret keys (vk, sk) are both uniformly and independently distributed. Similar requirements are needed
for Theorems 3-5.
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Algorithm GK(1λ)

R
$←{0, 1}p(λ)

(vk, sk) $←DS.Gen(1λ)
(ek, dk) $←E .Gen(1λ)
gpk ← (R, ek, vk, F )
for i ← 1 to n do

si
$←S

certi
$← Sig(sk, si)

gsk[i] ← (si, certi, gpk)
reg[i] ← si

gmsk ← (dk, reg)
return (gpk, gmsk, gsk)

Algorithm GS(gsk[i], m)

τ ← Fsi
(m)

C ← Enc(ek, r, (si, certi))
π

$← P2(R, (m, vk, ek, τ, C), (r, si, certi))
σ ← (τ, C, π)
return (m,σ)

Algorithm GV(gpk, m, σ)

return V2(R, (m, vk, ek, τ, C), π)

Algorithm Open(gpk, gmsk, m, σ)

if V2(R, (m, vk, ek, τ, C, π)) = 0 return ⊥
(s′, cert) ← Dec(dk, C)
if s′ = reg[i] then return i

Figure 3: Static unique group signature SGS2 with relaxed uniqueness and traceability notions, where the
adversaries are not allowed to give the group manager secret key gmsk.

encryption scheme. Namely, we have a group signature the same as illustrated in Figure 2 except
that we only use a regular NIZK proof system and a semantic-secure encryption.

Theorem 3 If VRF is a verifiable random function, DS is a secure signature against random mes-
sage attack, E is a CPA-secure encryption scheme, and the underlying NIZK proof system (P1, V1)
is adaptively sound and adaptively zero-knowledge, then the construction SGS1 in Figure 2 is a
secure CPA-anonymous unique group signature in the static setting.

The other meaningful relaxation that we consider is that we no longer give the uniqueness and
traceability adversaries the group manager secret key gmsk. This relaxation makes sense as an
external adversary usually does not obtain the opening key of group manager unless it corrupts the
group manager which looks less likely. We find that if we restrict the adversary in such a way then
we can simply use PRF instead of VRF such that the second problem can be solved.

Define a PRF family F : S ×X → Y where S is the key space, X is the message space, and Y is
the range. We write Fs(·) to denote a PRF for every s ∈ S. Let DS and E be a digital signature and
a public key encryption scheme respectively. Let (P2, V2) be a NIZK proof system for a language
L2 := {(m, vk, ek, τ, C)|∃(r, s, cert)[τ = Fs(m),Vrf(vk, s, cert) = 1, and C = Enc(ek, r, (s, cert))]}.
We define a group signature scheme SGS2 = (GK,GS,GV,Open) as illustrated in Figure 3. The
following theorem establishes the security of this construction.

Theorem 4 If F is a PRF, DS is a secure signature against random message attack, E is a
CCA2 secure encryption scheme, and the underlying NIZK proof system (P2, V2) is adaptively sound
and adaptively zero-knowledge and one-time simulation-sound then the construction SGS2 given
in Figure 3 is a CCA-anonymous unique group signature with relaxed uniqueness and traceability
where the adversaries are not given gmsk.

Separations. One can verify that SGS1 (i.e., the CPA-anonymous construction) may be not CCA-
anonymous, and SGS2 may be not secure in the sense of standard uniqueness and traceability. Thus,
they give natural separations results for these definitions of security. See Appendix B for proofs and
discussion. (Recall that we also give a separation result on uniqueness definitions in Appendix B.)

4.3 Efficient Instantiations

The above concerns do not rule out ad hoc constructions in the strongest model defined. It turns out
that we can provide efficient constructions using the Groth-Sahai proof system. The encryption
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Algorithm GK(1λ)

(crs, xk) $← Groth-Sahai.Gen(1λ)
(vk, sk) $←DS.Gen(1λ)
gpk ← (crs, vk)
for i ← 1 to n do

si
$← Zq

certi
$← Sig(sk, hsi)

gsk[i] ← (si, certi, gpk)
reg[i] ← hsi

gmsk ← (xk, reg)
return (gpk, gmsk, gsk)

Algorithm GS(gsk[i], m)

τ ← g1/(si+m)

Cs
$← Com(hsi)

θ
$← Sig(sk, hsi)

return (m, τ,Cs, Cθ, π1, π2)

Algorithm GV(gpk, m, σ)

return V3((m, τ,Cs), π1) ∧ V4(Cs, Cθ, vk), π2)

Algorithm Open(gpk, gmsk, m, σ)

if GV(gpk, m, σ) = 0 return ⊥
S′ ← Extr(xk, Cs)
if S′ = reg[i] then return i

Figure 4: Efficient CPA-anonymous unique group signatures. We let V3 and V4 be the corresponding
verification algorithms for the languages L3 and L4. The common reference string crs contains the bilinear
map parameter (q,G1,G2,GT , e, g, h) besides the Groth-Sahai proof parameter.

scheme can be replaced with a Groth-Sahai extractable commitment scheme. Given a bilinear
group (q,G1,G2,GT , e, g, h), a commitment to x ∈ G (either G1 or G2) with randomness rx is
denoted Com(x, rx), and an extraction algorithm Extr takes as input the extraction key xk and a
commitment C to return a group element.

The key component is a PRF that supports efficient NIZK proof that can degenerate into a
unique signature scheme where they share the same tag. In general, the former helps achieve the
anonymity security, where the tag has to be random, while the latter is used to prove the uniqueness
and traceability security, where the tag only needs to be unique and unpredictable.

