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Abstract. We motivate and describe a mode of operation HEM (resp.,
THEM) that turns a n-bit blockcipher into a variable-input-length cipher
(resp., tweakable cipher) that acts on strings of [n..2n − 1] bits. Both
HEM and THEM are simple and intuitive and use only two blockcipher
calls, while prior work at least takes three. We prove them secure in the
sense of strong PRP and tweakable strong PRP, assuming the underlying
blockcipher is a strong PRP.
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1 Introduction

Designing modes of operation from a blockcipher (e.g., AES) is one of the central
tasks in shared-key cryptography. They allow the repeated use of a blockcipher
to achieve confidentiality or authentication for variable-input-length (VIL) mes-
sages. Many confidentiality applications like disk-sector encryption require that
the encryption be length-preserving. The requirement entails the usage of ci-
phers [19]. A cipher is a family of keyed length-preserving permutations. Such
a primitive is also called an enciphering scheme, or deterministic encryption.
The conventional security notions for a cipher are “pseudorandom permuta-
tion” (PRP) and “strong pseudorandom permutation” (SPRP) [17]. Tweakable
cipher [18] is an extension of conventional cipher which takes a “tweak” (or
“associated data”, that does not have to be encrypted) as an additional in-
put. Correspondingly, the security notions are “tweakable PRP” and “tweakable
SPRP”.

Compared to many other cryptographic primitives like signatures, MACs,
and encryption schemes, it is not easy to build a VIL cipher from a fixed-input-
length (FIL) cipher (e.g., blockcipher), where techniques such as “padding” and
“tainting” fail to work. Indeed, to this end, a very large number of wide blocksize
ciphers [1, 3, 4, 6, 10–13, 27, 28] are proposed (though not all of them can handle
settings where the messages need not be a multiple of n bits).

This work mainly considers a special case of this problem—on how to turn a
blockcipher of size n into a VIL cipher and a VIL tweakable cipher with the mes-
sage space

∪2n−1
i=n {0, 1}

i
, which basically “doubles” the domain of a blockcipher

in the VIL sense. First, this length-doubling problem is of historical interest.
Luby and Rackoff’s Feistel construction [17] can be viewed as the first attempt
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to double the domain of a cipher for fixed-input-length (FIL) messages, while
our work deals with the problem in the VIL setting and aims to improve its effi-
ciency. Besides its theoretical value, it is particularly applicable to many useful
settings. For instance, short headers in the Internet are usually of the targeted
lengths that we study. If messages to be encrypted are of such short length-
s, one should be careful about the cipher used since otherwise it can influence
the efficiency by percentage. And, perhaps more importantly, length-doubling ci-
phers are useful tools to build high-level protocols. In particular, Rogaway and
Zhang show how to turn such a VIL length-doubling tweakable cipher into an
arbitrary-length-input online cipher [24]. Last, length-doubling cipher seems to
be the “right” method of dealing with the incomplete final block for IEEE P1619
standard [21]. This standard is applicable to cases like disk-sector encryption,
which cannot afford the extra hardware or latency required by a two-pass wide
blocksize encryption mode. Current standard XTS-AES makes use of ciphertext
stealing [19] to handle the issue. Though P1619 does not provide a formal def-
inition for security property (which is somewhat unfortunate), an intuitive one
may be that each block should be enciphered by an independent SPRP (indexed
by a tweak), and the “long” final block (i.e., the second last complete block and
the partial final block) should be enciphered by an independent length-doubling
tweakable SPRP secure in the VIL setting.1 It is easy to verify that ciphertext
stealing construction described in [21] and its possible variants (see, e.g., [25])
do not satisfy such a definition of security even in the PRP sense.2 We believe
that it is necessary to reconsider the problem and find efficient alternatives.

On the other hand, the above-mentioned general wide blocksize ciphers, if be-
ing restricted to our targeted domain, do not give very efficient length-doubling
schemes. For instance, EME2 cipher of Halevi [10] uses five blockcipher calls to
achieve a VIL length-doubling tweakable SPRP. It takes at least four blockci-
pher calls to use unbalanced Feistel networks [26]. The currently best solution
is obtained from the XLS construction by Ristenpart and Rogaway [23] which
essentially uses three blockcipher calls and little extra work. In fact, none of
them are designed specifically for the length-doubling problem—a problem that
we aim to address in this paper.

Our method. At the heart of our motivation is how to construct efficient VIL
(tweakable) ciphers using only two blockcipher calls. The question itself has
both theoretical and practical interest. The blockcipher implementation is still
the most expensive one in most of the platforms. Trimming one blockcipher call
would be highly likely to result in a considerable improvement in efficiency.3 But
this goal is not as easy as it looks. (From a purely theoretical view—without con-
sidering efficiency, the problem can be well solved with good provable-security.)

1 Another possible definition is to ask the last block to be “short”, but this will not
give a tight security reduction for very short messages.

2 We note that Liskov and Minematsu [16] provide a “proof” to justify the security of
ciphertext stealing in XTS-AES. However, one can barely argue anything from such
a proof since there is no security notion.

3 Other examples of this kind include [9, 15].



Length-doubling Ciphers and Tweakable Ciphers 3

We extend the idea of Naor and Reingold [20] to construct an efficient VIL
length-doubling cipher and tweakable cipher. The overhead for the VIL cipher
construction is about two blockcipher calls and two AXU hash function calls and
little additional work. We name the VIL cipher construction “HEM” to indicate
that we use hash function, blockcipher encryption, and mixing function [23] as
components.

We begin by describing a mode FHEM (fixed-length HEM) for a fixed length
n+s where n is the blocksize and s ∈ [1..n−1]. The mode is depicted in Figure 1.
Given an input M of length n + s, it first parses M as M1 and M2 such that
|M1| = n and |M2| = s. The algorithm takes four “rounds”. The first and last
rounds use AXU hash functions, and the second and third rounds use regular
blockciphers. The overall structure can be viewed as following the framework of
Feistel networks, but is neither exactly like Feistel nor unbalanced Feistel net-
works. The input and output of the hash function are both simply from {0, 1}n.
This is crucial for our construction—the efficiency of the hash functions usually
decreases rapidly if the input size gets larger, while the security would lose if the
output size gets smaller. Furthermore, we use a third tool, a mixing function [23],
to “fix” the consequence of not exactly following the four rounds Feistel. This
makes our construction a little less elegant but does not essentially hurt efficien-
cy. Besides, different from Naor-Reingold construction, the security assumption
needed for the underlying blockcipher is SPRP rather than PRP. Moreover, the
round two and three functions must be permutations. Clearly, these two require-
ments are insignificant to the implementation since one usually chooses to use
AES anyway.

