
Byzantine Reliable Broadcast in Sparse Networks
Sisi Duan

Oak Ridge National Laboratory
Email: duans@ornl.gov

Lucas Nicely
University of Tennessee, Knoxville

Email: lnicely@vols.utk.edu

Haibin Zhang
University of Connecticut

Email: haibin.zhang@uconn.edu

Abstract—Modern large-scale networks require the ability to
withstand arbitrary failures (i.e., Byzantine failures). Byzantine
reliable broadcast algorithms can be used to reliably disseminate
information in the presence of Byzantine failures.

We design a novel Byzantine reliable broadcast protocol for
loosely connected and synchronous networks. While previous
such protocols all assume correct senders, our protocol is the
first to handle Byzantine senders. To achieve this goal, we have
developed new techniques for fault detection and fault tolerance.
Our protocol is efficient, and under normal circumstances, no
expensive public-key cryptographic operations are used.

We implement and evaluate our protocol, demonstrating that
our protocol has high throughput and is superior to the existing
protocols in uncivil executions.

Index Terms—Byzantine broadcast, reliable broadcast, fault
detection, fault tolerance, sparse networks.

I. INTRODUCTION

Byzantine failures occur when a participant in a distributed
system deviates arbitrarily from the protocol specification, e.g.,
due to a software bug or a cyber attack. Protocols detecting or
tolerating such failures are particularly appealing for modern
distributed systems and network applications that increasingly
grow larger (e.g., clouds, cryptocurrency systems).

We study how to efficiently achieve reliable broadcast in
sparse networks that are subject to Byzantine failures. A sparse
network is a network with a low number of links. Examples of
sparse networks include sensor, robotic, and most real-world
networks [19], [27].

Previous Byzantine broadcast protocols for sparse net-
works [23]–[25] assume that senders (i.e., source nodes) who
broadcast messages are correct, while a fraction of non-
source nodes can be Byzantine. These protocols are essentially
Byzantine variants of best-effort broadcast protocols, which
guarantee that all correct processes deliver the same set of
messages only if the senders are correct. If the sender is faulty
or behaves maliciously, some nodes may deliver the message
while others may not. Our goal is to build stronger broadcast
protocols in the customary sense of reliable broadcast, one
that handles Byzantine senders.

Before proceeding to our protocol properties, we will review
and clarify models of distributed systems in terms of channel
and graph connectivity.
Channel. When considering Byzantine failures, we need
methods to provide correct sender identification. One may
generally assume authenticated channels: if a correct process
delivers a message with a correct sender, the message was

previously sent by the sender. This model is also known as
the full Byzantine model. Basing protocols on this model
is desirable because it maximizes the fault models. One
may choose either cryptographic techniques (such as message
authentication codes (MACs) and digital signatures), or non-
cryptographic techniques [33].

A number of works (e.g., [23]–[25]) regard protocols de-
signed in the full Byzantine model as “cryptography-free
protocols.” This view is slightly problematic, because authenti-
cated channels using digital signatures, message authentication
codes, or a combination of both (e.g., SSL, TLS) dominate
Internet communication. (But the view is correct in the sense
that it does not rely on any specific cryptographic primitive
such as digital signatures.)

It is more efficient to implement the protocols using au-
thenticated channels with MACs because MACs are much less
expensive than digital signatures. Therefore, while maximizing
the number of fault models to which the protocols can be
applied, it is desirable to design Byzantine resilient protocols
assuming authenticated channels due to efficiency concerns.
It is less convincing to argue that protocols in full Byzan-
tine model “do not require a trusted infrastructure,” because
authentication requires an extensive setup—there must be an
agreed upon setup for the authentication model.

Lastly, we must clarify four points. First, most Byzantine
resilient protocols that explicitly use MACs, such as PBFT [9]
“[c]an be modified easily to rely only on point-to-point au-
thenticated channels,” as commented in [9, pp. 402]. Second,
it is unnecessarily true that all Byzantine resilient protocols
using MACs also work in the full Byzantine model, because
it is difficult, if not impossible, to transform a handful of
protocols which use MACs in a more complex manner [2],
[16], [35] into ones assuming only authenticated channels.
Third, many protocols that claim to be “cryptography-free” are
the most efficient cryptographic solutions in practice because
they can be implemented simply using MACs. For instance,
the broadcast protocol that tolerates Byzantine non-source
nodes in sparse networks [25] leads to the most efficient MAC
based protocol. Four, if MACs are inadequate for designing
a cryptographic solution, another design choice (see, e.g.,
[2], [21]) is to optimize the gracious execution (i.e., the
case without failures) and to use signatures only for uncivil
executions (i.e., the case with failures).
Graph connectivity. We briefly review the graph model for
the Byzantine broadcast case. Most of these protocols are
designed for completely connected graphs [6], [9], [22], which978-1-5090-3216-7/16/31.00 c©2016 IEEE



attempt to tolerate a maximum number of Byzantine failures.
Dolev [13] was the first to show that in order to tolerate k
Byzantine failures, it is necessary and sufficient that the
network is (2k + 1)-connected, given that there is at least
3k + 1 nodes. Later, Nesterenko and Tixeuil [26] generalized
the result in a manner that the topology is unknown and the
environment is asynchronous.