Specifically, we make use of a variant of the PRF with NIZK proof proposed by Belenkiy
et al. [7]. We define a language L3 := {(m, τ,Cs)|∃(s, rs)[τ = Fs(m) and Cs = Com(hs, rs)]}, where
Fs(·) := g1/(s+·). The corresponding NIZK proof π1 is of the form (Cτ , πτ , C

′
s, πs, π

′), where Cτ is
a commitment to τ and πτ is a NIZK proof for that Cτ is a commitment to τ , C ′

s is a commit-
ment to hs, πs is a NIZK proof that Cs and C ′

s are commitments to the same value, and π′ is a
witness-indistinguishable proof that Cτ is a commitment to τ̄ , C ′

s is a commitment to S such that
e(τ̄ , Shm) = e(g, h). The above proof system is a NIZK proof system for L3 if DDHI assumption
holds and Groth-Sahai proof system is secure. As shown in Section 4.2, if we directly let group
manager sign each secret key s ∈ Zq (and add each s to reg which is part of gmsk) and run a cor-
responding NIZKPoK then we can get a CPA-anonymous unique group signature yet with relaxed
uniqueness and traceability security. Still, this appears hard to find an efficient instantiation in the
framework of Groth-Sahai proof system, since the secret s is a scalar rather a group element.

Note that we cannot as well expose the value hs in the above PRF with NIZK proof system,
because neither the above system would be zero-knowledge nor we are able to prove its security
based on DDHI assumption. We can, however, degenerate the above PRF with NIZK proof to get
a unique signature scheme, where one can view hs as the public key and g1/(s+m) as the signature
of m.9 Then, the manager can sign each hs instead of s, and add hs to reg. Fortunately, we can show
that uniqueness property and standard unforgeability security (rather than pseudorandomness)
suffice to give the security of uniqueness and traceability. This prevents us from using rather strong
assumptions such as SDDHI assumption [18] in bilinear groups. In fact, one can prove security of
the unforgeability under DHI assumption [28] (with less tight reduction) or SDHI assumption that
we formalize where the adversary is only asked to output a new message-signature pair to win (see

9This is the Boneh-Boyen weakly secure signature [11].
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Section 2.2).
It remains to be shown how to choose the first-level signature. Recall that Groth-Sahai com-

mitment, given the extraction trapdoor, can only extract group elements rather than the scalars.
There are currently two ways of settling the problem. The first solution is to use the F -unforgeable
signature by Belenkiy et al. [6]. They proposed two F -unforgeable signature schemes, one of
which has a simple structure, yet using an interactive assumption (i.e., interactive Hidden SDH
assumption). We can build our scheme on this signature, while the security can be proven using
a weaker and more natural non-interactive q-type assumption. The other method is to employ a
structure-preserving signature that is only needed to be secure in the weak random message attack
(e.g., one from [37]) to sign hs directly. To be as general as possible, we let DS = (Gen,Sig,Vrf)
be the first-level signature that can sign at least one group element and π2 be a corresponding
Groth-Sahai NIZK proof for the language L4 := {(Cs, Cθ, vk)|∃(S, rs, θ, rθ)[Cs = Com(S, rs), and
Cθ = Com(θ, rθ), and Vrf(vk, S, θ) = 1}. 10 The construction is illustrated in Figure 4 and we have
the following theorem.

Theorem 5 The construction in Figure 4 is a CPA-anonymous unique group signature if DDHI
and DHI (or SDHI) assumptions hold and Groth-Sahai proof system is secure, and the DS is
structure-preserving and unforgeable under random message attack (or F -unforgeable under random
message attack).

The above unique group signature scheme is only CPA-anonymous. While it is possible to use
the technique from [14, 38] to achieve CCA-anonymity, more efficient would be using an explicit
chosen-ciphertext attack secure encryption as we shall describe in the next section.

5 Unique Group Signature Construction – Dynamic Setting

Overview. Similar to the construction of Section 4, the starting point for a CPA-anonymous
unique group signature scheme in the dynamic setting is a two-level certification protocol: the
issuer signs the verification key of users, and the users can then sign their own messages. This
process should be achieved in a zero-knowledge sense.11

To facilitate understanding our final CCA-anonymous construction, we start by sketching the
above idea in some more details (in the framework of Groth-Sahai proof system). Let DS1 and DS2

be two digital signature schemes. A dynamic group signature (without uniqueness) can be given
as follows: key generation algorithm runs Groth-Sahai.Gen(1λ) to set up an appropriate common
reference string together with a trapdoor xk for the Groth-Sahai NIWI proof system (PNIWI, VNIWI).
It also generates a pair of signature keys (vk, sk) by running the key generation algorithm of DS1.
The certification key sk is sent to the issuer, while opening key xk is given to the opener. Then, a
user and the issuer run an interactive Join/Issue protocol. The user i generates its own signature
key pair (vki, ski) by running the key generation algorithm of DS2 and sends vki to the issuer.
The issuer sends certi

$←DS1.Sig(sk, vki) as the membership certificate of i. To sign a message m,
member i computes φ

$←DS2.Sig(ski,m) and a NIWI proof π such that DS1.Vrf(vk, vki, certi) = 1
and DS2.Vrf(vki,m, φ) = 1, where vki, φ, and certi are Groth-Sahai proof system variables, and
vk and m are constants. The group signature is (m,π). The group verification algorithm GV

10Precisely, θ might be multiple group elements and in this case Com(θ, rθ) denotes a vector of commitments.
Meanwhile, there are possibly additional group elements as signature messages besides hs that should be also included
in the proof system.