It may still seem hard to make a VIL cipher, since intuitively it needs an
AXU hash function for VIL messages. We circumvent the problem by applying
the same AXU hash function (with an independent key) to the length of M2.
See Figure 3 for our construction. We stress that we can pre-compute all values
for the additional hash functions since there are only n of them where n is the
underlying blocksize (e.g., 128). Concretely, the additional operations needed
compared to FHEM are just two xors. Thus, we can practically make the VIL
cipher from the FIL construction with “no” extra work. We comment that this
basically uses an idea similar to that used in [22] yet in a more efficient way.

We go on to present two constructions of VIL length-doubling tweakable ci-
phers. One of them gets better provable security, while the other is more concise.

To instantiate the modes, we can use many ready solutions for AXU hash
functions. One notable construction is the GF(2n) multiply. The efficiency of
AXU hash functions may vary due to software and hardware support and other
factors, and thus we do not give a specific recommendation. For the mixing
function, we recommend using the more efficient one in [23] that takes only three
xors and a single one-bit circular rotation. Another immediate consequence of
our results is that any progress in the area of AXU hash functions will result in
improved VIL length-doubling (tweakable) ciphers.

Further related work. Luby and Rackoff [17] showed the classical result
that four rounds of Feistel suffice to construct a length-doubling SPRP in the
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FIL sense. Naor and Reingold [20] revisited four rounds Feistel construction and
showed that the first and fourth layer blockciphers can be well replaced with two
pairwise independent permutations. (In particular, they showed that a weaker al-
most XOR universal (AXU) hash function is sufficient.) This change improves the
efficiency and enables a simpler proof. Patel, Ramzan, and Sundaram [22] con-

structed a VIL cipher achieving SPRP security for a larger domain
∪

i≥2n {0, 1}
i
,

by combining unbalanced Feistel networks [26] and pairwise independent permu-
tations. It is not clear how to extend their idea to design even a FIL cipher for
our target domain, say, a cipher of length 3n/2, with a tight reduction. Cook,
Yung, and Keromytis [5] designed “from scratch” the elastic blockcipher to solve
the same length-doubling problem. Their construction is not designed from the
perspective of provably secure mode of operation. The XLS mode of operation
by Ristenpart and Rogaway [23] in essence solved a more general problem that
turns a m-bit-size cipher and a n-bit-size cipher to a cipher that acts on strings
of [m..m+n−1] bits. Goldenberg et al. addressed the question on how to directly
incorporate a tweak on Luby-Rackoff blockciphers [7].

Discussion. Intel released AES-New Instructions (AES-NI) [8], starting from
Westmere, in order to more efficiently implement AES. The gap about the ef-
ficiency between a well-chosen and carefully-implemented AXU hash function
and AES becomes less obvious. However, this change only appears for the re-
cent Intel and AMD architectures. For other platforms, especially for specified
hardware-based ones, our scheme outperforms other schemes notably.

Our results also answer an interesting question regarding how to construct
efficient length-doubling (tweakable) ciphers in the VIL sense using only two
blockcipher calls, which may be a more important contribution. In fact, the
problems studied in our work can be understood from a broader perspective: How
do we achieve an efficient VIL cipher for messages with the domain

∪
i≥n {0, 1}

i

using the least blockcipher calls? Of course, this question only makes sense if
there exists a lower bound for the number of blockcipher calls for an efficient
construction. We conjecture on this informal question that it needs at least ⌈i/n⌉
blockcipher calls.

2 Preliminaries

Notation. A string is a member of {0, 1}∗. If A,B ∈ {0, 1}∗ then A ∥B or AB
denotes their concatenation. If X is a string then |X| denotes its length. The
empty string is denoted ε. Throughout this work, we fix a number n called the
blocksize.

Ciphers, blockciphers and tweakable ciphers. A map f : X → X for
X ⊆ {0, 1}∗ is a length-preserving function if |f(x)| = |x| for all x ∈ {0, 1}∗.
It is a length-preserving permutation if it is also a permutation. A cipher is a
map E : K ×M → M where K is a nonempty set, M ⊆ {0, 1}∗ is a nonempty
set, and EK = E(K, ·) is a length-preserving permutation for all K ∈ K. The
set K is called the key space and M is called the message space. If E : K ×
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M → M is a cipher then its inverse is the cipher E−1: K ×M → M defined
by E−1(K,Y ) = E−1K (Y ) being the unique point X such that EK(X) = Y . A
blockcipher is a map E: K× {0, 1}n → {0, 1}n where K is a finite nonempty set
and EK(·) = E(K, ·) is a permutation on {0, 1}n for every K ∈ K. Equivalently,
a blockcipher is a cipher with message space M = {0, 1}n. A tweakable cipher

is a map Ẽ : K × T × M → M where K is a finite nonempty set and T is a
nonempty set (the tweak space) and M is a nonempty set (the message space)

and ẼTK(·) = Ẽ(K,T, ·) is a permutation onM for every K ∈ K, T ∈ T .
Let Perm(n) be the set of all permutations on n bits, Perm(M) be the

set of all length-preserving permutations on the finite set M ⊆ {0, 1}∗, and
Perm(T ,M) be the set of all functions π: T ×M → M where πT (·) = π(T, ·)
is a permutation for each T ∈ T . We may regard Perm(n), Perm(M), and
Perm(T ,M) as blockciphers, ciphers, and tweakable ciphers, respectively; they
are the ideal blockcipher on n bits, the ideal cipher onM, and the ideal tweakable
cipher on message space M and tweak space T . When an adversary A is run
with an oracle O we let AO ⇒ 1 denote the event that A outputs 1. Define the
±prp (i.e., SPRP) and ±p̃rp (i.e., tweakable SPRP) advantage of A against E,

E or Ẽ by:

Adv±prpE (A) = Pr[K
$←K : AEK ,E−1

K ⇒ 1 ]−Pr[π $← Perm(n) : Aπ,π−1

⇒ 1 ]

Adv±prpE (A) = Pr[K
$←K : AEK ,E−1

K ⇒ 1 ]−Pr[π $← Perm(M) : Aπ,π−1

⇒ 1 ]