Other groups have considered the density of Byzantine
failures. These cases can be divided into two categories—
those for dense networks [5], [20], [28] and those for sparse
networks [23]–[25]. The protocols for dense networks are not
adaptable for use in sparse networks, because if they were, the
number failures that they can tolerate would be very small. In
sparse networks, the failures are best measured as the distance
between any two Byzantine nodes. A significant drawback of
the protocols in sparse networks is that they all consider only
non-faulty senders, and thereby are not secure in the customary
sense of reliable broadcast. Assuming that the sender is always
correct apparently limits the scope of deployment of these
broadcast protocols in practice. Our primary goal is to build
a reliable broadcast protocol that also tolerates Byzantine
senders in an efficient manner.
Our contributions can be summarized as follows:
1) We present the first Byzantine reliable broadcast protocol
in sparse networks that also handles Byzantine senders in
synchronous environments. Our protocol is based on Maurer
and Tixeuil (MT) [25], and has the following features:
• Our protocol provides multi-tiered security. Namely,

when the networks are synchronous, it tolerates Byzan-
tine senders; in settings where the networks may be
asynchronous and senders are correct, our protocol still
provides meaningful consistency guarantees.

• Our protocol is optimal in its gracious execution where
there are no failures. Even in its uncivil execution, our
protocol remains more efficient than the existing proto-
cols with similar goals.

2) We develop novel techniques in both fault tolerance and
fault detection, which are of independent interests and may
be applicable to some other scenarios such as secure routing.
3) We implement and evaluate our protocol. Our experimental
evaluation shows that our protocol has high throughput and
high failure resilience.

II. RELATED WORK

Byzantine broadcast: Additional related work. In the con-
text of Byzantine failures, two classic broadcast notions are
consistent broadcast and reliable broadcast. The notion of
consistent broadcast was implicit in earlier papers on the
topic [6], [7], [34]. Byzantine consistent broadcast ensures
only that the delivered requests are the same for all receivers.
Byzantine reliable broadcast, also known as the “Byzantine
generals problem” [22], additionally guarantees that either
all correct parties deliver some request or none delivers any.
For instance, Bracha’s broadcast [6], one that assumes only
authenticated channels, is a well-known implementation of
Byzantine reliable broadcast for complete graphs.

For sparse graphs, previous works [23]–[25] all assume
correct senders. They fail to provide any meaningful reliability
properties if senders become faulty: these protocols are not
consistent broadcast, let alone reliable broadcast. One should
be aware, however, that the problem of broadcast in the
presence of Byzantine non-source nodes is still highly non-
trivial, as Byzantine non-source nodes can disseminate fake
messages and lie to the network.
Byzantine fault detection. Our protocol developed new
techniques of Byzantine fault detection. In contrast to crash
failures, Byzantine failures are not context-free, and therefore
it is impossible to define a general failure detector in Byzantine
environments, independently of the algorithm itself [15].

Almost all protocols for Byzantine fault detection (and fault
diagnosis) [1], [18], [29]–[32], [37] use the idea of collecting a
proof of misbehavior by executing modified Byzantine resilient
protocols. However, the approach requires a (large) number
of rounds and a huge volume of exchanged messages to
collect the necessary information to provide such a proof.
An adversary can easily render the system even less prac-
tical by intermittently following and violating the protocol
specification. Similarly, PeerReview [17] can detect and deter
failures by exploiting accountability. It also uses a “sufficient”
number of witnesses to discover faulty replicas. An exception
is BChain [16] which does not need to regularly collect
evidence. However, BChain is an atomic broadcast protocol
for a complete graph. The technique developed in our protocol
deviates significantly from that of BChain.
Self-stabilizing Byzantine broadcast. Self-stabilization [14]
is a powerful approach to obtaining correct behavior re-
gardless of the consistency of initial states. Specifically in
sparse networks, Maurer and Tixeuil [25] combine Byzantine
tolerance and self-stabilization to deal with both a fraction
of permanent Byzantine failures and an arbitrary number of
transient Byzantine failures. This generalizes the traditional
Byzantine broadcast. As our experimental evaluation shows,
if the senders are Byzantine, the time needed to recover from
transient failures may be prohibitively long. Our protocol,
instead, can be well applied to this scenario, yielding a more
robust and efficient protocol.

III. PRELIMINARIES

We represent the network using an undirected graph G =
(V,E), where V is the set of nodes and E is the set of edges.
Let D be the network diameter (i.e., the maximal distance
between any two nodes). Let ∆ be the maximum degree of
G. We begin by describing several definitions.

