
Unique Group Signatures

Matthew Franklin and Haibin Zhang

Dept. of Computer Science, University of California, Davis, California 95616, USA
{franklin,hbzhang}@cs.ucdavis.edu

Abstract. We initiate the study of unique group signature such that
signatures of the same message by the same user will always have a
large common component (i.e., unique identifier). It enables an efficient
detection algorithm, revealing the identities of illegal users, which is fun-
damentally different from previous primitives. We present a number of
unique group signature schemes (without random oracles) under a va-
riety of security models that extend the standard security models of
ordinary group signatures. Our work is a beneficial step towards miti-
gating the well-known group signature paradox, and it also has many
other interesting applications and efficiency implications.
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1 Introduction

Group signatures, introduced by Chaum and van Heyst [11], are very useful
tools in applications where the signer’s privacy should be protected and in case
of abuse some authorities can identify the misbehaving user. However, a well-
known group signature “paradox” is that it is difficult for the group manager
to identify a “misbehaving” user since all of signatures are anonymous. The
group manager obviously cannot afford to open all of group signatures signed,
for this is inefficient, and more importantly, it would compromise the privacy
of every signer. Typically, the group manager identifies possible misbehaving
users by observing whether some surprising documents are signed, or a huge
amount of documents are signed within a short period, or some other “rules”
are broken. These empirical test methods only provide the group manager with
rough estimation about what signatures are suspicious. Trying to open and reveal
the identities of suspicious signatures has a risk of jeopardizing legal users, while
the illegal users may still be well-hidden.

Let us consider the motivating example of group signature due to Chaum and
van Heyst [11]: “A company has several computers, each connected to the local
network. Each department of that company has its own printer (also connected
to the network) and only persons of that department are allowed to use their
department’s printer. Before printing, therefore, the printer must be convinced
that the user is working in that department. At the same time, the company
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wants privacy: the user’s name may not be revealed. If, however, someone dis-
covers at the end of the day that a printer has been used too often, the director
must be able to discover who misused that printer, to send him a bill.”

The above opening policy, in practice, is problematic: it is not fair to reveal
all identities of the persons who use the printer that is “used too much”, since
the identities of legal users might as well be revealed. It does not even make
sense to say what is “used too much”, as a dedicated adversary might use the
same printer every day such that the times of uses are always slightly below the
daily threshold, while the others would not dare to use the printer.

In this case, the rule that this company would like to enforce is to limit the
number of times within some period that group members can use the service.
If anyone who accessed the service beyond the allowed quota then its identity
should be revealed by the group authority. At the same time, it is equally desir-
able for this company to detect other malicious printing any time—for instance,
one printing process that uses up all the paper—which is prohibitive. In other
words, once a user signs a message more than a predetermined value then it shall
be almost always (efficiently) detected, but the group manager can always open
signatures any time in case of other misbehavior.

We define unique group signature as a first step towards mitigating this para-
dox. We may say that a group signature scheme is “unique” if it is computa-
tionally infeasible for a signer to produce two different group signatures of the
same message, such that both will pass the verification procedure (by analogy
with the well-studied notion of uniqueness for ordinary signature schemes). We
adopt a less stringent but more general definition such that if a signer produces
two different group signatures of the same message, then both signatures will
always have a large common component (hereinafter unique identifier) which is
otherwise highly unlikely to occur. Ideally, if one user indeed signs two different
signatures on one message then there should be an (efficient) detection algorithm
that can reveal the identity of this user. With carefully defined other security
notions, this primitive (still called unique group signature) serves as a perfect
solution of dealing with the above problem.

A closely related question was first asked by Damg̊ard, Dupont, and Peder-
sen [12] in their paper on unclonable group identification scheme. An unclonable
group identification scheme enables a user to authenticate to a server with com-
plete anonymity provided that no other users try to use the first user’s secret
key to authenticate to the server within the same time period (“cloning attack”),
while allowing the user’s identity to be traced if they do misbehave in this way.
They point out the inadequacy of existing group signature schemes for this pur-
pose: “. . .This achieves anonymity but does not protect against cloning.” Indeed,
“This. . .is actually false for known schemes, since these are probabilistic and pro-
duce randomly varying signature even if the message is fixed.” Our unique group
signature can be deemed as important progress on this interesting open question,
and it also has many applications beyond unclonable group identification.

Informally speaking, unique group signatures (suitably defined) are adequate
for unclonable group identification. For example, the user might send identifica-
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tion requests that include a signed message of the form “service name || date”
where || denotes concatenation. The server accepts if the signature is valid, and
if it doesn’t have the same large common component as another identification
request received earlier in the day. For this application (and many others), we
further need a non-colliding property for a unique group signature. A unique
group signature is non-colliding if two different signers almost never produce the
same unique identifier of the same message.

In another application, the user might send authentication requests that in-
clude a signed message of the form “service name || date || j”, where j is any
integer between 1 and the (daily) authentication bound k. The server accepts if
the signature is valid, and if it doesn’t have the same large common component
as another authentication request from earlier in the day. This yields a variant of
periodic k-times anonymous authentication scheme [8, 22–24]. Of course, many
variations are possible by varying the space of messages to be signed.

Notice that for both of these applications, the server can choose whether
or not to ask the group manager to reveal the identities of misbehaving users.
For minor misbehavior (such as an attempt to authenticate to a service a few
more times than the allowed bound, which might be due to innocent human or
software or network error) the extra attempts could be detected and ignored.
This lets the service provider reserve the relatively harsh penalty of anonymity
revocation for more significant (sustained and persistent) misbehavior.

Also note that the deterministic and uniqueness property of our unique sig-
nature can lead to very fast processing of data. For example, a service provider
carrying out a “first come, first kept” policy on a stream of ` requests would need
only O(` log `) operations (via appropriate tree structures), or O(`) expected op-
erations (via hash tables). This is particularly useful when there are many users
to be processed.