Adv±p̃rp
Ẽ

(A) = Pr[K
$←K: AẼK , Ẽ−1

K ⇒1 ]−Pr[π $← Perm(T ,M): Aπ, π−1

⇒1 ]

Almost XOR universal hash function. We recall the definition of ϵ-almost
XOR universal (ϵ-AXU) hash function [14]. A hash function H: K×X → {0, 1}n
is called ϵ-AXU, if for all distinct X,X ′ ∈ X and all C ∈ {0, 1}n, we have

that Pr[K
$←K : HK(X)⊕HK(X ′) = C] ≤ ϵ. There are many efficient AXU

hash functions candidates. For concreteness, we review one such function for
X = {0, 1}n—multiplication in Galois Field GF(2n) (i.e., HK(X) = K · X
where K,X ∈ {0, 1}n), which achieves 2−n for ϵ—the minimum value one can
hope for. Assume that a, b are strings of {0, 1}n where a = an−1 · · · a1a0 and
b = bn−1 · · · b1b0. The Galois Field addition is defined as their bitwise xor. To
multiply a, b ∈ GF(2n), write them as polynomials a(x) = an−1x

n−1 + · · · +
a1x+ a0 and b(x) = bn−1x

n−1 + · · ·+ b1x+ b0, compute c(x) = a(x) · b(x) mod
p(x) where p(x) is a fixed irreducible polynomial over GF(2n), and then return
the binary representation of c(x) as output. For the AXU hash function input
string X ∈ {0, 1}∗ and |X| < n, we let pad(X) be the string X||0n−|X|. (Namely,
the minimal number of zero-bits are padded on the right such that pad(X) is a
complete block.) Note that for example pad(Y ) = pad(Y ||0) for some string Y
where |Y | < n. This all zero padding method can be applied to other AXU hash
functions.

Mixing Function. We review the definition of the mixing function formal-
ly defined and studied by Ristenpart and Rogaway [23]. We define a mixing

function mix: S2 → S2 (S ⊇
∪n−1

i=1 {0, 1}i) such that mixL(·, ·) and mixR(·, ·) are
the left projection and right projection of mix function. Ideally, we want such a
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primitive to have the property of a multipermutation: namely, for any A ∈ S,
mixL(A, ·), mixL(·, A), mixR(A, ·), and mixR(·, A) are all permutations. Like the
construction in [23], a relaxed notion of mixing function can work almost as
well for our schemes. We say that mix is an ϵ(s)-good mixing function, if for
all s such that {0, 1}s ∈ S and all A,B,C ∈ {0, 1}s, we have both mixL(A, ·)
and mixR(·, B) are permutations, and Pr[R

$←{0, 1}s : C = mixL(R,B) ] and

Pr[R
$←{0, 1}s : C = mixR(A,R) ] are both less than ϵ(s). In their work, two

efficient mixing functions are given. The more efficient one with ϵ(s) = 21−s

only takes three xors and a one-bit circular rotation.

3 A Fix-Input-Length Cipher

In this section, we provide a cipher for a fixed length n+s where n is the blocksize
and s ∈ [1..n− 1]. In other words, the cipher we shall describe is secure against
adversaries who are only allowed to ask queries of length n+s. The construction
only works in the FIL setting, but it serves as the basis for constructing VIL
(tweakable) ciphers.

Let E: K1 × {0, 1}n → {0, 1}n be a blockcipher and let H: K2 × {0, 1}n →
{0, 1}n be a 2−n-AXU hash function family. Define an ϵ(s)-good mixing function

mix: S2 → S2 where S ⊇
∪n−1

i=1 {0, 1}i. We define a cipher E = FHEM[H,E,mix]
with key space K2

1 × K2
2. See Figure 1 for the construction. We claim that this

cipher is ±prp-secure for fixed-input-length n+ s.
The intuition of the proof is as follows. Like the Naor-Reingold construction,

by using AXU-hash function, for any two different messages M i and M j of
the same length, the probability that M i

3 and M j
3 “collide” is negligible. After

applying a random function, the output M4||M5 is now uniformly distributed.
This perfectly hides the complete block M1, but the partial block M2 remains
unprotected. A mixing function is used to force the output of M5||M2 to inherit
the distribution of M5. An independent random function is then employed to
further hide part of the mixing function output. The overall construction should
be made “symmetrizing” in order to achieve strong PRP security. Also note
that unlike Naor-Reingold and subsequent work, our constructions (i.e., one in
this section and the following extensions) ask the underlying blockcipher to be
reversible and the complexity assumption for it is SPRP.

The following theorem establishes the security of FHEM.

Theorem 1. Let E = FHEM[H,Perm(n),mix] with message space {0, 1}n+s
.

If A asks at most q queries then Adv±prpE (A)≤1.5 q2/2n+0.5 q2 ϵ(s)
2n−s+0.5 q2/2n+s,

and if we use a mixing function with ϵ(s) = 21−s then we have that Adv±prpE (A)≤
3 q2/2n.

Proof. We assume without loss of generality that A is deterministic and makes q
queries from {0, 1}n+s

. We further assume that it does not ask “pointless”
queries: it never repeats an encipher query, never repeats a decipher query, never
asks a decipher query of a value that it earlier received from an encipher query,
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 M2 M1

 M2 M3

EK2

 M2 M4

mix

 M5

 C2 M4  C5

 C2 C3

EK3

 C2 C1

HK1

HK4

00 algorithm EK(M) where K = K1||K2||K3||K4

01 if |M | ̸= n+ s then return ⊥
02 M1||M2 ←M where |M1| = n and |M2| = s
03 M3 ←M1 ⊕HK1(pad(M2))
04 M4||M5 ← EK2(M3) where |M4| = n− s and |M5| = s
05 C5||C2 ← mix(M5||M2) where |C5| = |C2| = s
06 C3 ← EK3(M4||C5)
07 C1 ← C3 ⊕HK4(pad(C2))
08 C ← C1||C2

09 return C

Fig. 1. Mode FHEM. Each input M is parsed as a complete block M1 and a partial
block M2. We should pad M2 to a complete block before applying the AXU hash
function. Similar operations should be carried out for the deciphering algorithm.

and never makes an encipher query of a value that it earlier received from a
decipher query.

We use the code-based games [2] in Figure 2. Variable bad is initialized to
false. A functions π is initialized to everywhere undefined. Its current domain and
range are denoted domain(π) and range(π), while their complements relative to
{0, 1}n are denoted codomain(π) and corange(π).