Definition 1. (Path). A sequence of nodes X =
(p1, p2, · · · , pn) is a path if ∀i ∈ {1, 2, · · · , n − 1}, pi and
pi+1 are neighbors.

Definition 2. (Same source disjoint paths). Two paths X =
(p1, p2, · · · , pn1) and X ′ = (q1, q2, · · · , qn2) are same source
disjoint if p1 = q1 and (X\p1) ∩ (X ′\q1) = ∅; we write
DP(p1, X,X

′) = 1 to denote two paths X and X ′ with the
same source p1. Generally, for n paths X1, X2, · · · , Xn, if



they share the same source node p and every two paths are
same source disjoint, we write DP(p,X1, · · · , Xn) = 1.

Definition 3. (Distance). The distance between two nodes pi
and pj , denoted distance(pi, pj), is the smallest number of
edges between them.

The following definition is novel and vital to this work.

Definition 4. (Neighbor zone) Given an integer Z, the neigh-
bor zone of a node p, denoted as NZ(p), is a set of connected
nodes {p1, · · · , pn}, where p ∈ NZ(p) and ∀i, j ∈ {1, · · · , n}
and i 6= j, distance(pi, pj) ≤ 2Z.

We consider the problem of reliable broadcast in a sparse
network that can be decomposed into cycles. We borrow the
following definitions from MT [25].

Definition 5. (Cycle). A set of nodes is a cycle if there exists
a path X = (p1, p2, · · · , pn) that contains all the nodes in the
set and p1 and pn are neighbors. The diameter of a cycle is
n/2 if n is even, and (n− 1)/2 if n is odd.

Definition 6. (Connected set of cycles). A set of cycles S
is connected if, ∀{C,C ′} ⊆ S, there exists a sequence of
cycles (C1, · · · , Cn) such that C = C1, C

′ = Cn and,
∀i ∈ {1, · · · , n − 1}, Ci and Ci+1 have at least two nodes
in common.

Definition 7. (Resilient decomposition). An arbitrary set of
cycles S of the network is a resilient decomposition if, for each
pair of nodes p and q, there exists a connected set S(p, q) ⊆ S
of at most ∆ cycles such that 1) Each cycle contains p and
not q; 2) Each neighbor of p (distinct from q) belongs to a
cycle of S(p, q).

Definition 8. (Z-resilient network). A network is Z-resilient
if there exists an arbitrary set of cycles S of the network such
that S is a resilient decomposition, and the diameter of the
cycles of S is at most Z.

Definition 9. ((p, q)-valid set of sequences). Let Ω be a set
of sequences, where a sequence (p1, · · · , pn) is a valid path
and n ≤ 4D∆2Z. Let G(Ω) represent a subgraph (V,E) of
G such that: 1) V is the set of node identifiers in Ω; 2) For
any sequence (p1, · · · , pn) and i ∈ {1, · · ·n}, there exists an
edge in G such that p = pi and q = pi+1. We say that Ω
is (p, q)-valid if: 1) ∀(p1, · · · , pn) ∈ Ω, p1 = p and pn = q;
2) The graph G(Ω) can be decomposed into a connected set
of cycles (C1, · · · , Cm) such that ∀i ∈ {1, · · · ,m}, Ci and
Ci+1 has at least two nodes in common.

IV. OUR PROTOCOL

System model. We assume a Z-resilient network where
the minimum distance between any two Byzantine nodes is
strictly greater than 2Z. A key property is that in any neighbor
zone of any sender, there is at most one faulty node. If, for
instance, the sender is faulty, all the other nodes in its neighbor
zone must be correct. We use both MACs and signatures, but
signatures are only needed in case of failures. Let 〈M〉i denote

an authenticated message for M using signatures, signed by
a node pi. Let [M ] denote an authenticated message for M
using MACs.

Property 1. Validity: If a correct node broadcasts
a message m, then every correct node eventually
delivers m.
Property 2. No Duplication: No message is delivered
more than once.
Property 3. No Creation: If a correct node delivers
a message m with sender ps, then m was previously
broadcast by ps.
Property 4. Agreement: If a message m is delivered by
some correct nodes, then m is eventually delivered by
every correct node.

Fig. 1: Byzantine reliable broadcast specification.

Definition of Byzantine reliable broadcast. A Byzantine
reliable broadcast algorithm ensures that the correct nodes
agree on the set of messages, even when the senders of these
messages behave arbitrarily. It is characterized by the four
properties in Fig. 1 (see also [8]).