Though it can also deal with some applications that k-times anonymous
authentication and more generalized e-token system [8] can, our primitive (even
in this respect) is in essence a different one with distinct features and benefits
(further discussion and comparison coming shortly).

Two models. This paper studies both the static group signature setting due
to Bellare, Micciancio, and Warinschi (BMW) [4] and the dynamic group sig-
nature setting due to Bellare, Shi, and Zhang (BSZ) [5]. Intuitively, the static
setting has a single authority (called the group manager), which the dynamic
setting splits into two: an issuer for enrolling members, and an opener for tracing
identities. One might feel that studying static setting is not quite necessary as
one could focus on the more involved and generalized dynamic group signature
setting. First, this does not make sense syntactically, since a dynamic group
model is not simply an extension of a static group model. Static group signa-
ture models realistic scenarios that the group manager takes full control of the
group user generation, and the secret signing key is distributed to each member,
preferably, without interaction. (Otherwise, the members have to be supported
by a trusted PKI, which usually is not the case in such a setting.) Instead, in
the dynamic group setting, PKI support and interactive Join/Issue between the
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group issuer and group users are both inevitable. Second, this does not make
sense technically, as we shall see, asking for non-interaction raises a few subtle
issues in the static setting, making constructing an efficient scheme equally dif-
ficult. Third, we believe that static group signature is still conceptually more
simple and starting from such a non-trivial point will make our presentation
much clearer. Last, constructionally, our results for static unique group signa-
ture are both general and more efficient, while for the dynamic group setting
our results are only semi-modular and a little less efficient.

How to model unique group signature? We offer the “strongest” achiev-
able definitions of security for both settings, but here we only highlight the case
of dynamic model. On the one hand, the security requirements of dynamic unique
group signatures are all simple and clear. Three of them (i.e., CCA-anonymity,
traceability, and non-frameability) are based on previous security definitions of
ordinary group signatures, while the uniqueness requirement is a quite natural
and intuitive one. This is good, whether for understanding the definitions, or
for designing the constructions. The uniqueness security notion formalizes the
intuition that one signer can only sign one message once. Jumping ahead, we
argue that defining uniqueness in the group signature setting raises subtle issues
that must be carefully treated.

On the other hand, they are in fact very carefully defined on the whole. Recall
that our goal is to present a group signature system where each group member
can only sign any message once, equipped with an (efficient) detection algorithm
such that the identities of ones who disobey such a rule can be revealed and
should otherwise be never leaked. All definitions of security are designed to this
end. A few seemingly reasonable variants of definitions turn out to be inadequate.

The detection algorithm of our dynamic CCA-anonymous unique group sig-
nature is as simple as one could imagine: if the detection authority (i.e., the
opener) ever found two different valid group signatures on the same message
with the same unique identifier, then it runs the opening algorithm Open to
extract their identities i and j (possibly i equals j), and adds them (it) to the
misbehaving user set. However, all of these on detection algorithm have to be
formally defined, otherwise it leaves one without any notion for what it means
to have a good detection algorithm. Also note that our defined security prop-
erties do not even involve any properties of detection algorithms. Instead, we
show that once the group system satisfies the four basic security requirements,
it gives rise to a good (complete and sound) detection algorithm.

Constructions. In this paper, we present both the general constructions and
efficient instantiations for both static and dynamic group models without re-
lying on random oracles. In the static setting, our general scheme follows the
BMW two-level signature construction but uses a verifiable random function
(VRF) [21] as the second-level signature. We also give a simpler construction
for a unique group signature that is secure in a relaxed yet reasonable model.
They together lead to our final efficient instantiation using Groth-Sahai proof
system [19]. All of our constructions (either general or specific) are constant-size,
and the instantiation is as efficient as the-state-of-the-art. Our construction for
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the unique group signatures in the dynamic setting is semi-modular, and can be
instantiated efficiently. The construction can even admit efficient concurrent-join
which allows many entities concurrently engage in the Join/Issue protocol with
the issuer. In building the schemes, we identify new and useful techniques that
we believe can be used in other privacy-preserving primitives. We highlight two
of them. The first one is a PRF with NIZK proof that can degenerate into a
unique signature. In many signature-related primitives, one not only need prove
a deterministic function in a zero-knowledge sense but also prove knowledge of
input to the function. There are many existing techniques, but ours gives the
constructions that can be more efficient and rely on weaker assumptions. The
other technique is what we call “double-chaining certification”, which is used to
achieve our unique group signature in the dynamic setting. In essence, this al-
lows us to separate the unique identifier generation process from tracing process,
thereby resulting in efficient and intuitive constructions.

Applications and Comparison between other primitives. Our primi-
tive is designed to mitigate the group signature paradox and also motivated
by other privacy-preserving constructions, such as k-times anonymous authen-
tication, unclonable group identification protocol, and more generalized e-token
systems (periodic k-times anonymous authentication) [8]. The latter primitives
are closely related to group signatures, but do not have an opening authority
that can always de-anonymize signed messages.

On the other hand, our primitive can be as well used in applications where
(periodic) k-times anonymous authentication is needed as illustrated earlier.
Indeed, one can simply use a range proof to extend unique group signature
to handle cases for k > 1, or one can easily achieve constant-size scheme by
registering k public keys for one user at a time. (Note one of our instantiations
supports efficient concurrent-join.) However, our primitive, in this respect, has
distinct features.

First, the detection algorithms for other primitives are made public, meaning
that if the a user signs more than the authentication bound k then its identity can
be publicly known. This can be both good and bad : if an honest user accidentally
signs slightly more than what is required because of hardware breakdown or clock
desynchronization, then the public identity disclosure might not be the most
reasonable choice. In fact, we are not aware of any implementations with such
stringent mechanisms in real applications. Our unique group signature in the
dynamic group setting supports in essence a different identity disclosure strategy
where the detection authority (other than the group provider) is responsible to
detect and reveal disobeyers by the detection algorithm Det. Anyone including
the group provider and group members can find publicly misbehaving signatures
and report to the detection authority. In our setting, this algorithm is even
coupled with a detection proving algorithm DetProve that ensures the detection
authority to behave correctly with a proof that the revealed identities are ones
of the disobeyers. The opener reserves the right to open persistent misbehaving
users to the public, or contact and warn them privately, or send the identity
and the corresponding proof into court as it sees fit. As far as we are concerned,



6 Matthew Franklin and Haibin Zhang

two flavors of revelation are both interesting and should be used depending on
specific applications.