We begin with game G1, which precisely describes the FHEM construction
with the ideal blockcipher π1 and π2. Game G6 always outputs random val-
ues, simulating a pair of random functions. Let p denote the probability that A
outputs 1 in the game simulating a random permutation and its inverse. The dif-
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100 procedure E(M)
101 j ← j + 1; Mj ←M

102 Mj
1 ||M

j
2 ←Mj

103 Mj
3 ←Mj

1 ⊕HK1 (pad(M
j
2 ))

104 Mj
4 ||M

j
5 ← π1(M

j
3 )

105 Cj
5 ||C

j
2 ← mix(Mj

5 ||M
j
2 )

106 Cj
3 ← π2(M

j
4 ||C

j
5)

107 Cj
1 ← Cj

3 ⊕HK4
(pad(Cj

2))

108 Cj ← Cj
1 ||C

j
2

109 return Cj

150 procedure D(C)
151 j ← j + 1; Cj ← C

152 Cj
1 ||C

j
2 ← Cj

153 Cj
3 ← Cj

1 ⊕HK1 (pad(C
j
2))

154 Mj
4 ||C

j
5 ← π−1

2 (Cj
3)

155 Mj
5 ||M

j
2 ← mix(Cj

5 ||C
j
2)

156 Mj
3 ← π−1

1 (Mj
4 ||M

j
5 )

157 Mj
1 ←Mj

3 ⊕HK1
(pad(Mj

2 ))

158 Mj ←Mj
1 ||M

j
2

159 return Mj Game G1

200 procedure E(M)

201 j ← j + 1; Mj ←M

202 Mj
1 ||M

j
2 ←Mj

203 Mj
3 ←Mj

1 ⊕HK1
(pad(Mj

2 ))

204 if Mj
3 ̸∈ domain(π1) then

205 Y1
$← {0, 1}n

206 if Y1 ∈ range(π1) then

207 bad ← true;
[
Y1

$← corange(π1)
]

208 π1(M
j
3 )← Y1

209 Mj
4 ||M

j
5 ← π1(M

j
3 )

210 Cj
5 ||C

j
2 ← mix(Mj

5 ||M
j
2 )

211 if Mj
4 ||C

j
5 ̸∈ domain(π2) then

212 Y2
$← {0, 1}n

213 if Y2 ∈ range(π2) then

214 bad ← true;
[
Y2

$← corange(π2)
]

215 π2(M
j
4 ||C

j
5)← Y2

216 Cj
3 ← π2(M

j
4 ||C

j
5)

217 Cj
1 ← Cj

3 ⊕HK4
(pad(Cj

2))

218 Cj ← Cj
1 ||C

j
2

219 return Cj

250 procedure D(C)

251 j ← j + 1; Cj ← C

252 Cj
1 ||C

j
2 ← Cj

253 Cj
3 ← Cj

1 ⊕HK4
(pad(Cj

2))

254 if Cj
3 ̸∈ range(π2) then

255 X2
$← {0, 1}n

256 if X2 ∈ domain(π2) then

257 bad ← true;
[
X2

$← codomain(π2)
]

258 π−1
2 (Cj

3)← X2

259 Mj
4 ||C

j
5 ← π−1

2 (Cj
3)

260 Mj
5 ||M

j
2 ← mix(Cj

5 ||C
j
2);

261 if Mj
4 ||M

j
5 ̸∈ range(π1) then

262 X1
$← {0, 1}n

263 if X1 ∈ domain(π1) then

264 bad ← true;
[
X1

$← codomain(π1)
]

265 π−1
1 (Mj

4 ||M
j
5 )← X1

266 Mj
3 ← π−1

1 (Mj
4 ||M

j
5 )

267 Mj
1 ←Mj

3 ⊕HK1
(pad(Mj

2 ))

268 Mj ←Mj
1 ||M

j
2

[
Game G2

]
269 return Mj Game G3

400 procedure E(M)

401 j ← j + 1; Mj ←M

402 Mj
1 ||M

j
2 ←Mj

403 Mj
3 ←Mj

1 ⊕HK1
(pad(Mj

2 ))

404 Y1
$← {0, 1}n

405 if Mj
3 ∈ domain(π1) then

406 bad ← true;
[
Y1 ← π1(M

j
3 )

]
else

407 π1(M
j
3 )← Y1

408 Mj
4 ||M

j
5 ← π1(M

j
3 )

409 Cj
5 ||C

j
2 ← mix(Mj

5 ||M
j
2 )

410 Y2
$← {0, 1}n

411 if Mj
4 ||C

j
5 ∈ domain(π2) then

412 bad ← true;
[
Y2 ← π2(M

j
4 ||C

j
5)

]
else

413 π2(M
j
4 ||C

j
5)← Y2

414 Cj
3 ← π2(M

j
4 ||C

j
5)

415 Cj
1 ← Cj

3 ⊕HK4 (pad(C
j
2))

416 Cj ← Cj
1 ||C

j
2

417 return Cj

450 procedure D(C)

451 j ← j + 1; Cj ← C

452 Cj
1 ||C

j
2 ← Cj

453 Cj
3 ← Cj

1 ⊕HK4
(pad(Cj

2))

454 X2
$← {0, 1}n

455 if Cj
3 ∈ range(π2) then

456 bad ← true;
[
X2 ← π−1

2 (Cj
3)

]
else

457 π−1
2 (Cj

3)← X2

458 Mj
4 ||C

j
5 ← π−1

2 (Cj
3)

459 Mj
5 ||M

j
2 ← mix(Cj

5 ||C
j
2)

460 X1
$← {0, 1}n

461 if Mj
4 ||M

j
5 ∈ range(π1) then

462 bad ← true;
[
X1 ← π−1

1 (Mj
4 ||C

j
5)

]
else

463 π−1
1 (Mj

4 ||C
j
5)← X1

464 Mj
3 ← π−1

1 (Mj
4 ||M

j
5 )

465 Mj
1 ←Mj

3 ⊕HK1 (pad(M
j
2 ))

466 Mj ←Mj
1 ||M

j
2

[
Game G4

]
467 return Mj Game G5

600 procedure E(M)
601 j ← j + 1; Mj ←M

602 Cj $← {0, 1}n+s; return Cj

610 procedure Finalize

611 Mj
1 ||M

j
2 ←Mj

612 Cj
1 ||C

j
2 ← Cj

613 Mj
3 ←Mj

1 ⊕HK1
(pad(Mj

2 ))