00 on receiving m0 = [s,m, (p1, p2, · · · , pn)]
01 if n ≥ Z then discard m0 ⇐ [MT1]
02 if pn is a neighbor of pi then add m0 to pi.Rec, multicast m0

03-1 pred ← ∃X,X′ s.t. DP(ps, X,X′) = 1 for m ⇐ [MT1]
03-2 pred ← ∃(ps, pi)-valid set for m ⇐ [MT2]
04 if pred then accept m from ps, remove (s,m′, X′) from pi.Rec

Fig. 2: The MT algorithms.

The underlying MT algorithms. MT [25] presented two
simple and elegant Byzantine broadcast algorithms for sparse
networks—MT1 (a broadcast protocol) and MT2 (a self-
stabilizing broadcast protocol), as depicted in Fig. 2 in pseu-
docode. Neither of them can tolerate faulty senders.

For both algorithms, a sender ps multicasts a message m
to all its neighbors which then multicast the message to their
neighbors, and so forth. When multicasting a message, each
node appends its identity to the message and the nodes form
a travel path X .

For MT1, a node delivers a message, if it receives a
matching message from two disjoint paths and the number of
nodes in each path does not exceed Z. MT2 removes the limit
of Z nodes identifiers. A node q waits until it receives a same
message from ps with several different paths. If the fusion of
the paths form a (ps, q)-valid set of sequences, q accepts the
message from p. As a self-stabilizing broadcast protocol, MT2
does not terminate: A node q that have already accepted any
message from a node ps, can accept another message from ps,
and so forth.
Overview. Our protocol trades network environments for
stronger reliability, while preserving high throughput for both
fault-free and failure scenarios. To handle sender equivocation,
we combine fault detection and fault tolerance techniques. If
a sender fails to send any message to some nodes in time,



it is convenient to regard that the sender sends an “empty”
message ε that is different from any messages in the usual
message space M, i.e., we consider an extended message
space M ∪ {ε}. We divide sender equivocation into three
types such that no matter what the graph connectivity is, any
equivocation behavior falls into one of them:
Type I: The source node sends at least three different messages
to three neighbors.
Type II: The source node sends only two different messages
and each such message reaches at least two neighbors.
Type III: The source node sends only two different messages
and one of the messages reaches only one neighbor.

10 cond:{∃(pi, pj , pk) ∈ {Xi, Xj , Xk} & DP(ps, Xi, Xj , Xk) = 1 &

NZ(ps, pi, pj , pk)&M.pi 6=M.pj 6=M.pk} or {∃(pi, pj , pk, pl) ∈
{Xi, Xj , Xk, Xl} & DP(ps, Xi, Xj , Xk, Xl) = 1 & NZ(ps, pi, pj ,
pk, pl) &M.pi =M.pj = m & M.pk 6= m & M.pl 6= m}

20 on receiving [MSG, ps,m,X]

21 add [MSG, ps,m,X] to pi.Rec
22 if pi = p̃s&m is new or pi 6= p̃s then
23 forward [MSG, ps,m,X] to neighbors
24 if m is new then start timer T2
25 if m is new & pi = p̃s then start timer T1
26 if X = ps & run(T1) then cancel timer T1
27 if ∃(Xi, Xj) ∈ pi.Rec &DP(ps, Xi, Xj) & M.Xi 6=M.Xj then
28 send 〈ALERT, ps, pi, pi.Rec〉i
30 on receiving 〈ACCUSE, ps, pj , pj .Rec〉j
31 add 〈ACCUSE, ps, pj , pj .Rec〉j to pi.Acc(ps)
32 if ∃(pj , pk) ∈ pi.Acc(ps) s.t. NZ(ps, pi, pj) then
33 cancel timers, block ps
34 forward 〈ACCUSE, ps, pj , pj .Rec〉j and 〈ACCUSE, ps, pk, pk.Rec〉k
35 if cond then send 〈ACCUSE, ps, pi, pi.Rec〉i, cancel timers

40 on receiving 〈ALERT, ps, pi, pj .Rec〉j
41 add 〈ALERT, ps, pi, pj .Rec〉j to pi.Ale
42 if cond then
43 send 〈ACCUSE, ps, pi, pi.Rec〉i, cancel timers
44 remove 〈ALERT〉 from pi.Ale and 〈ACCUSE〉 from pi.Acc

50 on timeout T1 & pi = p̃s

51 add [MSG, ps, ε, ps] to pi.Rec, send 〈ALERT, ps, pi, pi.Rec〉i
60 on timeout T2
61 if pred then deliver m, remove [MSG, ps,m,X] from pi.Rec

Fig. 3: Our protocol.