Second, it was argued in [23], for their applications only, of course, that
it is preferable that the users (who honestly follow the protocol specification)
should enjoy anonymity even from the group provider. For the traditional group
signature schemes, this requirement is not satisfied. But in the dynamic group
model, the group provider might be a distinct entity from the opener who acts
as the detection authority. Indeed, the reliance on some other party is inevitable
if we do not want to enforce public identity discovery.

Third, in the context of k-times anonymous authentication, to the best of
our knowledge, all previous constructions (e.g., [8, 22–24]) uses an idea originally
from e-cash system. The detection algorithm of our primitive is fundamentally
different from those. It turns out, perhaps somewhat counter-intuitive, that mod-
eling and achieving “right” detection without using public discovery is actually
more challenging.

Last, as mentioned earlier, our primitives can be used in a more efficient
way such that no detection algorithm is involved. Namely, the deterministic and
unique property of our unique signature lead to very fast processing of data. We
are not aware of other primitives admitting such efficient detection.

2 Preliminaries

Notations. If x is a string then |x| denotes its length. The empty string is
denoted ε. If S is a set then |S| denotes its size and s

$← S denotes the operation
of selecting an element s of S uniformly at random. ∅ denotes the empty set,
while Ø denotes a vector of empty sets. If n is an integer [n] denotes the set
{1, 2, · · · , n}. If A is a randomized algorithm then we write z

$←A(x, y, · · · ) to
indicate the operation that runs A on inputs x, y, · · · and a uniformly selected r
from an appropriately required domain and outputs z. A function ε(λ): N →
R is negligible if, for any positive number d, there exists some constant λ0 ∈
N such that ε(λ) < (1/λ)d for any λ > λ0. For definitions of primitives and
cryptographic assumptions, please refer the full version [15, Section 2].

3 Unique Group Signature Models

In this section we present models of unique group signatures in the static setting
(following BMW [4]) and in the dynamic setting (following BSZ [5]).

3.1 Static Setting Model

Following [4], a static group signature scheme SGS consists of four algorithms
(GK,GS,GV,Open). There is only one group authority which we call the group
manager. The group key generation algorithm GK takes as input the security
parameter λ to form a fixed-size group with n members where n may be related
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to λ, returning a tuple (gpk, gmsk, gsk), where gpk is the group public key,
gmsk is the group manager secret key, and gsk is an n-vector of secret signing
keys with gsk[i] for each user i. The secret keys are usually distributed to mem-
bers without interaction. The group signing algorithm GS takes as input gsk[i]
and a message m to return a signature σ under gsk[i]. The group verification
algorithm GV takes as input the group public key gpk, a message m, and a sig-
nature σ for m to return a single bit b. We say that σ is a valid signature of m if
GV(gpk,m, σ) = 1. The opening algorithm Open takes the group public key gpk,
group manager secret key gmsk, a message m, and a signature σ to return an
identity i or ⊥ (indicating failure). Basic correctness property is required: for all
security parameter λ and integer n, all (gpk, gmsk, gsk) $← GK(1λ), all i ∈ [n],
and all message m ∈ {0, 1}∗, it holds that GV(gpk,m, GS(gsk[i],m)) = 1 and
Open(gpk, gmsk, m,GS(gsk[i],m)) = i.

For our purposes, we consider static unique group signatures where the signatures
should have the form of (m,σ) = (m, τ, ψ) where τ is the unique identifier for the
message m and some group member i, and ψ is the rest of the signature. (One
can view the unique identifier as a special tag.) We define for static unique group
signature three security requirements: uniqueness, anonymity, and traceability.
The uniqueness requirement formalizes the intuition that one user can only sign
one message once, while the last two requirements are adapted from ones for the
regular static group signatures with the restraints of being unique.

Uniqueness. Unlike defining uniqueness for a stand-alone signature (i.e., unique
signature), it is “tricky” to do so in the context of group signature that involves
multiple users. Intuitively, any single group member should not generate more
than one valid signatures for any message m. However, it is not quite adequate,
for, an adversary may (adaptively) corrupt multiple group members to gain an
additional advantage. (In the full version [15, Appendix B], we give a separa-
tion result, showing that there exist schemes satisfying a weakened uniqueness
definition where the adversary can only corrupt one user but not the standard
uniqueness that we define shortly.) We thus give adversary access to a user secret
oracle, USK(·), which, when queried with an identity i ∈ [n], answers with the
secret signing key gsk[i] for user i. In the static group signature setting, once
the secret key of a user is revealed then it is said to be corrupted. Let CU denote
a set of corrupted users. Since the group has a fixed-size n, a set of uncorrupted
(i.e., honest) users is [n]/CU. The adversary is also given access to a user signing
oracle, GS(·, ·), which when queried with an identity i of a user and a mes-
sage m, returns GS(gsk[i],m). Note that we do not require that adversary only
ask uncorrupted users for this oracle. Let GS denote a set of message-signature
pairs queried via the GS(·, ·) oracle. We write GSm to denote a set of users with
which adversary calls GS(·,m). We write GSM where M is a set of the messages
queried to denote a vector of sets with GSm for each m ∈ M. For maximal se-
curity, we also provide adversary with the secret of the group manager gmsk.
Formally, given a static signature scheme SGS of a fixed-size n, we associate to
an adversary A the following experiment:
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Experiment Expunique
SGS,n(A)

(gpk, gmsk, gsk) $←SGS.Gen(1λ); CU← ∅; GS← ∅
(m,σ1, · · · , σ|CU|+1)

$←AUSK(·),GS(·,·)(gpk, gmsk)
for i ← 1 to |CU|+ 1 do

if GV(gpk, m, σi) = 0 or (m,σi) ∈ GS then return 0
for i, j ← 1 to |CU|+ 1 do

if i 6= j and τi = τj then return 0
return 1

where, above, each σi is of the form (τi, ψi). We define the advantage of A in
the above experiment as

Advunique
SGS,n(A) = Pr[Expunique

SGS,n(A) = 1].