614 Mj
4

$← {0, 1}n−s

615 Mj
5 ← mix−1

R (Cj
2 ||M

j
2 )

616 Cj
5 ← mixL(M

j
5 ||M

j
2 )

617 Cj
3 ← Cj

1 ⊕HK4 (pad(C
j
2))

620 bad ← (Mj
3 = Mi

3) or

621 (Mj
4 ||C

j
5 = Mi

4||C
i
5), for some i < j

650 procedure D(C) Game G6

651 j ← j + 1; Cj ← C

652 Mj $← {0, 1}n+s; return Mj

660 procedure Finalize

661 Cj
1 ||C

j
2 ← Cj

662 Mj
1 ||M

j
2 ←Mj

663 Cj
3 ← Cj

1 ⊕HK4
(pad(Cj

2))

664 Mj
4

$← {0, 1}n−s

665 Cj
5 ← mix−1

R (Mj
2 ||C

j
2)

666 Mj
5 ← mixL(C

j
5 ||C

j
2)

667 Mj
3 ←Mj

1 ⊕HK1 (pad(M
j
2 ))

670 bad ← (Cj
3 = Ci

3) or

671 (Mj
4 ||M

j
5 = Mi

4||M
i
5), for some i < j

Fig. 2. Games used in the proof of Theorem 1. Game G2 includes the brack-
eted statements while game G3 does not. Similarly, game G4 includes the bracketed
statements while game G5 does not. In game G6, encipher and decipher queries are
answered by random values.
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ference between p and Pr[GA6 ⇒ 1 ] is at most 0.5 q2/2n+s, due to the PRP/PRF
switching lemma. We must bound Pr[GA1 ⇒ 1 ]− Pr[GA6 ⇒ 1 ].

Game G2 rewrites G1 using lazy sampling [2] and these two games are ad-
versarially indistinguishable. The probability that bad gets set to true in G3

is bounded by the PRP/PRF switching lemma; Pr[GA2 ⇒ 1 ] − Pr[GA3 ⇒ 1 ] ≤
2 × 0.5 q2/2n. Game G4 makes several trivial modifications compared to G3;
they are adversarially indistinguishable. Pr[GA4 ⇒ 1 ] − Pr[GA5 ⇒ 1 ] is at most
the probability that A manages to set bad in game G5. Game G6 simply changes
the order of many random choices; it is adversarially indistinguishable from game
G5. In game G6, the encipher and decipher queries are answered by random val-
ues over {0, 1}n+s

. It remains to bound the probability that bad gets set to
true in this game.

In game G6, we let mix−1R (·, B) denote the inverse of mixR(·, B). We first
analyze the circumstance where the j-th query is an encipher query. If the j-
th and i-th queries M j and M i are both encipher queries and i < j, then
M j ̸= M i since encipher queries are not repeated. If M j

2 ̸= M i
2 then pad(M j

2 ) ̸=
pad(M i

2). By the definition of AXU hash function the probability that M j
1 ⊕

HK1(pad(M
j
2 )) = M i

1 ⊕HK1(pad(M
i
2)) is at most 2−n. Otherwise, we have that

M j
2 = M i

2 and M j
1 ̸= M i

1, and the probability that M j
1 ⊕ HK1(pad(M

j
2 )) =

M i
1 ⊕HK1(pad(M

i
2)) is zero. Thus we have that the probability that M j

3 = M i
3

is at most 2−n. If the j-th query is an encipher query and the i-th query is a
decipher query, then we still have M j ̸= M i because A never makes an encipher
query of a value that it earlier received from a decipher query. Similarly, in this
case, the probability that M j

3 = M i
3 is at most 2−n.

On the other hand, we claim that the probability that M j
4 ||C

j
5 = M i

4||Ci
5 (for

some i < j) is at most ϵ(s)
2n−s . This can be justified as follows. First, M j

4 is freshly

chosen at random and thus the probability that M j
4 = M i

4 is 2s−n. Second, by

M j
5 = mix−1R (Cj

2 ||M
j
2 ), we have that M j

5 is uniformly distributed since Cj
2 is

independently chosen at random. By the definition of ϵ(s)-good mixing function
and by Cj

5 = mixL(M
j
5 ||M

j
2 ), we have that the probability that Cj

5 = Ci
5 is at

most ϵ(s). Therefore, the probability that M j
4 ||C

j
5 equals M i

4||Ci
5 (for some i < j)

is at most ϵ(s)
2n−s .

The same probability results hold for the case where the j-th query is a
decipher query with a proof symmetric to the above one. Since there are at most
q2/2 possible collisions at both Line 620/670 and Line 621/671, the probability

that A manages to set bad in this game is at most 0.5 q2/2n + 0.5 q2 ϵ(s)
2n−s . This

completes the proof of the claim.

It is easy to pass from the information-theoretic setting to complexity-theoretic
one.

Insecurity of FHEM against VIL adversaries. FHEM is designed against
FIL adversaries. It is not a PRP secure cipher with respect to VIL attacks. A
simple attack is illustrated as follows. The adversary simply makes two encipher
queries 0n+1 and 0n+2, and gets two replies from the oracle C1||C2 and C ′1||C ′2



10 Haibin Zhang

 M2 M1

 M2 M3

EK2

 M2 M4

mix

 M5

 C2 M4  C5

 C2 C3

EK3

 C2 C1

HK1

HK4

HK5|M2|

10 algorithm EK(M) where K = K1||K2||K3||K4||K5

11 if M ̸∈
∪2n−1

i=n+1 {0, 1}
i then return ⊥

12 M1||M2 ←M where |M1| = n and |M2| = s
13 M3 ←M1 ⊕HK1(pad(M2))
14 M4||M5 ← EK2(M3 ⊕HK5(pad(|M2|))) where |M4| = n− s and |M5| = s
15 C5||C2 ← mix(M5||M2) where |C5| = |C2| = s
16 C3 ← EK3(M4||C5)⊕HK5(pad(|M2|))
17 C1 ← C3 ⊕HK4(pad(C2))
18 C ← C1||C2

19 return C

Fig. 3. Mode HEM. The input for the AXU hash functions HK1 , HK4 , and HK5

should be all padded to a complete block. In particular, the first log n bits of input for
HK5 is the length encoding of the partial block M2, while the remaining are n− logn
zero-bits.

where |C1| = |C ′1| = n. If C1 = C ′1, the adversary returns 1; otherwise, it returns
0. If the adversary is given a FHEM oracle, one can check that the probability
that C1 = C ′1 is quite high; otherwise, it is about 2−n. Such an adversary can
thus attack the PRP security of FHEM.