11This idea originated from [23, 45], and very efficient instantiations [2, 39] without relying on random oracles are
just recently given using the Groth-Sahai proof system.
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simply verifies the correctness of NIWI proof of π. Open algorithm uses the trapdoor xk to extract
(φ, vki, certi). It looks up the registration table to identify the signer. The Judge algorithm simply
checks the correctness of the verification chain.

To make the above-mentioned group signature unique, one can consider using a PRF F instead
of a secure signature scheme at the second level. Moreover, an interactive protocol is used to get a
signature of the secret PRF key si of user i under vk, without letting the issuer know this secret
value. To sign a message m, group signing algorithm GS computes τ := Fsi(m), which we would
like to use as the unique identifier. The GS algorithm then computes a NIZK proof of knowledge π
that there exists a certification chain (si, certi) such that τ = Fsi(m) and DS1.Vrf(vk, si, certi) = 1.
The group signature is now (m, τ, π).

It is important that the issuer should not learn the PRF keys that it signs, or the issuer may
now attack the CPA-anonymity by simply checking which of the PRF keys could have produced a
given unique identifier. (Similar argument applies to the case where one tries to use VRF instead
of PRF. The issuer should not learn the verification key of the VRF scheme.)

In general, we can resort to two-party secure computation. More efficiently, in order for the
user i to get certi without letting the issuer know si (or gsi , for our construction), the user i and
issuer can first run a “signing on a committed value” protocol to get a certification of signature,
and user later makes a proof of knowledge of that signature. (These protocols are known as “CL-
signatures” [20–22], and such signatures with non-interactive proofs of knowledge are termed as
P -signatures [6]).

However, this above process does not make the tracing and judging algorithm available. To
solve this, we introduce a second chaining of two-level certification; namely, two new signature
schemes DS ′1 and DS ′2 are selected. This time, we use Groth-Sahai commitments such that the
witnesses can be extracted using the trapdoor given to the opener. Moreover, we can also use this
chain to combine the technique of Groth [39] to achieve CCA anonymity. We call this technique
“double-chaining certification”.

There are a few further issues that we need to consider and address:

1) The registration table should not contain any information regarding the first-chaining certifica-
tion. This part is not intended to trace users. More severely, it might cause additional problems.
For example, an adversary might be able to repeat the certification process of some existing user,
using the first-chaining information, though it does not even know the secrets of the existing user.
(This is the case for our efficient instantiation that we describe shortly.) This adversary can suc-
cessfully frame the existing user by signing the same message of the exiting user. It is crucial to
point out what property it violates—the non-colliding property.

2) If we use a Groth-Sahai instantiation for our signing on committed value protocol then we have
to use an independent common reference string.

3) Since τ has been made publicly known, we have to resort to NIZK proof rather than NIWI proof
to complete the proof.

4) If user i (resp., user j) has a signing key (si, certi, sk
′
i, vk′i, cert

′
i) (resp., (sj , certj , sk

′
j , vk′j , cert

′
j)),

then (si, certi, sk
′
j , vk′j , cert

′
j) and (sj , certj , sk

′
i, vk′i, cert

′
i) are both valid signing keys. However, this

does not contradict any security notions of unique group signature.

Our algorithm. The CCA-anonymous unique group signature is illustrated in Figure 5. We
define a PRF family F : S × X → Y with key space S. Let DS1, DS ′1, and DS ′2 be three
signature schemes, all of which are secure under adaptive chosen message attacks. Issuer runs
(vk, sk) $←DS1.Gen(1λ) and (vk′, sk′) $←DS ′1.Gen(1λ), where (vk, sk) is used to certify PRF keys,
and (vk′, sk′) is used for double-chaining certification. Correspondingly, we use two Groth-Sahai
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Algorithm GK(1λ)

(vk, sk)
$←DS1.Gen(1λ)

(vk′, sk′)
$←DS ′1Gen(1λ)

(crs, xk), (crs′, xk′)
$← Groth-Sahai.Gen(1λ)

(X1, X2, Y1, Y2)
$←T E .Gen(crs, 1λ)

ek ← (X1, X2, Y1, Y2)

gpk ← (crs, crs′, vk, vk′, ek, F )

ik ← (sk, sk′); ok ← xk

return (gpk, ik, ok)

Algorithm Join/Issue (user i, issuer)

(user i : gpk, si, vk′isk
′
i) ¿ (issuer : gpk, ik)

gsk[i] ← (gpk, si, certi, sk
′
i, vk′i, cert

′
i)

reg[i] ← vk′i
Algorithm GS(gsk[i], m)

(vko, sko)
$←OT .Gen(1λ)

τ ← Fsi(m); φ
$←DS ′2.Sig(sk′i, vko)

π′1
$← P ′1(crs

′, (gpk, m, τ), (si, certi))

π′2
$← P ′2(crs, (gpk, vko), (sk

′
i, vk′i, φ, cert′i))

C
$←T E .Enc(ek, vko, φ)

π′3
$← P ′3(crs, (gpk, C, π′2))

φo
$←OT .Sig(sko, (vko, m, C, π′1, π

′
2, π

′
3))

σ ← (vko, τ, C, π′1, π
′
2, π

′
3, φo)

return (m, σ)

Algorithm GV(gpk, m, σ)

if {OT .Vrf(vko, (vko, m, C, π′1, π
′
2, π

′
3), φo) = 1,

and V ′
1 (crs′, (gpk, m, τ), π′1) = 1,

and V ′
2 (crs, (gpk, vko), π

′
2) = 1,

and V ′
3 (crs, (gpk, C, π′2), π

′
3) = 1} then

return 1

Algorithm Open(ok, gpk, (m, σ))

(vk∗, σ∗, cert∗) ← Extr(xk, π′2)
ω ← (vk∗, σ∗, cert∗)
if vk∗ = reg[i] then return (i, ω)

return (0, ω)