In the above experiment, adversary is expected to output exactly |CU|+1 new and
valid signatures which have distinct unique identifiers w.r.t. the same message.

A caveat. We first emphasize that the above notion is the one that we shall
use in this paper. However, we do point out some “inadequacies” by considering
the following scenario: it is entirely possible that some of keys correspond to one
same unique identifier (i.e., they “collide”), while some other keys might generate
more unique identifiers than required. To put it differently, it might be the case
that a set of users of size k who do not collude ought to create k − 1 unique
identifiers as two of them collide, but when they collude they can create k unique
identifiers. This does not contract our uniqueness security, but such a collusion
clearly makes them sign messages beyond their own.

Non-colliding property. In light of this (and as required by some appli-
cations mentioned in the introduction), we impose a restriction on our static
unique group signature. We say that a group signature is non-colliding if any of
two different (honest) signers (who follow the scheme specification) almost never
produce the same unique identifier of the same message. More formally, for all
security parameter λ and integer n, all (gpk, gmsk, gsk) $← GK(1λ), all i, j ∈ [n]
and i 6= j, and all message m ∈ {0, 1}∗, it holds that

Pr[(τi, ψi)
$← GS(gsk[i],m); (τj , ψj)

$← GS(gsk[j],m) : τi = τj ] ≤ ε(λ).

Above, the probability is taken over the coins of the group key generation algo-
rithm and group signing algorithm.

The above requirement can resolve the “issue” above. Indeed, if the above-
mentioned circumstance happens then an adversary who corrupted a set of group
members can always “honestly” generate signatures again and pick “enough”
signatures with different unique identifiers to attack the uniqueness property. It
also makes our primitive justifiable in a few applications—only via this property
one can safely achieve the functionality of restricted anonymous authentication
(as mentioned in the introduction). Jumping ahead, we claim that the non-
colliding property is needed as well in justifying the security of the detection
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algorithm of unique group signature. We refer to the full version [15] for further
discussion on definitional choices and issues on uniqueness.
Anonymity. Due to the uniqueness property, we cannot achieve the strongest
anonymity definition of security as defined in BMW [4]. (The group signature
signed by each member i is a partly deterministic function of the gpk, gsk[i],
and the message m. If the adversary is given all of the secret keys gsk then it
can attack the full-anonymity game simply by re-computing.) Thus a slightly
weaker yet still very strong anonymity security notion is used: the adversary can
adaptively corrupt the users of the group; for uncorrupted users, adversary is
given a signing oracle; in the challenge stage, adversary is not allowed to submit
challenge queries with identities of corrupted users, and not allowed to submit
challenge queries with at least one of the identities and the message being the
same as ones queried before. We write Open(·, ·) to denote the opening oracle,
which when queried with a message m and a candidate signature σ, answers
with Open(gpk, gmsk, m, σ). Specifically, given a static group signature scheme
SGS of a fixed-size n, we associate to an adversary A the following experiment:

Experiment Expanon
SGS,n(A)

(gpk, gmsk, gsk) $←SGS.Gen(1λ); CU← ∅; GSM ← Ø

(i0, i1,m, s) $←AUSK(·),GS(·,·),Open(·,·)(find, gpk)

b
$←{0, 1}; σ

$← GS(gsk[ib],m)

b′ $←AUSK(·),GS(·,·),Open(·,·)(guess, σ, s)
if b′ 6= b then return 0
return 1

where it is mandated that for each d ∈ {0, 1} we have id /∈ CU and id /∈ GSm, and
in the guess phase the adversary A did not query Open(·, ·) with m and σ. We
define the advantage of A in the above experiment as

Advanon
SGS,n(A) = Pr[Expanon

SGS,n(A) = 1]− 1/2.

We use the term “CPA-anonymity” to denote the following weakening of the
security definition for anonymity [7]: The adversary is never given access to the
opening oracle.
Traceability. The traceability security definition is the same as one in BMW [4].
We recall it by considering the experiment that associated to an adversary A:

Experiment Exptrace
SGS,n(A)

(gpk, gmsk, gsk) $←SGS.Gen(1λ); CU← ∅; GSM ← Ø

(m,σ) $←AUSK(·),GS(·,·)(gpk, gmsk)
if GV(gpk, m, σ) = 0 then return 0
if Open(m,σ) = ⊥ then return 1
if Open(m,σ) = i and i /∈ CU and i /∈ GSm then return 1
return 0

The advantage of A in the above experiment is defined as

Advtrace
SGS,n(A) = Pr[Exptrace

SGS,n(A) = 1].
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3.2 Dynamic Setting Model

In the dynamic group setting, there are two more features: it allows one to
add members to the group; the authority is separated into the opener and the
issuer. An issuer is responsible to enroll members, while an opener traces the
identities of signatures signed by the users enrolled. A dynamic group signature
scheme DGS consists of six algorithms (GK, Join/Issue,GS,GV,Open, Judge). We
consider dynamic unique group signatures having the form of (m, τ, ψ) where τ
is the unique identifier. A secure unique group signature in the dynamic setting
should satisfy correctness and non-colliding property and four security notions:
uniqueness, anonymity, traceability and non-frameability. Overall, the definitions
in dynamic setting are more involved and refer the full version [15] for details.