4 A Length-Doubling VIL Cipher

We now show how to make a VIL cipher based on the FIL one in the above
section. The basic idea is to replace the AXU hash function with a length re-
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lated AXU hash function. Namely, we want a primitive that enjoys the AXU
hash function property even for variable length input. We do not design such a
primitive from scratch. Instead, this can be achieved by applying the same AXU
hash function (with an independently and uniformly chosen key) to the length
of incomplete block of the input.

Let E: K1 × {0, 1}n → {0, 1}n be a blockcipher and let H: K2 × {0, 1}n →
{0, 1}n be a 2−n-AXU hash function family. Letmix: S2 → S2 (S ⊇

∪n−1
i=1 {0, 1}i)

be an ϵ(s)-good mixing function. From these building blocks we define a ci-
pher E = HEM[H,E,mix] with key space K2

1 × K3
2 and message space M =∪2n−1

i=n+1 {0, 1}
i
. See Figure 3. The construction is ±prp-secure for VIL adver-

saries. The AXU-hash function HK5 can be replaced with a blockcipher EK5

and the security remains.

We emphasize that the AXU hash function HK5 taking as input the length
of incomplete block can be precomputed. It only needs n (typically, 128) invo-
cations of hash function calls (or blockcipher calls). This thus yields a highly
efficient implementation of HEM with a few preprocessed operations and a little
additional storage.

To make this cipher also secure for queries of length n, one can choose an
independent blockcipher to encipher all n-bit messages. The complexity assump-
tion used is SPRP. We give the security analysis for the scheme with message
space

∪2n−1
i=n+1 {0, 1}

i
, using AXU hash function HK5 .

Theorem 2. Let E = HEM[H,Perm(n),mix]. If A asks at most q queries then

Adv±prpE (A) ≤ 2 q2/2n + 0.5 q2 ϵ(s)
2n−s , and if we use a 21−s-good mixing function

then we have that Adv±prpE (A) ≤ 3 q2/2n.

Proof. The proof follows an analogous line to the one of Theorem 1. We begin
with game G1, which precisely describes the HEM construction with the ideal
blockcipher π1 and π2. Game G6 simulates a pair of random functions. We
let p′ denote the probability that A outputs 1 in the game simulating a random
permutation and its inverse. The difference between p′ and Pr[GA6 ⇒ 1 ] is at
most 0.5 q2/2n, again due to the PRP/PRF switching lemma. We have to bound
Pr[GA1 ⇒ 1 ]− Pr[GA6 ⇒ 1 ].

Game G2 modifies G1 using lazy sampling and they are adversarially indis-
tinguishable. By the PRP/PRF switching lemma, Pr[GA2 ⇒ 1 ]−Pr[GA3 ⇒ 1 ] ≤
2× 0.5 q2/2n. Game G4 and G3 are easily seen to be adversarially indistinguish-
able. Pr[GA4 ⇒ 1 ]−Pr[GA5 ⇒ 1 ] is at most the probability that A can set bad in
game G5. We delay the calculation of the probability in an adversarially indis-
tinguishable game G6 where the encipher and decipher queries are answered by
random values from

∪2n−1
i=n+1 {0, 1}

i
.

It remains to bound the probability that A can set bad in game G6. We only
give the analysis for the circumstance where the j-th query is an encipher query.
(The case where j-th query is a decipher query is symmetric.)

Consider the j-th and i-th queries M j and M i (where i < j). We have that
M j ̸= M i since encipher queries are not repeated and A never makes an encipher
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100 procedure E(M)

101 j ← j + 1; Mj ←M

102 Mj
1 ||M

j
2 ←Mj

103 Mj
3 ←Mj

1 ⊕HK1
(pad(|Mj

2 |))
104 Mj

4 ||M
j
5 ← π1(M

j
3 ⊕HK5

(pad|Mj
2 |))

105 Cj
5 ||C

j
2 ← mix(Mj

5 ||M
j
2 )

106 Cj
3 ← π2(M

j
4 ||C

j
5)⊕HK5

(pad(|Mj
2 |))

107 Cj
1 ← Cj

3 ⊕HK4 (pad(C
j
2))

108 Cj ← Cj
1 ||C

j
2

109 return Cj

150 procedure D(C)

151 j ← j + 1; Cj ← C

152 Cj
1 ||C

j
2 ← Cj

153 Cj
3 ← Cj

1 ⊕HK1
(pad(Cj

2))

154 Mj
4 ||C

j
5 ← π−1

2 (Cj
3 ⊕HK5

(pad(|Cj
2 |)))

155 Mj
5 ||M

j
2 ← mix(Cj

5 ||C
j
2)

156 Mj
3 ← π−1

1 (Mj
4 ||M

j
5 )⊕HK5

(pad(|Cj
2 |))

157 Mj
1 ←Mj

3 ⊕HK1 (pad(M
j
2 ))

158 Mj ←Mj
1 ||M

j
2

159 return Mj Game G1

200 procedure E(M)

201 j ← j + 1; Mj ←M

202 Mj
1 ||M

j
2 ←Mj

203 Mj
3 ←Mj

1 ⊕HK1 (pad(M
j
2 ))

204 if Mj
3⊕HK5 (pad(|M

j
2 |)) ̸∈domain(π1) then

205 Y1
$← {0, 1}n

206 if Y1 ∈ range(π1) then

207 bad ← true;
[
Y1

$← corange(π1)
]

208 π1(M
j
3 ⊕HK5 (pad(|M

j
2 |)))← Y1

209 Mj
4 ||M

j
5 ← π1(M

j
3 ⊕HK5

(pad(|Mj
2 |)))

210 Cj
5 ||C

j
2 ← mix(Mj

5 ||M
j
2 )

211 if Mj
4 ||C

j
5 ̸∈ domain(π2) then

212 Y2
$← {0, 1}n

213 if Y2 ∈ range(π2) then

214 bad ← true;
[
Y2

$← corange(π2)
]

215 π2(M
j
4 ||C

j
5)← Y2

216 Cj
3 ← π2(M

j
4 ||C

j
5)⊕HK5 (pad(|M

j
2 |))

217 Cj
1 ← Cj

3 ⊕HK4
(pad(Cj

2))

218 Cj ← Cj
1 ||C

j
2

219 return Cj

250 procedure D(C)