Our protocol can be based on either MT1 or MT2, leading
to a Byzantine reliable broadcast protocol or self-stabilizing
broadcast protocol. Under normal circumstances, nodes run
MT1 or MT2 with MACs based authenticated messages [MSG].
We use two types of signed messages—〈ALERT〉 and 〈ACCUSE〉
to cope with failures. An 〈ALERT〉 message is triggered if
a node receives mismatching messages from disjoint paths.
However, a faulty node might issue an 〈ALERT〉 to frame the
sender. A correct node thus needs to rely on 〈ALERT〉 messages
in the same neighbor zone to rule out this possibility. After a
node is certain that the source node is faulty, it generates an
〈ACCUSE〉 message. A node discards all the messages related to

ps if it already generates an 〈ACCUSE〉 message or receives two
〈ACCUSE〉 messages from nodes in the same neighbor zone.
Our protocol. The protocol is depicted in Fig. 3. Security
of our protocol is multi-tiered: when the networks are syn-
chronous, it satisfies the definitions in Fig. 1; when the net-
works are asynchronous but senders are correct, our protocol
meets all the definitions except validity, in which case correct
nodes still always agree on the same set of messages.

Let X be the travel path of the message, M.pi denote the
message that pi receives from a source node ps, M.X be
the message pi receives from a path X , M.Xi = M.Xj

be the case where the messages from path Xi and Xj are
matching, run(Ti) represent if the timer Ti has been started,
and p̃s be a neighbor of ps. Each node stores three sets
of messages, including pi.Rec for the [MSG], pi.Ale for the
〈ALERT〉 messages, and pi.Acc for the 〈ACCUSE〉 messages.

The algorithm proceeds as follows. A sender ps multicasts
a message [MSG, ps,m,X] to its neighbors. When a node pi
receives the message, it appends its id pi to X and forwards
the message to its neighbors, as shown in lines 22-23. Note
that if a neighbor pi receives a message from a source node
ps, it forwards the message only if the message is new. After
receiving a [MSG], pi may start two fixed timers T1 and T2.
T1 is used for the neighbors of ps to monitor if they have
received the [MSG] from ps. The timer will be canceled if the
neighbor of ps receives the [MSG] from ps. Instead, T2 is a
timer used for any nodes to see if a desired condition pred
can be met before the timer expires (see lines 60-61). Recall
that we used the same notation pred when we describe MT1
and MT2 in Fig. 2. If our protocol is instantiated using, say,
MT1, then pred is defined as in Fig. 2, i.e., pred returns 1 if
a node receives matching messages from two disjoint paths.

Line 10 specifies a condition, which is used by nodes to
verify if the source node is faulty based on their own 〈ALERT〉
and 〈ACCUSE〉 sets. The first and second OR clauses match
Type I and Type II equivocation, respectively. The first clause
aims to check if there exists at least three nodes in some
NZ(ps) such that their 〈ALERT〉 and 〈ACCUSE〉 sets contain
three inconsistent messages. Note that there exists at most one
faulty node in any neighbor zone of ps. If ps sent consistent
messages to all its neighbors, it would be impossible that three
of its neighbors (two of which must be correct) claim they
received inconsistent messages. The second clause checks if
there exists at least four nodes in some NZ(ps) such that two
of them received m while another two of them received a
different message m′. Similarly, if the source node is correct,
the condition will not be satisfied.

We do not need to worry about the Type III sender failures,
because this type of failures are effectively masked by our
protocol (an example coming shortly.)

When cond is satisfied, a node sends a message
〈ACCUSE, ps, pi, pi.Rec〉i to all the neighbors. When a node
receives two 〈ACCUSE〉 messages from two nodes in the same
neighbor zone, it can also confirm that the source node is
faulty. From then on, it ignores any messages which are from



ps and 〈ALERT〉 and 〈ACCUSE〉 messages related to ps, and
discards the corresponding 〈ALERT〉 and 〈ACCUSE〉 sets.

p1

p2
p4p3
p5

p7

p8
p9

m
m'

m''

(a) An example for Type I
equivocation.

p1

p2
p4p3
p5

p6

p7

p8
p9

m
m m'

m'

(b) An example for Type II
equivocation.

Fig. 4: Examples for Type I and Type II failures.

Examples. Consider an example in Fig. 4 and suppose that
all the nodes are in NZ(p1). Fig. 4a illustrates Type I equiv-
ocation, where p1 sends m to p2, m′ to p4, and m′′ to p7.
All the nodes will send an 〈ALERT〉 message, because they
will all receive inconsistent messages from disjoint paths, and
all the nodes will receive 〈ALERT〉 messages satisfying the
first clause in cond. Thus, all the correct nodes can confirm
that p1 is faulty and generate an 〈ACCUSE〉 message. Fig. 4b
illustrates Type II equivocation, where p1 sends m to two of
its neighbors and m′ to two other neighbors. Likewise, all
the nodes will receive conflicting messages and generate an
〈ALERT〉 message. For instance, p2 receives m from X = {p1}
and m′ from the path X = {p1, p6, p5, p3}. After the nodes
receive the 〈ALERT〉 messages, they can all verify cond and
generate 〈ACCUSE〉 messages.

p1

p2
p4p3
p5

p6

p7

p8
p9

m
m

m

(a) The source p1 is faulty.

p1

p2
p4p3
p5

p6

p7

p8
p9

m
m

m
m

m'

(b) Node p6 is faulty.