3.3 Detection Algorithms

We show how our security definitions in both settings imply efficient detection
algorithms that can find who do not follow the algorithm specification and dis-
obey the rule that one group member can only sign any message once. Here we
only focus on the more involved dynamic setting, and one can easily get similar
(but weak) results for the static group setting.

The detection algorithm Det takes as input two different group signatures σ1

and σ2 for the same message m and outputs⊥ or I or (b, i, j, θ) for b ∈ {0, 1}. The
algorithm returns ⊥ if at least for one of σ1 and σ2 it holds that GV(gpk,m, σt) =
0 (t ∈ {0, 1}). If b = I then the detection algorithm is claiming that at least
one of the two signatures was not generated by the group members registered
in the reg . (Note that group issuer can always generate group signatures on his
own by adding dummy users.) In this case, it might have an additional output µ
that is a proof that at least one of the signatures was generated by the group
issuer. If b = 0 then it is claiming that two signatures were generated by two
different signers—a rule that the system would like to enforce. In this case, it
does not need a proof of the claim. (But one could ask a proof if desired.) In
case b = 1, it is claiming that two signatures were generated by rule disobeyers i
and j, where i, j ≥ 1, i could be equal to j, and θ is a proof of this claim that is
verified by the DetProve algorithm.

The detection proving algorithm DetProve takes as input the group public
key gpk, two valid signatures σ1 and σ2 of m, and a vector (b, i, j, θ) output
from Det(m,σ1, σ2) where b = 1, i, j ≥ 1, and θ is a non-empty string to output
a single bit d indicating whether θ is a correct proof that both of i and j disobey
the rule.

The detection algorithm should satisfy completeness and soundness proper-
ties described below.
Completeness. The set LU of legal users (who follow the rule that one signer
can only sign one message once) will almost never be wrongly detected by the
detection algorithm.
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Alg Det(m, σ1 = (τ1, ψ1), σ2 = (τ2, ψ2))
if GV(m, σ1) = 0 or GV(m, σ1) = 0 then

return ⊥
(i, ωi) ← Open(m, σ1)
(j, ωj) ← Open(m, σ2)
if i = 0 or j = 0 then

return (I, µ)
if τ1 = τ2 then

return (1, i, j, (ωi, ωj))
return (0, ε)

Alg DetProve(m, σ1, σ2)
if Det(m, σ1, σ2) 6= (1, i, j, (ωi, ωj)) then

return 0
if Judge(gpk, (i, ωi), m, σ1, reg) = 1 and

Judge(gpk, (j, ωj), m, σ2, reg) = 1 then
return 1

return 0

Fig. 1. Det and DetProve algorithms.

Soundness. If Det(m,σ1, σ2) = (1, i, j, θ) and DetProve(gpk,m, σ1, σ2, Det(m, σ1,
σ2)) = 1 then both i and j are illegal users (who did not follow the specification
of the protocol or the rule).
Our dynamic CCA-anonymous unique group signature immediately has an ef-
ficient complete and sound detection algorithm Det coupled with a detection
proving algorithm DetProve, as illustrated in Figure 1. We justify the detection
algorithm by providing the following theorem (with proof in the full version [15,
Appendix C.1]). We also refer to [15] for further discussion and applications.

Theorem 1. Given a dynamic unique group signature DGS, if it is correct and
non-colliding, and satisfies CCA-anonymity, uniqueness, traceability, and non-
frameability requirements, then the Det algorithm given in Figure 1 is complete
and sound.

4 Unique Group Signature Construction – Static Setting

In this section, we first present general constructions for CCA-anonymous unique
group signature and for its meaningful relaxations in the static setting. They
together motivate efficient instantiations by using Groth-Sahai proof system.

A general CCA-anonymous unique group signature. Our construction
basically follows the general two-level signature constructions of [4]. The differ-
ence is that we replace the second-level signature with a verifiable random func-
tion, where its public key is signed by the certification key of group manager. We
give our general construction using a first-level signature scheme that provides
security against random message attacks.1 Define a verifiable random function
VRF = (Gen,Eva,Prove,Ver) with input domain X and output range Y. Let
DS = (Gen,Sig,Vrf) be a signature scheme. Let E = (Gen,Enc,Dec) be a public
key encryption scheme. Let (P1, V1) be a NIZK proof system for a language L1 :=

1 Informally, a signature is unforgeable against random message attack [14] if it cannot
forge a signature on a new message having access to a special oracle that returns
signatures on randomly chosen messages.
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Alg GK(1λ)

R
$←{0, 1}p(λ)

(vk, sk)
$←DS.Gen(1λ)

(ek, dk)
$←E .Gen(1λ)

gpk ← (R, ek, vk)
for i ← 1 to n do

(ski, vki)
$←VRF .Gen(1λ)

certi
$← Sig(sk, vki)

gsk[i] ← (ski, vki, certi, gpk)
reg[i] ← vki

gmsk ← (dk, reg)
return (gpk, gmsk, gsk)

Alg GS(gsk[i], m)

τ ← Eva(ski, m); ν
$← Prove(ski, m)

C ← Enc(ek, r, (vki, ν, certi))

π
$← P1(R, (m, vk, ek, τ, C), (r, vki, ν, certi))

σ ← (τ, C, π)
return (m, σ)

Alg GV(gpk, m, σ)
return V1(R, (m, vk, ek, τ, C), π)

Alg Open(gpk, gmsk, m, σ)
if V1(R, (m, vk, ek, τ, C, π)) = 0 return ⊥
(vk′, ν′, cert) ← Dec(dk, C)
if vk′ = reg[i] then return i

Fig. 2. Static unique group signature (a general construction). We write reg to denote
reg[1] · · · reg[n]. R is the common reference string for the underlying NIZK proof sys-
tem (P1, V1). SGS1 is a CCA-anonymous unique group signature, if DS is unforgeable
under random message attacks, E is CCA-secure, and VRF is a verifiable random func-
tion, and (P1, V1) is a simulation-sound NIZK proof system. SGS1 is CPA-anonymous,
if E is semantically secure and (P1, V1) is a regular NIZK proof system.