251 j ← j + 1; Cj ← C

252 Cj
1 ||C

j
2 ← Cj

253 Cj
3 ← Cj

1 ⊕HK4 (pad(C
j
2))

254 if Cj
3⊕HK5 (pad(|C

j
2 |)) ̸∈range(π2) then

255 X2
$← {0, 1}n

256 if X2 ∈ domain(π2) then

257 bad ← true;
[
X2

$← codomain(π2)
]

258 π−1
2 (Cj

3 ⊕HK5 (pad(|C
j
2 |)))← X2

259 Mj
4 ||C

j
5 ← π−1

2 (Cj
3 ⊕HK5

(pad(|Cj
2 |)))

260 Mj
5 ||M

j
2 ← mix(Cj

5 ||C
j
2)

261 if Mj
4 ||M

j
5 ̸∈ range(π1) then

262 X1
$← {0, 1}n

263 if X1 ∈ domain(π1) then

264 bad ← true;
[
X1

$← codomain(π1)
]

265 π−1
1 (Mj

4 ||M
j
5 )← X1

266 Mj
3 ← π−1

1 (Mj
4 ||M

j
5 )⊕HK5 (pad(|C

j
2 |))

267 Mj
1 ←Mj

3 ⊕HK1
(pad(Mj

2 ))

268 Mj ←Mj
1 ||M

j
2

[
Game G2

]
269 return Mj Game G3

400 procedure E(M)
401 j ← j + 1; Mj ←M

402 Mj
1 ||M

j
2 ←Mj

403 Mj
3 ←Mj

1 ⊕HK1 (pad(M
j
2 ))

404 Y1
$← {0, 1}n

405 if Mj
3⊕HK5

(pad(|Mj
2 |))∈domain(π1) then

406 bad ← true;

407
[
Y1 ← π1(M

j
3 ⊕HK5 (pad(|M

j
2 |)))

]
else

408 π1(M
j
3 ⊕HK5

(pad(|Mj
2 |)))← Y1

409 Mj
4 ||M

j
5 ← π1(M

j
3 )

410 Cj
5 ||C

j
2 ← mix(Mj

5 ||M
j
2 )

411 Y2
$← {0, 1}n

412 if Mj
4 ||C

j
5 ∈ domain(π2) then

413 bad ← true;
[
Y2 ← π2(M

j
4 ||C

j
5)

]
else

414 π2(M
j
4 ||C

j
5)← Y2

415 Cj
3 ← π2(M

j
4 ||C

j
5)⊕HK5

(pad(|Mj
2 |))

416 Cj
1 ← Cj

3 ⊕HK4
(pad(Cj

2))

417 Cj ← Cj
1 ||C

j
2

418 return Cj

450 procedure D(C)
451 j ← j + 1; Cj ← C

452 Cj
1 ||C

j
2 ← Cj

453 Cj
3 ← Cj

1 ⊕HK4 (pad(C
j
2))

454 X2
$← {0, 1}n

455 if Cj
3⊕HK5

(pad(|Cj
2 |))∈range(π2) then

456 bad ← true;

457
[
X2 ← π−1

2 (Cj
3 ⊕HK5 (pad(|C

j
2 |)))

]
else

458 π−1
2 (Cj

3 ⊕HK5
(pad(|Cj

2 |)))← X2

459 Mj
4 ||C

j
5 ← π−1

2 (Cj
3)

460 Mj
5 ||M

j
2 ← mix(Cj

5 ||C
j
2)

461 X1
$← {0, 1}n

462 if Mj
4 ||M

j
5 ∈ range(π1) then

463 bad ← true;
[
X1 ← π−1

1 (Mj
4 ||M

j
5 )

]
else

464 π−1
1 (Mj

4 ||M
j
5 )← X1

465 Mj
3 ← π−1

1 (Mj
4 ||M

j
5 )⊕HK5

(pad(|Cj
2 |))

466 Mj
1 ←Mj

3 ⊕HK1
(pad(Mj

2 ))

467 Mj ←Mj
1 ||M

j
2

[
Game G4

]
468 return Mj Game G5

600 procedure E(M)

601 j ← j + 1; Mj ←M

602 Cj $← {0, 1}n+s; return Cj

610 procedure Finalize

611 Mj
1 ||M

j
2 ←Mj

612 Cj
1 ||C

j
2 ← Cj

613 Xj←Mj
1⊕HK1(pad(M

j
2 ))⊕HK5(pad(|M

j
2 |))

614 Mj
4

$← {0, 1}n−s

615 Mj
5 ← mix−1

R (Cj
2 ||M

j
2 )

616 Cj
5 ← mixL(M

j
5 ||M

j
2 )

617 Cj
3←Cj

1⊕HK4
(pad(Cj

2))⊕HK5
(pad(|Mj

2 |))
620 bad ← (Xj = Xi) or

621 (Mj
4 ||C

j
5 = Mi

4||C
i
5), for some i < j

650 procedure D(C) Game G6

651 j ← j + 1; Cj ← C

652 Mj $← {0, 1}n+s; return Mj

660 procedure Finalize

661 Cj
1 ||C

j
2 ← Cj

662 Mj
1 ||M

j
2 ←Mj

663 Yj←Cj
1⊕HK4(pad(C

j
2))⊕HK5(pad(|C

j
2 |))

664 Mj
4

$← {0, 1}n−s

665 Cj
5 ← mix−1

R (Mj
2 ||C

j
2)

666 Mj
5 ← mixL(C

j
5 ||C

j
2)

667 Mj
3←Mj

1⊕HK1
(pad(Mj

2 ))⊕HK5
(pad(|Cj

2 |))
670 bad ← (Y j = Y i) or

671 (Mj
4 ||M

j
5 = Mi

4||M
i
5), for some i < j

Fig. 4. Games used in the proof of Theorem 2. In game G6, encipher and decipher
queries are answered by random values.
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query of a value that it earlier received from a decipher query. We have several
cases to consider:

If |M j
2 | ̸= |M i

2| then by the definition of AXU hash function (for HK5)

the probability that M j
1 ⊕ HK1(pad(M

j
2 )) ⊕ HK5(pad(|M

j
2 |)) = M i

1 ⊕
HK1(pad(M

i
2))⊕HK5(pad(|M i

2|)) is at most 2−n. In other words, we have
that Pr[Xj = Xi ] ≤ 2−n.

If |M j
2 | = |M i

2| and M j
2 ̸= M i

2 then again by the definition of AXU hash
functions (for HK1) we have Pr[Xj = Xi ] ≤ 2−n.