Algorithm Judge(gpk, (m, σ), (i, ω))

if {GV(gpk, m, σ) = 1,

and vk∗ = reg[i],

and DS ′1.Vrf(vk′, vk∗, cert∗) = 1,

and DS ′2.Vrf(vk∗, vko, σ
∗) = 1} then

return 1

Figure 5: CCA-anonymous unique group signature—Dynamic Setting. In the group key generation algo-
rithm GK, two independent Groth-Sahai proof common reference strings are generated—(crs, xk) for the
“double-chaining” (i.e., for L′2 and L′3), and the other for certifying the PRF secret key and the language L′1.
The secret keys of Kiltz’s encryption and xk′ can be safely discarded.
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proof systems with the same security parameter but with independently generated common ref-
erence strings (crs, xk) and (crs′, xk′)—the former for the double-chaining certification and the
latter for certifying the PRF protocol and proving the knowledge of the corresponding signature.
Let OT be a strong one-time signature scheme secure against weak chosen message attacks. Let
T E = (Gen,Enc,Dec) be Kiltz’s selective-tag weakly CCA-secure encryption scheme [46], with the
public key compatible with Groth-Sahai proof system setup. We write Enc(ek, t,M) for the encryp-
tion of a message M under the public key ek and a tag t. User i and the issuer run an interactive
Join/Issue protocol. This includes two steps. First, user i randomly picks its PRF key si; the user
and issuer run a protocol on signing on committed value si, and finally the user gets a signature
certi on si such that DS1.Vrf(vk, si, certi) = 1. Second, user i runs (vk′i, sk

′
i)

$←DS ′2.Gen(1λ), sends
vk′i to the issuers, and obtains a cert′i such that DS ′1.Vrf(vk′, vk′i, cert

′
i) = 1. After the Join/Issue

procedure, user will get its secret key (si, certi, sk
′
i, vk′i, cert

′
i), while the issuer puts vk′i to reg[i].

We now specify the three NIZK proof systems in a general NIZK framework. (P ′
1, V

′
1) is a NIZK

proof system for a language L′1 := {(gpk,m, τ)|∃(s, cert)[τ = Fs(m) and DS1.Vrf(vk, s, cert) = 1].
(P ′

2, V
′
2) is a NIZK proof system for a language L′2 := {(gpk, vko)|∃(vk′, φ′, cert′)[DS ′1.Vrf(vk′, vk′,

cert′) = 1 and DS ′2.Vrf(vk′, vko, φ
′) = 1]. (P ′

3, V
′
3) is a NIZK proof system that the plaintext of C

and second-level signature in π′3 are the same (see [39] for details).
All of the primitives used in the above construction can be efficiently instantiated using Groth-

Sahai proofs. In particular, the first chaining (including the signing on committed value protocol
and L′1) can be achieved by combining the PRF with NIZK proof [7] and the P -signatures [6] (that
relies on F -unforgeability). We can use the technique in Section 4 (PRF with NIZK proof that can
degenerate into a unique signature) to improve the security as well as achieve extractability. L′2
can be instantiated using any structure-preserving signature combining any signature whose public
keys are group elements. We have the following theorem:

Theorem 6 The construction illustrated in Figure 5 is a secure unique group signature (CCA-
anonymous, dynamic setting).

Efficient instantiation with concurrent join. Yet more efficiently, we use the Fuchsbauer’s
blind signature (also an efficient signing on committed value protocol [31, Remark 6]) to achieve
the Join/Issue protocol. We note that this protocol is perfectly compatible with the PRF with
NIZK proof [7]. Specifically, the user can simply run the Obtain procedure of blind signature on
the message (M, N) = (gs, hs) (where s is the PRF key). Once receiving the pre-signature by the
issuer, it can generate a valid automorphic signature on (M, N). The additional commitment to gs

does not influence the security the PRF scheme, which can be easily justified via a standard hybrid
argument. The above process clearly can be realized in two moves. Note that the double-chaining
Join/Issue protocol can also be achieved in two moves if we use an independent structure-preserving
signature for the first level. In fact, these two Join/Issue protocols for both chaining can be easily
run together using external PKI to allow very efficient concurrent join.
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A Definitions of NIZK and NIWI

Non-interactive zero-knowledge proof systems. We shall use a notion of NIZK proofs of
membership in NP languages, which was introduced by Blum, Feldman, and Micali [10]. Let ρ(·, ·)
be a polynomially bounded binary relation. If (x,w) ∈ ρ we will call that x is a theorem and w is
a proof of x. Let Lρ denote the langauge associated with relation ρ: Lρ = {x|∃w[(x,w) ∈ ρ]}.

Consider two polynomial-time algorithms (P, V ), both of which have access to a common ref-
erence string η. (If the string is randomly chosen then we will call it common random string.) Call
(P, V ) is a non-interactive proof system for Lρ if there exists some polynomial p(·) such that it
satisfies the following two conditions:

• Completeness: For every λ ∈ N, every (x,w) ∈ ρ,

Pr[η $←{0, 1}p(λ);π $← P (λ, x, w, η) : V (λ, x, π, η) = 1] = 1.

• (Adaptive) soundness: For every λ ∈ N, any prover P̂ , and every x 6∈ Lρ,

Pr[η $←{0, 1}p(λ); (x, π) $← P̂ (λ, η) : V (λ, x, π, η) = 1] ≤ ε(λ).