{(m, vk, ek, τ, C)|∃(r, vk′, ν′, cert)[Vrf(vk, vk′, cert) = 1,Ver(vk′,m, τ, ν′) = 1, and
C = Enc(ek, r, (vk′, ν′, cert))]} where we write Enc(ek, r,M) for the encryption
of a message M under the public key ek using the randomness r. We define a
group signature scheme SGS1 in Figure 2. We have the following theorem:

Theorem 2. If VRF is a verifiable random function, DS is a secure signa-
ture against random message attack, scheme, and the underlying NIZK proof
system (P1, V1) is sound, zero-knowledge, and one-time simulation-sound then
the construction SGS1 in Figure 2 is a secure CCA-anonymous unique group
signature in the static setting.

Relaxations and Separations. The above construction is general but does
not seem to immediately give rise to efficient instantiations. This is due, first, to
the fact current simulation-sound NIZK proof systems are not efficient enough.
This is further due to the fact that the VRF proof ν may be incompatible with
the efficient proof systems. In light of this, we consider two meaningful relax-
ations of CCA-anonymous unique group signature. The first natural relaxation
is to consider CPA-anonymous unique group signature where the anonymity ad-
versary is never given the opening oracle. This immediately helps avoid using
simulation-sound property of NIZK proof system and chosen ciphertext security
for the underlying encryption scheme. Namely, we have a group signature the
same as illustrated in Figure 2 except that we only use a regular NIZK proof
system and a semantic-secure encryption.

Theorem 3. If VRF is a verifiable random function, DS is a secure signa-
ture against random message attack, E is a CPA-secure encryption scheme, and
the underlying NIZK proof system (P1, V1) is sound and zero-knowledge, then
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Alg GK(1λ)

R
$←{0, 1}p(λ)

(vk, sk)
$←DS.Gen(1λ)

(ek, dk)
$←E .Gen(1λ)

gpk ← (R, ek, vk, F )
for i ← 1 to n do

si
$←S

certi
$← Sig(sk, si)

gsk[i] ← (si, certi, gpk)
reg[i] ← si

gmsk ← (dk, reg)
return (gpk, gmsk, gsk)

Alg GS(gsk[i], m)
τ ← Fsi(m)
C ← Enc(ek, r, (si, certi))

π
$← P2(R, (m, vk, ek, τ, C), (r, si, certi))

σ ← (τ, C, π)
return (m, σ)

Alg GV(gpk, m, σ)
return V2(R, (m, vk, ek, τ, C), π)

Alg Open(gpk, gmsk, m, σ)
if V2(R, (m, vk, ek, τ, C, π)) = 0 return ⊥
(s′, cert) ← Dec(dk, C)
if s′ = reg[i] then return i

Fig. 3. Static unique group signature SGS2, with relaxed uniqueness and traceability
notions, where the adversaries are not given the group manager secret key gmsk.

the construction SGS1 in Figure 2 is a secure CPA-anonymous unique group
signature in the static setting.

The other meaningful relaxation is that we no longer give the uniqueness and
traceability adversaries the group manager secret key gmsk. This relaxation
makes sense as an external adversary usually does not obtain the opening key
of group manager unless it corrupts the group manager which looks less likely.
We find that if we restrict the adversary in such a way then we can simply use
PRF instead of VRF such that the second problem can be solved.

Define a PRF family F : S × X → Y where S is the key space, X is the
message space, and Y is the range. We write Fs(·) to denote a PRF for ev-
ery s ∈ S. Let DS and E be a digital signature and a public key encryp-
tion scheme respectively. Let (P2, V2) be a NIZK proof system for a language
L2 := {(m, vk, ek, τ, C)|∃(r, s, cert)[τ = Fs(m),Vrf(vk, s, cert) = 1, and C =
Enc(ek, r, (s, cert))]}. We define a unique group signature scheme SGS2 as illus-
trated in Figure 3. The following theorem establishes its security.

Theorem 4. If F is a PRF, DS is a secure signature against random message
attack, E is a CCA2 secure encryption scheme, and the underlying NIZK proof
system (P2, V2) is sound,zero-knowledge, and one-time simulation-sound then
the construction SGS2 given in Figure 3 is a CCA-anonymous unique group
signature with relaxed uniqueness and traceability where the adversaries are not
given gmsk.

One can verify that SGS1 (i.e., the CPA-anonymous construction) may be not
CCA-anonymous, and SGS2 may be not secure in the sense of standard unique-
ness and traceability. Thus, they give natural separations results for these defi-
nitions of security. See [15, Appendix B] for proofs and discussion.

Efficient Instantiations. The above concerns do not rule out ad hoc con-
structions in the strongest model. It turns out that we can provide efficient
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Alg GK(1λ)

(crs, xk)
$← Groth-Sahai.Gen(1λ)

(vk, sk)
$←DS.Gen(1λ)

gpk ← (crs, vk)
for i ← 1 to n do

si
$← Zq

certi
$← Sig(sk, hsi)

gsk[i] ← (si, certi, gpk)
reg[i] ← hsi

gmsk ← (xk, reg)
return (gpk, gmsk, gsk)

Alg GS(gsk[i], m)

τ ← g1/(si+m)

Cs
$← Com(hsi)

θ
$← Sig(sk, hsi)

return (m, τ, Cs, Cθ, π1, π2)

Alg GV(gpk, m, σ)
return V3((m, τ, Cs), π1) ∧ V4(Cs, Cθ, vk), π2)

Alg Open(gpk, gmsk, m, σ)
if GV(gpk, m, σ) = 0 return ⊥
S′ ← Extr(xk, Cs)
if S′ = reg[i] then return i

Fig. 4. Efficient CPA-anonymous unique group signatures. Let V3 and V4 be the corre-
sponding verification algorithms for the languages L3 and L4. The common reference
string crs contains the bilinear map parameter (q,G1,G2,GT , e, g, h) besides the Groth-
Sahai proof parameter.

constructions using the Groth-Sahai proof system. The encryption scheme can
be replaced with a Groth-Sahai extractable commitment scheme. Given a bilin-
ear group (q,G1,G2,GT , e, g, h), a commitment to x ∈ G (either G1 or G2) with
randomness rx is denoted Com(x, rx), and an extraction algorithm Extr takes as
input the extraction key xk and a commitment C to return a group element.