Fig. 5: Example for a Type III failure.
We point out that it is “impossible” to detect a Type III

faulty sender, if we consider the case where source nodes
multicast messages without using signatures. The reason is that
Type III is indistinguishable from the case with a faulty non-
source node. Let’s consider an example in Fig. 5. In Fig. 5a,
we assume that the source node p1 is faulty. It sends m to
nodes p2, p4, and p7, and sends m′ to p6. In Fig. 5b, we
assume that p1 is correct and but one of its neighbors p6 is
faulty. If p6 changes m to m′ and sends m′ to other nodes,
then no one can discover if conflicting messages are due to
p1 or p6. Fortunately, this type of failures can be effectively
tolerated by MT protocols and also our protocol.

V. CORRECTNESS PROOF

We begin by recalling several lemmas in MT. Lemma V.1
and Lemma V.2 are the properties of the Z-resilient networks,
while Lemma V.3 are the properties of MT1 and MT2.

Lemma V.1. Let ps be a Byzantine node. Let pi and pj be
two neighbors of ps. There exists a correct path of at most
α = ∆Z hops connecting pi and pj .
Lemma V.2. Let pi and pj be two correct nodes. There exists
a correct path of at most β=2D∆ hops connecting pi and pj.
Lemma V.3. Let pi and pj be two non-neighbors correct
nodes. Node pj accepts message m from pi within at most
γ time and never accepts another message from pi. For MT1,
γ = 8D∆2ZT and for MT2, γ = 12D∆2ZT , where T is the
upper bound on the channel transmission time.

Our protocol can be based on either MT1 or MT2. We focus on
the case of MT1 and the other case is similar. The validity, no
duplication, and no creation properties essentially follow from
MT. The crux is to prove the correctness of the agreement
property.

Theorem V.4. (Agreement) If a message m is delivered by
some correct nodes, then m is eventually delivered by every
correct node.

Proof. MT shows that agreement is satisfied if the sender is
correct. We demonstrate that any sender equivocation behavior
can be either eventually and accurately detected by all the
correct nodes or tolerated by our protocol.

To this end, we prove the following claims in the rest of
the section: 1) Type I and Type II failures can be eventually
identified by all the nodes; 2) Correct nodes never accept
any messages from senders who exhibit Type I or Type II
failures; 3) If the sender is correct, it will never be accused by
correct nodes; and 4) Type III failures do not introduce any
inconsistency. The agreement property of our protocol will
then easily follow from the above claims and the agreement
property of MT. �

Below we prove the four claims for Theorem V.4.

Theorem V.5. Type I and Type II Byzantine senders can be
always detected by at least two correct nodes in some neighbor
zone. After at most (3α+β)T +T1 time, all the correct nodes
learn that the sender ps is faulty.

Proof. We first prove in Lemma V.6 that Type I and Type II
failures can be effectively detected by nodes in some neighbor
zone. Then we show that eventually all the correct nodes learn
the fact and we upper bound the time in Lemma V.7.

Lemma V.6. Type I and Type II Byzantine senders can
be always detected by at least two correct nodes in some
neighbor zone NZ(ps). Nodes in the network will all receive
the 〈ACCUSE〉 messages.

Proof. We first show that in the presence of Type I and
Type II Byzantine senders, all the correct nodes in NZ(ps) will
generate 〈ALERT〉 messages and we distinguish two cases:

1) Assume that none of messages which the faulty source node
sends is an empty message. We claim that correct nodes will
receive conflicting messages from disjoint paths in NZ(ps).
Indeed, according to Lemma V.1, there exists a correct path



between any two correct nodes. Therefore, correct nodes will
then generate 〈ALERT〉 messages.

2) Assume otherwise there exists at least one correct node (say,
pi) which the sender sent an empty message. Recall that if pi
learns a non-empty message from any other node in NZ(ps), it
starts a timer T1. If p1 does not receive any message from ps
before the timer expires, it sends an 〈ALERT〉 message. This
additional step allows pi to know if ps sent some message to
other neighbors but did not send any message to it. (The rest
of the scenario is now the same as the above one.)

We now show that correct nodes in NZ(ps) will generate
〈ACCUSE〉 messages. Note that 〈ALERT〉 messages contain the
[MSG] received from ps and their travel paths. For Type I
senders, there exist three correct nodes whose 〈ALERT〉 mes-
sages contain three inconsistent messages from three disjoint
paths in NZ(ps). This will satisfy the first clause of cond and
these nodes will generate 〈ACCUSE〉 messages. Likewise, for
Type II senders, there exist at least two correct nodes which
generate 〈ACCUSE〉 messages. Since there exists a correct path
between any two correct nodes, it is easy to see that all correct
nodes in the network will receive 〈ACCUSE〉 messages.