We let Advsound
(P,V )(P̂ ) denote the above soundness advantage of P̂ against a non-interactive proof

system (P, V ).
Given a polynomial time simulator S = (S1, S2), define the zero-knowledge advantage of A

against a non-interactive proof system (P, V ) as Advzk
(P,V )(A) = Pr[η $←{0, 1}p(λ); (x,w) $←A(1λ, η);

π
$← P (λ, x, w, η) : A(λ, x, π, η) = 1]−Pr[(η′, s) $← S1(1λ); (x,w) $←A(1λ, η′);π′ $← S2(x, η′, s) : A(λ,

x, π′, η′) = 1], where s is the state information. We say that a non-interactive proof system (P, V )
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for Lρ is (adaptive) zero-knowledge if there exists a probabilistic polynomial time simulator (S1, S2)
such that for any probabilistic polynomial time adversary A, it holds that Advzk

(P,V )(A) ≤ ε(λ).

One-time simulation-sound NIZK. Let (P, V ) be an adaptive NIZK proof system for Lρ and
S = (S1, S2) be a simulator for (P, V ). We define the one-time simulation-soundness advantage of A
against (P, V, S) as Advotss

(P,V,S)(A) = Pr[(η, s) $← S1(1λ); (x, a) $←A(1λ, η);π $← S2(x, η, s); (x′, π′) $←
A(λ, x, η, π, a) : x′ /∈ Lρ ∧ (x′, π′) 6= (x, π) ∧ V (λ, x′, π′, η) = 1], where a is the state information
for A. We say that (P, V, S) is one-time simulation-sound, if for any probabilistic polynomial-time
adversary A, it holds that Advotss

(P,V,S)(A) ≤ ε(λ).

Non-interactive witness-indistinguishable proofs. We also use non-interactive witness-
indistinguishable (NIWI) proof system. We define the WI-advantage of A against a non-interactive
proof system (P, V ) for a language Lρ as Advwi

(P,V )(A) = Pr[η $←{0, 1}p(λ); (x,w0, w1)
$←A(1λ, η);

π
$← P (λ, x, w0, η) : A(λ, x, π, η) = 1]−Pr[η $←{0, 1}p(λ); (x,w0, w1)

$←A(1λ, η);π $← P (λ, x, w1, η) :
A(λ, x, π, η) = 1], where we require that (x,w0), (x,w1) ∈ ρ. We say that a non-interactive proof
system (P, V ) is witness indistinguishable, if for any probabilistic polynomial time adversaries A it
holds that Advwi

(P,V )(A) ≤ ε(λ).

B Separations

B.1 A Separation Result Regarding Colluding Adversary Attacking Uniqueness
Security

In defining uniqueness security of unique group signature in both static and dynamic settings, we
argue that it is important to consider colluding attack where the adversary might corrupt a multiple
of group users to gain an additional advantage. Instead, we call the weaker definition of security
where the adversary can only corrupt one group user weak uniqueness.

Here, we show that these two definitions are different in the sense that there exist schemes
satisfying the weak uniqueness definition but not the standard uniqueness that we defined.

For the static model case, we consider the CCA-anonymous unique group signature scheme
SGS1 = (GK,GS,GV,Open) in Figure 2. Given a symmetric encryption (Enc,Dec), we define a
double-encryption scheme (D-Enc,D-Dec) such that D-Enc(k1, k2,M) : = Enc(k1, E(k2,M)) and
D-Dec(C, k1, k2) := Deck2(Deck1(C)). We construct the following scheme: the group key generation
is the same as GK, except that every two consecutive users is given a double-encryption of a VRF
public/secret key pair and a certificate of the public key, where each of the double-encryption keys is
given to one of the users. Meanwhile, add the additional verification key to both the corresponding
positions of the two users in the registration table. The new signature scheme is secure in the weak
uniqueness sense (and secure in the sense of the standard anonymity and traceability notions), but
is not secure in the sense of standard uniqueness, where the adversary can simply corrupt any two
of them to win the game.

Similarly, for the dynamic model case, given the construction Figure 5, we construct a new
signature scheme where the group issuer sends two consecutive users one more uniqueness key
and a corresponding signature using double-encryption and they can collaboratively decrypt the
ciphertext. (We do not need to modify the registration table, since we separate the unique identifier
generation process from the tracing functionality for our construction.) One can verify that the
new signatures serves as an example that is not secure in the standard uniqueness security (but is
still secure under other security definitions).
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B.2 Separations Results for Section 4.2

It is easy to see that the CPA-anonymous SGS1 may not be CCA-anonymous, since both the
encryption and NIZK proof system may be malleable.

We now show that SGS2 may not be secure in the sense of standard uniqueness and traceability.
We give simple attacks. Recall that group manager secret key gmsk for SGS2 in Figure 3 is of the
form (dk, reg) where reg = {si}n

1 . An adversary in possession of gmsk especially dk can make one
group signing oracle GS(·, ·) with some arbitrary user i ∈ HU and some arbitrary message m. The
oracle returns (m, τ,C, π). It can then use the decryption key dk to obtain the underlying plaintext
that contains the secret signing key gsk[i]. In this case, the user i remains uncorrupted technically,
but the adversary can use the secret signing key to attack the traceability and uniqueness properties.

Discussion. It seems that the above adversary can successfully attack the schemes because it ob-
tains the decryption key dk. It would be interesting to know if the adversary that only knows {si}n

1

can attack them as well. It turns out that this is true for both cases. For traceability, we can
construct the following adversary. An adversary in possession of {si}n

1 can make one group signing
oracle GS(·, ·) with some arbitrary user i ∈ HU and some arbitrary message m. The oracle re-
turns (m, τ,C, π). The adversary then outputs (m′, τ ′, C, π) where τ ′ = Fsi(m

′) as a valid signature
on some new message m′ such that i /∈ GSm′ . Note that the adversary can compute Fsi(m

′) since
it obtains si. Also note that π is a correct proof for instance (m′, vk, ek, τ ′, C), since the original
witnesses (r, s, cert) for the instance (m, vk, ek, τ, C) are also the witnesses for this new instance!
(Check the definition for L2 for details.) In other words, the adversary can produce any valid signa-
tures under some secret signing key gsk[i] given a valid signature under this key on some message.
Similar attack applies to the uniqueness case.