The key component is a PRF that supports efficient NIZK proof that can
degenerate into a unique signature scheme where they share the same tag. In
general, the former helps achieve the anonymity security, where the tag has to
be random, while the latter is used to prove the uniqueness and traceability
security, where the tag only needs to be unique and unpredictable.

Specifically, we make use of a variant of the PRF with NIZK proof proposed
by Belenkiy et al. [3]. We define a language L3 := {(m, τ,Cs)|∃(s, rs)[τ = Fs(m)
and Cs = Com(hs, rs)]}, where Fs(·) := g1/(s+·). The corresponding NIZK
proof π1 is of the form (Cτ , πτ , C ′s, πs, π

′), where Cτ is a commitment to τ and πτ

is a NIZK proof for that Cτ is a commitment to τ , C ′s is a commitment to hs, πs

is a NIZK proof that Cs and C ′s are commitments to the same value, and π′ is a
witness-indistinguishable proof that Cτ is a commitment to τ̄ , C ′s is a commit-
ment to S such that e(τ̄ , Shm) = e(g, h). The above proof system is a NIZK proof
system for L3 if DDHI assumption [3, 9] holds and Groth-Sahai proof system is
secure. As shown above, if we directly let group manager sign each secret key
s ∈ Zq (and add each s to reg which is part of gmsk) and run a corresponding
NIZKPoK then we can get a CPA-anonymous unique group signature yet with
relaxed uniqueness and traceability security. Still, this appears hard to find an
efficient instantiation in the framework of Groth-Sahai proof system, since the
secret s is a scalar rather a group element.

Note that we cannot as well expose the value hs in the above PRF with
NIZK proof system, because neither the above system would be zero-knowledge
nor we are able to prove its security based on DDHI assumption. We can, how-
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ever, degenerate the above PRF with NIZK proof to get a unique signature
scheme, where one can view hs as the public key and g1/(s+m) as the signa-
ture of m.Then, the manager can sign each hs instead of s, and add hs to reg.
Fortunately, we can show that uniqueness property and standard unforgeability
security (rather than pseudorandomness) suffice to give the security of unique-
ness and traceability. This prevents us from using rather strong assumptions
such as SDDHI assumption [8] in bilinear groups. In fact, one can prove security
of the unforgeability under DHI assumption [13] (with less tight reduction) or
SDHI assumption that we formalize where the adversary is only asked to output
a new message-signature pair (see the full version [15, Section 2.2]).

It remains to be shown how to choose the first-level signature. Recall that
Groth-Sahai commitment, given the extraction trapdoor, can only extract group
elements. The first solution is to use the F -unforgeable signature by Belenkiy et
al. [2]. They proposed two F -unforgeable signature schemes, one of which has
a simple structure, yet using an interactive assumption (i.e., interactive Hidden
SDH assumption). We can build our scheme on this signature, while the security
can be proven using a weaker and more natural non-interactive q-type assump-
tion. The other is to employ a structure-preserving signature [1] that is only
needed secure in the weak random message attack (e.g., one from [17]) to sign hs

directly. To be as general as possible, we let DS = (Gen,Sig,Vrf) be the first-
level signature that can sign at least one group element and π2 is a corresponding
Groth-Sahai NIZK proof for the language L4 := {(Cs, Cθ, vk)|∃(S, rs, θ, rθ)[Cs =
Com(S, rs), and Cθ = Com(θ, rθ), and Vrf(vk, S, θ) = 1}.The construction is il-
lustrated in Figure 4 and we have the following theorem.

Theorem 5. The construction in Figure 4 is a CPA-anonymous unique group
signature if DDHI and DHI (or SDHI) assumptions hold and Groth-Sahai proof
system is secure, and the DS is structure-preserving and unforgeable under ran-
dom message attack (or F -unforgeable under random message attack).

5 Unique Group Signature – Dynamic Setting

Similar to the construction of Section 4, the starting point for a CPA-anonymous
unique group signature scheme in the dynamic setting is a two-level certification
protocol (with the first-level signature DS1 and second-level signature DS2): the
issuer signs the verification key of users, and the users can then sign their own
messages. This process should be achieved in a zero-knowledge sense.

To make the signature unique, one can consider using a PRF F instead of a
signature scheme at the second level. Moreover, an interactive protocol is used
to get a signature of the secret PRF key si of user i under vk, without letting
the issuer know the secret. To sign a message m, it computes τ := Fsi(m),
which we would like to use as the unique identifier. It then gets a NIZK proof of
knowledge π that there exists a certification chain (si, certi) such that τ = Fsi

(m)
and DS1.Vrf(vk, si, certi) = 1. The group signature is now (m, τ, π).