If |M j
2 | = |M i

2| and |M
j
2 | = |M i

2| then we immediately have that M j
1 ̸= M i

1.
The probability that Xj equals Xi is zero.

In any case, we have Pr[Xj = Xi ] ≤ 2−n.

We now bound the probability that M j
4 ||C

j
5 = M i

4||Ci
5 (for some i < j). M j

4 is

freshly chosen at random, and the probability that M j
4 = M i

4 is 2s−n. Moreover,

we have M j
5 = mix−1R (Cj

2 ||M
j
2 ), and thus M j

5 is uniformly distributed since Cj
2

is independently chosen at random. We also have Cj
5 = mixL(M

j
5 ||M

j
2 ); by the

definition of mixing function we have that the probability that Cj
5 = Ci

5 is at

most ϵ(s). The probability that M j
4 ||C

j
5 = M i

4||Ci
5 (for some i < j) is at most

ϵ(s)
2n−s .

There are at most q2/2 pairs of possible collisions at both Line 620/670 and
Line 621/671, the probability that A manages to set bad in this game is at most

0.5 q2/2n + 0.5 q2 ϵ(s)
2n−s . The theorem now follows.

It is straightforward to pass from the information-theoretic setting to complexity-
theoretic one. For completeness, we show it as follows.

Corollary 1. Let E be a blockcipher, let H be a 2−n-AXU hash function family,
and let mix be an ϵ(s)-good mixing function. Let E = HEM[H,E,mix] and let A
be an adversary that asks at most q queries. Then there exist adversaries B and

C such that Adv±prpE (A) ≤ Adv±prpE (B) + Adv±prpE (C) + 2 q2/2n + 0.5 q2 ϵ(s)
2n−s

for any s ∈ [n− 1]. Specifically, if we use a mixing function with ϵ = 21−s then
we have Adv±prpE (A) ≤ Adv±prpE (B) +Adv±prpE (C) + 3 q2/2n.

5 Length-Doubling VIL Tweakable Ciphers

In this section, we present a VIL tweakable cipher over
∪2n−1

i=n+1 {0, 1}
i
with tweak

space {0, 1}n. It is easy to modify the scheme to support larger tweak space. We
also give a variant with a slightly more succinct structure.

Let E: K1 × {0, 1}n → {0, 1}n be a blockcipher and let H: K2 × {0, 1}n →
{0, 1}n be a 2−n-AXU hash function family. Letmix: S2 → S2 (S ⊇

∪n−1
i=1 {0, 1}i)

be an ϵ(s)-good mixing function. Define from the above primitives a VIL tweakable

cipher Ẽ = THEM[H,E,mix] with key space K2
1 × K4

2 and tweak space T =

{0, 1}n and message space M =
∪2n−1

i=n+1 {0, 1}
i
. See Figure 5. The construc-

tion is ±p̃rp-secure for VIL adversaries. To extend the domain of THEM to in-
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 M2 M1

 M2 M3

EK2

 M2 M4

mix

 M5

 C2 M4  C5

 C2 C3

EK3

 C2 C1

HK1

HK4

HK5 HK6  T|M2|

20 algorithm ẼTK(M) where K = K1||K2||K3||K4||K5||K6

21 if M ̸∈
∪2n−1

i=n+1 {0, 1}
i then return ⊥

22 M1||M2 ←M where |M1| = n and |M2| = s
23 M3 ←M1 ⊕HK1(pad(M2))
24 M4||M5←EK2(M3⊕HK5(pad(|M2|))⊕HK6(T )) where |M4|=n−s, |M5|=s
25 C5||C2 ← mix(M5||M2) where |C5| = |C2| = s
26 C3 ← EK3(M4||C5)⊕HK5(pad|M2|)⊕HK6(T )
27 C1 ← C3 ⊕HK4(pad(C2))
28 C ← C1||C2

29 return C

Fig. 5. Mode THEM. Compared to HEM mode, FHEM takes an additional tweak T
as input. For simplicity, we can assume that the tweak space is {0, 1}n. Of course, it is
trivial to handle larger tweak space by selecting an AXU hash function that supports
longer input.

clude {0, 1}n, we can choose an independent tweakable blockcipher to encipher
the n-bit messages. The following theorem establishes the security of THEM.

Theorem 3. Let Ẽ = THEM[H,Perm(n),mix]. If A asks at most q queries then

Adv±p̃rp
Ẽ

(A) ≤ 2 q2/2n + 0.5 q2 ϵ(s)
2n−s , and if we use a 21−s-good mixing function

then we have that Adv±p̃rp
Ẽ

(A) ≤ 3 q2/2n.

The proof of the above theorem largely resembles the previous ones, and is thus
omitted.
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 M2 M1

 M2 M3

EK2

 M2 M4

mix

 M5

 C2 M4  C5

 C2 C3

EK3

 C2 C1

HK1

HK4

HK5 T|||M2|

30 algorithm ẼTK(M) where K = K1||K2||K3||K4||K5

31 if M ̸∈
∪2n−1

i=n+1 {0, 1}
i then return ⊥

32 M1||M2 ←M where |M1| = n and |M2| = s
33 M3 ←M1 ⊕HK1(pad(M2))
34 M4||M5 ← EK2(M3 ⊕HK5(T |M2|)) where |M4| = n− s and |M5| = s
35 C5||C2 ← mix(M5||M2) where |C5| = |C2| = s
36 C3 ← EK3(M4||C5)⊕HK5(T |M2|)
37 C1 ← C3 ⊕HK4(pad(C2))
38 C ← C1||C2

39 return C

Fig. 6. An Alternative Mode—“Tweak Stealing”. This mode is specified to sup-
port tweak space T = {0, 1}n−logn. The input for AXU hash function HK5 is a tweak
T ∈ T concatenating logn bits encoding of the length of partial input M2.

An Alternative Design–Tweak Stealing. A more compact variant using
the idea of “tweak stealing” is depicted in Figure 6. This algorithm causes a small
decrease in tweak space to {0, 1}n−logn

(if we insist using a AXU hash function
from {0, 1}n to {0, 1}n for the tweak input), and leads to a slight security loss.
However, this does not necessarily restrict its usage. For instance, it suffices for
constructing arbitrary-input-length online ciphers [24]: the stolen tweak does not
impair the encipher and decipher algorithms. We comment that in spite of its
structural simplicity, the variant does not seem to give a notable improvement
of efficiency if we consider pre-computation.
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