Lemma V.7. All the correct nodes learn that ps is faulty after
at most (3α+ β)T + T1 time.

Proof. We consider the worst case where some nodes in
NZ(ps) need to wait for the timer T1 to verify if the source
node sends an empty message. In this case, a node pi in
NZ(ps) needs at most 1©αT time to learn that another node
pj in NZ(ps) receive at least a message, say m (according to
Lemma V.1), and then waits for 2©T1 time before pi send an
〈ALERT〉 message. For those nodes in NZ(ps) that have already
received m, it takes another 3©αT time for them to receive
the 〈ALERT〉 message and generate their 〈ALERT〉 messages.
After the nodes in NZ(ps) generate 〈ALERT〉 messages, it takes
4©αT time for the nodes to receive the 〈ALERT〉 messages

and generate 〈ACCUSE〉 messages. For the rest of nodes in
the graph, according to Lemma V.2, there exists a correct
path of at most β hops connecting any two correct nodes,
so it takes at most 5©βT time for the rest of nodes to learn
that ps is faulty after receiving two 〈ACCUSE〉 messages.
Notice that since T represents the transmission time in the
network, T1 can be set to T for a neighbor node to detect the
failure of the source. Summing up 1© to 5©, the maximum
time is (3α + β)T + T1 = (3α + β + 1)T . As shown in
Lemma V.3, nodes will not accept any other messages after
γ time. Therefore, the timer T2 can be set to be max(γ,
(3α + β + 1)T ). This guarantees that before T2 times out,
all the correct nodes can receive 〈ACCUSE〉 messages. �

The theorem now follows. �

Theorem V.8. Correct nodes never accept any messages from
senders who exhibit Type I or Type II failures.

Proof. Setting the timer T2 as the upper bound in the above
lemma, the theorem trivially follows, as our protocol requires
each node to wait for T2 time to deliver the messages. �

Theorem V.9. If the source ps is correct, it will never be
accused by correct nodes.

Proof. Suppose a correct node accused a source node ps.
According to our protocol, this node either received messages
that satisfy cond (type I) or received two 〈ACCUSE〉 messages
from nodes in the same neighbor zone (type II). For type II,
since there is one faulty in NZ(ps), one of the two nodes that
sent 〈ACCUSE〉 messages must be correct. This indicates that
the correct node either received messages that satisfy cond,
or received two 〈ACCUSE〉 messages from some other nodes
in the zone. Inductively, we can prove that for type II, there
exists some correct node that received messages that satisfy
cond. Therefore, in both cases, there exists some correct node
that received messages that satisfy cond and for this reason it
sent an 〈ACCUSE〉 message.

For this correct node, if the first clause of cond was satisfied,
there exist three nodes whose 〈ALERT〉 messages contain three
inconsistent messages from three disjoint paths in NZ(ps). In
this case, either ps sent three inconsistent messages or at least
two of them are faulty. As there is at most one faulty node in
each NZ(ps), we know that ps is faulty. On the other hand,
if the second clause of cond was satisfeid, either ps sent two
messages and each of them reached at least two nodes or at
least two of them are faulty. Likewise, we can conclude that
ps is faulty. The theorem now follows. �

Theorem V.10. Type III failures do not introduce inconsis-
tency.

Proof. If ps only sends a message m′ to one neighbor and
m to all other neighbors, a correct node will not receive a
message from two disjoint paths. This is because there is at
most one correct node in NZ(ps) and the message is sent to
at least two neighbors so that a node can accept m′. �

VI. IMPLEMENTATION AND EVALUATION

We used the OMNeT++ Discrete Event Simulator [36]
to model our algorithm. Each simulation begins with an
initialization stage, during which the nodes send initialization
messages in order to set up the network topology and to detect
their neighbors.

We implemented the following algorithms and compared
them with our algorithm. 1) Baseline-MAC: A MAC-based
multicast protocol where nodes use MACs for message authen-
tication in authenticated channels; 2) Baseline-DS: A digital
signature-based multicast protocol, where nodes use digital
signatures for message authentication; 3) MT algorithms.

For Baseline-MAC and Baseline-DS, we implemented the
conventional gossip algorithm. Namely, both protocols are
based on a multicast protocol, where a source node will
send a message to each of its neighbors, which in turn will
forward that message to each of their neighbors until all nodes
have received the message. Baseline-MAC is efficient but
does not provide meaningful fault tolerant guarantees. Instead,
Baseline-DS is more robust and can detect sender equivoca-
tion, but still it fails to handle cases such as sender crashes.



0 200 400 600 800 1,0001,2001,400

10

20

30

40

50

Time (SimTime)

A
vg

.T
hr

ou
gh

pu
t

(m
sg

s/
Si

m
Ti

m
e) Baseline-DS

Baseline-MAC
MT2

Proposed Algorithm

(a) Faulty source node detection overhead.