C Proofs of Theorems

C.1 Proof of Theorem 1

Proof: It is easily seen that if every user obeys the rule then the probability that there are two
different group signatures with one unique identifier is negligible. The crux of the proof is to show
the soundness of the algorithm. This requires some careful case analysis:

Case 1. Consider the case where adversary A can come up with two new valid group signatures
(m,σ1) and (m,σ2) (where σ1 6= σ2) such that they point to user i and j, respectively (where
possibly i = j), and adversary does not obtain the secret keys of both of them. In this case, one
can construct another adversary that violates non-frameability.

Case 2. Consider the case where A has seen a group signature (m,σ1) that points to i (which the
adversary may not know) and A does not obtain the secret signing key of user i. If adversary A
can come up with another signature (m,σ2) such that σ2 6= σ1 and (m,σ2) points to i, then we can
use it to construct an adversary who attacks CCA-anonymity of the group signature. If it points
to 0 then we can construct an adversary who attacks traceability. If it points to user j who has
not been corrupted then we can construct an adversary violating non-frameability.

Case 3. Consider the case where adversaryA can come up with two valid group signatures (m, τ, ψ1)
and (m, τ, ψ2) (where ψ1 6= ψ2) and they point to different users, say, i and j, such that i, j 6= 0,
and adversary corrupted one of them, say, i, and did not query (j, m). We can construct adversary
violating the non-frameability property.

Case 4. Consider the case where adversaryA can come up with two valid group signatures (m, τ, ψ1)
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and (m, τ, ψ2) (where ψ1 6= ψ2), and they point to different users i and j such that i, j 6= 0,
and adversary corrupted i, and it did query (j, m) and the signing oracle returns some (m,σ′) =
(m, τ ′, ψ′).12 If τ = τ ′ and (m, τ, ψ2) is different from every signature returned by the signing oracle
GS(j, m), then we actually obtain an adversary violating the CCA-anonymity. If (m, τ, ψ2) =
(m, τ ′, ψ′) then by the non-colliding property and uniqueness property the above probability is
negligible. More concretely, an adversary can honestly run the group signature signing algorithm
using user i’s secret signing key. The signature produced in this way with overwhelming probability
has a different unique identifier from τ by the non-colliding property. Thus, an adversary can output
this new signature and (m, τ, ψ1) to attack the uniqueness property.

Note that the above two cases consider the possibilities that the detection algorithm might wrongly
output the identity of an honest user j who never violated the rule.

Case 5. Adversary A has corrupted two users i and j, and produces two signatures (m, τ, ψ1) and
(m, τ, ψ2) where ψ1 6= ψ2 and they point to i and j, respectively. That is what the algorithm
manages to detect. (To make it easier to understand how this type of attacks works, we take our
CCA-anonymous unique group signature in Section 5 for example. If user i (resp., user j) has
a signing key (si, certi, sk

′
i, vk′i, cert

′
i) (resp., (sj , certj , sk

′
j , vk′j , cert

′
j)), then (si, certi, sk

′
j , vk′j , cert

′
j)

and (sj , certj , sk
′
i, vk′i, cert

′
i) are both valid signing keys. Adversary who has corrupted both i and j

(or equivalently, i and j collude) can now produce two different signatures with the same unique
identifier, and in this case both the identities of i and j can be output by our detection algorithm.)

Case 6. Adversary A has corrupted user i and produces two signatures (m, τ, ψ1) and (m, τ, ψ2)
where ψ1 6= ψ2 and they both point to i. This case is handled successfully by the algorithm as well.

Case 7. Adversary A has corrupted two users i and j, and produces two signatures (m, τ1, ψ1) and
(m, τ2, ψ2) where τ1 6= τ2 and they point to i and j, respectively. In this case, adversary obeys the
rules and behaves like legal users. Moreover, it is by uniqueness that it is computationally difficult
for adversary A to generate valid signatures with more than two different unique identifiers if it
only obtains two secret signing keys.

This completes the proof of the claim.

C.2 Proof Sketch of Theorem 2, 3, and 4

Proof sketch of Theorem 2 and 3. The proof for CCA-anonymity of Theorem 2 largely
follows from one in [8]. The pseudorandomness of the VRF implies that the unique identifier does
not leak any “useful” information under the attack of the restricted anonymity adversary. If the
underlying encryption is only IND-CPA secure and NIZK proof system just satisfies the regular
adaptive zero-knowledge property then the SGS1 is CPA-anonymous.

The proof for traceability is almost the same as one in [8]. The only difference is that the
second-level signature is replaced with a verifiable random function, which does not essentially
complicate the proof. To show that the security unforgeability under random message attacks
suffices for the first-level signature suffices, we require an additional (and weak) assumption that
the verification key for the second-level signature should randomly and independently distributed
if the corresponding signing key is chosen uniformly at random.