It is important that the issuer should not learn the PRF keys that it signs,
or the issuer may now attack the CPA-anonymity by simply checking which of
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Alg GK(1λ)

(vk, sk)
$←DS1.Gen(1λ)

(vk′, sk′)
$←DS ′1Gen(1λ)

(crs, xk), (crs′, xk′)
$← Groth-Sahai.Gen(1λ)

(X1, X2, Y1, Y2)
$←T E .Gen(crs, 1λ)

ek ← (X1, X2, Y1, Y2)
gpk ← (crs, crs′, vk, vk′, ek, F )
ik ← (sk, sk′); ok ← xk
return (gpk, ik, ok)

Alg Join/Issue (user i, issuer)
(user i : gpk, si, vk′isk

′
i)

¿ (issuer : gpk, ik)
gsk[i] ← (gpk, si, certi, sk

′
i, vk′i, cert

′
i)

reg[i] ← vk′i
Alg GS(gsk[i], m)

(vko, sko)
$←OT .Gen(1λ)

τ ← Fsi(m); φ
$←DS ′2.Sig(sk′i, vko)

π′1
$← P ′1(crs

′, (gpk, m, τ), (si, certi))

π′2
$← P ′2(crs, (gpk, vko), (sk

′
i, vk′i, φ, cert′i))

C
$←T E .Enc(ek, vko, φ)

π′3
$← P ′3(crs, (gpk, C, π′2))

φo
$←OT .Sig(sko, (vko, m, C, π′1, π

′
2, π

′
3))

σ ← (vko, τ, C, π′1, π
′
2, π

′
3, φo)

return (m, σ)

Alg GV(gpk, m, σ)
if OT .Vrf(vko,(vko,m,C,π′1,π

′
2,π

′
3),φo)=1

and V ′
1 (crs′, (gpk, m, τ), π′1) = 1

and V ′
2 (crs, (gpk, vko), π

′
2) = 1

and V ′
3 (crs, (gpk, C, π′2), π

′
3) = 1 then

return 1

Alg Open(ok, gpk, (m, σ))
(vk∗, σ∗, cert∗) ← Extr(xk, π′2)
ω ← (vk∗, σ∗, cert∗)
if vk∗ = reg[i] then return (i, ω)
return (0, ω)

Alg Judge(gpk, (m, σ), (i, ω))
if GV(gpk, m, σ) = 1
and vk∗ = reg[i]
and DS ′1.Vrf(vk′, vk∗, cert∗) = 1
and DS ′2.Vrf(vk∗, vko, σ

∗) = 1 then
return 1

Fig. 5. CCA-anonymous unique group signature—Dynamic Setting.

the PRF keys could have produced a given unique identifier. In general, we can
resort to two-party secure computation. More efficiently, in order for the user i
to get certi without letting the issuer know si (or gsi , for our construction),
they can run a “signing on a committed value” protocol to get a certification of
the secret, and user later makes a proof of knowledge of the signature. (They
are known as “CL-signatures” [10], and signatures with non-interactive proofs of
knowledge are termed as P -signatures [2]). However, this above process does not
make the tracing and judging algorithm available. To solve this, we introduce
a second chaining of two-level certification; namely, two new signature schemes
DS ′1 and DS ′2 are selected. This time, we use Groth-Sahai commitments such
that the witnesses can be extracted using the trapdoor given to the opener.
Moreover, we can also use this chain to combine the technique of Groth [18] to
achieve CCA anonymity. We call this technique “double-chaining certification”.
Our algorithm. The CCA-anonymous unique group signature is illustrated
in Figure 5. We define a PRF family F : S × X → Y with key space S. Let
DS1, DS ′1, and DS ′2 be three signature schemes, all of which are secure un-
der adaptive chosen message attacks. Issuer runs (vk, sk) $←DS1.Gen(1λ) and
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(vk′,sk′) $←DS ′1.Gen(1λ), where (vk,sk) is used to certify PRF keys, and (vk′,sk′)
is used for double-chaining certification. Correspondingly, we use two Groth-
Sahai proof systems with the same security parameter but with independently
generated common reference strings (crs, xk) and (crs′, xk′)—the former for the
double-chaining certification and the latter for certifying the PRF protocol and
proving the knowledge of the corresponding signature. Let OT be a strong one-
time signature scheme secure against weak chosen message attacks. Let T E be
Kiltz’s selective-tag weakly CCA-secure encryption scheme [20], with the public
key compatible with Groth-Sahai proof system setup. (The secret keys of Kiltz’s
encryption and xk′ can be safely discarded.) We write Enc(ek, t,M) for the en-
cryption of a message M under the public key ek and a tag t. User i and the
issuer run an interactive Join/Issue protocol. This includes two steps. First, user i
randomly picks its PRF key si; the user and issuer run a protocol on signing on
committed value si, and finally the user gets a signature certi on si such that
DS1.Vrf(vk, si, certi) = 1. Second, user i runs (vk′i, sk

′
i)

$←DS ′2.Gen(1λ), sends
vk′i to the issuers, and obtains a cert′i such that DS ′1.Vrf(vk′, vk′i, cert

′
i) = 1. After

the Join/Issue procedure, user will get its secret key (si, certi, sk
′
i, vk′i, cert

′
i), while

the issuer puts vk′i to reg[i]. We now specify the three NIZK proof systems in a
general NIZK framework. (P ′1, V

′
1) is a NIZK proof system for a language L′1 :=

{(gpk, m, τ)|∃(s, cert)[τ = Fs(m) and DS1.Vrf(vk, s, cert) = 1]. (P ′2, V
′
2) is a

NIZK proof system for a language L′2 := {(gpk, vko)|∃(vk′, φ′, cert′)[DS ′1.Vrf(vk′,
vk′, cert′) = 1 and DS ′2.Vrf(vk′, vko, φ

′) = 1]. (P ′3, V
′
3) is a NIZK proof system

that the plaintext of C and second-level signature in π′3 are the same (see [18]).
All of the primitives used in the above construction can be efficiently in-

stantiated using Groth-Sahai proofs. In particular, the first chaining (including
the signing on committed value protocol and L′1) can be achieved by combin-
ing the PRF with NIZK proof [3] and the P -signatures [2] (that relies on F -
unforgeability). Clearly, we can use the technique in Section 4 (PRF with NIZK
that can degenerate into unique signature) to improve the security as well as
achieve extractability. L′2 can be instantiated using any structure-preserving sig-
nature combining any signature whose public keys are group elements. (Please
refer the full version [15] for more efficient instantiation with concurrent-join.)

Theorem 6. The construction illustrated in Figure 5 is a secure unique group
signature (CCA-anonymous, dynamic setting).
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