We now sketch the proof for uniqueness. We consider two cases: the first case is that among
all the signatures that adversary outputs there at least exists one group signature (m, τ,C, π) such

12Note even if the adversary repeats the query it will only return signatures with the same unique identifier τ ′ due
to the partly deterministic property of unique group signature. Precisely, once the user j outputs two signatures on
the same query m, it technically violates the rule but remains honest.
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that (m, vk, ek, τ, C) /∈ L1 but V1((m, τ,C), π) = 1. The probability is bounded by the soundness
advantage Advsound

(P1,V1)(A1) for some adversary A1; Otherwise, each plaintext under any ciphertext
C is of the form (vk′, ν ′, cert) such that Vrf(vk, vk′, cert) = 1 and Ver(vk′,m, τ, ν ′) = 1. This is
further divided into two cases: vk′ was not certified by vk and vk′ was certified by vk. The former
case implies that there is an adversary that attacks the unforgeability under random message attack
of the first-level signature scheme. The latter case implies that either at least one unique identifier
corresponds to some uncorrupted users or there are at least two unique identifiers corresponding to
one same corrupted vk′. This either contracts the traceability property or contradicts uniqueness
property of the underlying VRF.

Last, the non-colliding property follows from the pseudorandomness property of the underlying
VRF scheme.

For Theorem 4. The proof for Theorem 4 can be likewise obtained following from the above.
The difference is that PRF with a NIZK proof naturally has the uniqueness property.

C.3 Proof of Theorem 5

Now we sketch the proof for Theorem 5 that does not immediately follow from the ones for Theo-
rems 2-4. Before we proceed, it is important to identify the second-level primitive. For anonymity,
we use the PRF with corresponding proof as the first primitive. While proving the traceability
and uniqueness properties, we deem hs as the signature verification key and τ = g1/(s+m) as the
signature on a message m. The security that we require for the latter two properties is only un-
forgeability. (Of course, we still need the uniqueness property, but this deterministic signature
itself has this property.) Note that here its security (even with the additional proof) cannot be
proven under the pseudorandom property of PRF with NIZK proof, since at least the “verification
key” hs has to be exposed to the uniqueness adversary. Thus, its security does not follow from
DDHI assumption and Groth-Sahai proof system. This signature can still be shown unforgeable
under DHI assumption in [28] with a less tight proof. Its security can be also justified under SDHI
assumption that we formalize and is weaker than SDDHI assumption that is often used to solve
similar privacy-preserving tasks. One can view this signature is a degenerate variant of the PRF
with NIZK proof [7] where they share the same tag. This tag has to be pseudorandom when it
comes to anonymity, and it only needs to be unforgeable when it comes to uniqueness and trace-
ability. This gives the basic idea, however, one has to deal with other issues like simulatability when
proving the latter two security requirements.

Non-colliding property. The non-colliding property is impled by the pseudorandomness of the
PRF scheme.

CPA-anonymity. This basically follows from the fact that the unique identifier is pseudorandom,
the commitment schemes are perfectly hiding (in the witness-indistinguishability setting), and
proofs are zero-knowledge (in the witness-indistinguishability setting). Since here we are only
concerned with chosen plaintext-attack adversary, the case is much easier. As we mentioned, the
PRF with NIZK proof that we use is a variant of Belenkiy et al. [7], which is secure if DDHI
assumption holds and Groth-Sahai proof system is secure.

Uniqueness. To justify the uniqueness security, we consider four different kinds of adversaries.

Case 1. Adversary can come up with a group signature (m, τ,Cs, Cθ, π1, π2) such that (m, τ,Cs) /∈
L3 or (Cs, Cθ, vk) /∈ L4 but passes the group signature verification procedure. We can bound the
probability that an adversary can give such a kind of forgery by the soundness error of Groth-Sahai
proof system that is zero in the soundness setting.
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Case 2. Otherwise, in the soundness setting, for any valid signature, there exist exactly one S and
one (vector) of θ such that τ = Fs(m), Cs = Com(S, rs), Cθ = Com(θ, rθ), and Vrf(vk, S, θ) = 1
where S = hs. (For simplicity, we assume the message for signatures is one group S, and θ is the
corresponding signature.) We first consider the case where there is at least one group signature such
that the verification key S of the second-level signature was not certified by the group manager.
We show in this case that one can construct an adversary that can attack the unforgeability under
random message attack.

Namely, given an adversary A that can produce such a group signature, we now construct an
adversary B such that it attacks the underlying first-level signature DS in the sense of unforgeability
under random message attack. More concretely, we consider a signature scheme DS with a random
message oracle (see Section 2.1 for definition). For each query i ∈ [n] to the random message
oracle, adversary B first selects randomly and independently si ∈ Zq and computes vki = hsi . It
is clear that each vki is uniformly and independently from the message space of the Groth-Sahai
commitment scheme. The secret signing key (si, h

si , certi) (where certi is the answer returned by the
first-level signature oracle) is given to each group member. Adversary B also prepares the Groth-
Sahai proof system parameter including the bilinear group parameter, Groth-Sahai commitment
parameter, and a common reference string in the soundness setting. Besides, adversary B keeps the
extraction key. B can answer any queries A makes, including group user signing queries and user
secret queries, since it possesses the secret keys of all group members. When A finally produces
a group signature (m, τ,Cs, Cθ, π1, π2) of the assumed type, B simply uses its extraction key to
extract S from Cs and θ from Cθ—which would not cause any problems since we have required
the first-level signature to be structure-preserving. B outputs (S, θ) as its forgery. Since the group
signature belongs to the given type, it is a successful forgery for the first-level signature DS. A
similar argument applies to the case where the first-level signature is F -unforgeable against random
message attack.

Case 3. The third case is that adversary can come up with group signatures such that at least one
of the signatures corresponds to some uncorrupted group member and the adversary did not ask
group signing oracle on this message. (This is in fact a type of attacks for traceability adversary.)
Since we do not know which user corresponds to this forgery on the same message, the adversary A
has to guess the identity i. Given the second-level signature with the verification key hs with
a signing oracle Sig(s, ·) which returns g1/(s+m) on message m, adversary C now simulates the
environment that A runs in. It first randomly generates all but one second-level signature signing-
verification keys {sj , h

sj}j 6=i. It also generates a pair of signing/verification keys for first-level
signature scheme and signs the verification key for every user including user i. Then C runs A and
answers the queries (i.e., group user secret oracle queries and group user signing oracle queries)
that A makes. Adversary C can answer requests of type (j, m) such that j 6= i, since it knows the
secret signing key of each user. But it is not obvious for C to answer requests of the form (i,m) for
some message m, as C does not obtain s for user i that is part of the witnesses for the NIZK proof
for the PRF. Although the adversary C does not have s, it can still get the signature g1/(s+m) on
m via the signature oracle of user i (and of course the verification key hs). Adversary C can in
fact use these instead of s to build the first part of NIZK proof π1. Specifically, one can check that
π1 = (Cτ , πτ , C

′
s, πs, π

′) can all be given without directly using s! The adversary A does not request
the secret signing key for user i, since otherwise it would have corrupted i such that the forgery
is not successful. Therefore, adversary C can answer all requests that A makes. If adversary A
finally produces signatures that contains at least one assumed forgery then adversary C can give a
successful forgery for the second-level signature with verification key hs.

Case 4. The last case is that adversary can come up with group signatures such that all S was
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certified by the group manager and these signatures do not correspond to any of the uncorrupted
group members. If in this case there is an adversary A can attack the uniqueness property then we
can construct another adversary D that attacks the uniqueness property of the first-level unique
signature scheme. Given a second-level unique signature scheme, the adversary D simulates the
environment that the adversary A runs in. Specifically, the adversary D starts by preparing the
common reference string and keeps the extraction key. It then generates all signing/verification
keys {si, h

si} for each user i. The adversary D can easily answer all of the requests that adversary A
makes, for it possesses all of the secret signing keys of users. If finally adversary A comes up with
|CU|+ 1 signatures on some message m with distinct unique identifiers, then this implies that there
are at least two unique identifiers corresponding to one same registered but uncorrupted user with
some second-level signature verification key S′. Adversary D can extract the necessary witnesses
and outputs (m,S′, τ ′, τ ′′), where τ ′ and τ ′′ are both valid signatures on m relative to S′.

Traceability. Like the proofs for Theorem 2-4, we classify the types of forgeries into three cases
that are similar to Case 1-3 for the uniqueness property proof. This is not surprising since we use
signatures and NIZK proofs as main tools to achieve our construction.

C.4 Proof of Theorem 6

We outline the proof of Theorem 6 as follows.

Non-colliding property. This follows from the fact that pseudorandomness property of the
PRF function.

CCA-anonymity. The proof is analogous to Groth’s construction [39] but is more complicated.
(The basic idea is to use explicitly an encryption scheme secure under chosen-ciphertext attacks
to extend the underlying CPA-anonymous group signature.) We outline the proof as follows. Let
Game 0 be the original CCA-anonymity game involving an anonymity adversaryA. We assume that
this is in the soundness setting. In Game 1, we simulate the opening oracle queries by decrypting
the corresponding Kiltz’s encryption C. This is guaranteed by the soundness property of the NIZK
proof system (P ′

3, V
′
3). In Game 2, we turn to the witness-indistinguishability setting. In Game 3,

we simulate all the proofs. In Game 4, the unique identifier is replaced with a random string.
This does not cause any problem due to PRF security and property on signing on committed value
protocol. More precisely, what we require here is the user privacy property (see definition from [6]).
They are indistinguishable even for adversary in possession of the issuing key. In Game 5, an
adversary that attacks the security of CCA-anonymity of the group signature can be transferred to
an adversary that attacks the underlying tag-based encryption. This can be informally justified as
follows: the adversary cannot produce a group signature with the same tag as one for the challenge
signature, otherwise one can attack the unforgeability of the one-time signature. The rest of the
opening oracle queries (with some other tags) can be answered by the decryption oracle of tag-
based encryption. The additional unique identifier is random and thus it makes no difference for
attacking the tag-based encryption.

Uniqueness. For uniqueness property, we can focus our attention on the first-chaining. This is
mainly due to the uniqueness property of the unique signature and the unforgeability property of
the signing on committed value protocol. If an adversary outputs signatures than required then it
implies that there exists an adversary can attack the unforgeability of the first-level signature for
the first-chaining with a proof analogous to the one for Theorem 5. Note that one must make sure
that the forgery can be extracted (which is the case for the construction using Fuchsbauer’s blind
signature), otherwise we have to resort to strong f -extractable proof of knowledge (which is for the
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construction using Belenkiy et al.’s P -signature).

Traceability and Non-frameability. Due to the (perfect) knowledge soundness of Groth-
Sahai proof system, the opener can extract (vk∗, σ∗, cert∗) such that DS ′1.Vrf(vk′, vk∗, cert∗) = 1
and DS ′2.Vrf(vk∗, vko, σ

∗) = 1. If vk∗ does not correspond to any group member registered then
we can construct an adversary that attacks the unforgeability of DS ′1. Therefore, the traceability
follows.

For non-frameability, we first notice that any forgery to frame a user requires a signature σ∗

on a new value vko, which is due to the strong unforgeability of the one-time signature. Thus, any
successful framing in fact corresponds to a successful forgery on the DS ′2. Of course, the adversary
has to guess in advance which user to frame such that the reduction loses a factor of n that denotes
the number of users added by A via the AddU(·) oracle.
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