0 200 400 600 800 1,0001,2001,400

10

20

30

40

Time (SimTime)

A
vg

.T
hr

ou
gh

pu
t

(m
sg

s/
Si

m
Ti

m
e) Proposed Algorithm

MT2

(b) Throughput for faulty non-source nodes.

100 200 300 400 500 600

60

70

80

90

74.26

64.59
66.1

58.35
55.96

53.86

90.18

83.77

78.3

73.26

68.71

64.77

Sending Frequency Benchmarks

A
ve

ra
ge

T
hr

ou
gh

pu
t

(m
sg

s/
Si

m
Ti

m
e) Proposed Algorithm MT2

(c) Throughput of various benchmarks.

Fig. 6: Protocol evaluation.

We utilized HMAC [3] and RSA-FDH [4] to implement the
underlying MAC and digital signature, respectively.

We implemented our protocol on top of MT1 and compare
with MT2 in failure scenarios. Indeed, both our protocol and
MT2 can deal with faulty senders, though via very different
perspectives and with different properties. We implemented
a failure injection mechanism where a number of random
nodes are selected during each simulation. The faulty nodes
can be further specified as either faulty source nodes or faulty
non-source nodes or both. If a node is the source node, it
simply equivocates to the neighbors by generating inconsistent
messages with the same timestamp. If a node is a non-source
node, it tampers with or falsifies the content of the messages
and forwards to the neighbors.

We generate a random cyclic topology with a minimum of 3
nodes in each cycle. We use several benchmarks to evaluate a
cyclic network with different traffic. For the x benchmark,
each node multicasts a message to its neighbors every x
ms. We evaluate throughput as the number of messages per
simulation time (SimTime), and delivery rate as the percentage
of messages received versus messages sent. Messages sent by
the source node to the network are considered meaningful
messages. All other invalid messages that correct nodes will
not deliver are considered meaningless.
Faulty source node detection overhead. We compare failure-
free cases for the Baseline-MAC and Baseline-DS algorithms
with the faulty source node case for our algorithm. We
compare Baseline-MAC and our algorithm to evaluate the
overhead for our algorithm. Although Baseline-MAC does
not handle any failures, we can compare Baseline-MAC in
the failure-free case and our algorithm in the failure case
to evaluate the overhead of our faulty source node detection
algorithm. We then compare Baseline-DS and our algorithm to
show our algorithm’s efficiency in utilizing digital signatures,
where in Baseline-DS, nodes are able to detect a faulty source
node due to receiving mismatched messages.

We evaluate the three algorithms using a 200 benchmark
and a single faulty source node. The benchmark determines
the frequency that a faulty node sends false messages. Fig. 6a
shows that our algorithm has a consistently higher throughput
than Baseline-DS. This is caused by the fact that digital

signatures are more expensive than MACs and our algorithm
uses digital signatures when failures occur. The introduction of
〈ALERT〉 and 〈ACCUSE〉 messages in the presence of the faulty
node also introduces more network traffic. Our algorithm
achieves similar throughput, however, with Baseline-MAC.
This shows that in the case where there are fewer failures,
our algorithm generates low overhead for failure detection.

0 1 2 3

20

25

30

35

40

45

19.68

33.23

43.95 43.4

31.25 31.25 31.25 31.25

Number of Faults

A
ve

ra
ge

T
hr

ou
gh

pu
t

(m
sg

/S
im

Ti
m

e)

Proposed Algorithm MT2

Fig. 7: Average throughput vs. number of faults.

Throughput. We compare MT and our algorithm in both the
case where source nodes are faulty and non-source nodes are
faulty. We use 200 benchmark and one failure in the network.
Fig. 6a shows the case where the source node is faulty. Our
algorithm achieves lower throughput than MT in the beginning
and higher throughput later in the experiment. This is due to
the 〈ALERT〉 and 〈ACCUSE〉 messages that are introduced into
the network. As the faulty nodes begin to send false messages
with an increased frequency, more 〈ALERT〉 and 〈ACCUSE〉
messages are generated. The lower the frequency, the faster
we can confirm that there is a failure which results in a lower
throughput initially. We also compare the performance where
non-source nodes are faulty. Notice that the non-source nodes
can ”frame” correct source nodes by altering the content of
once correct messages. It can be observed in Fig. 6b that our
algorithm achieves lower throughput in this situation.

Additionally, we evaluate the case with various benchmarks
that represent faulty node sending frequency. We randomly
select 3 faulty nodes in a network of 12 nodes. As shown
in Fig. 6c, the average throughput of our algorithm in each



benchmark is lower than MT. This is due to there being more
false messages in the network as the frequency increases. Our
algorithm detects the faulty node and alerts other nodes, which
in turn do not forward any of the false messages. This results in
a lower average throughput. We later test the case where nodes
behave as faulty source nodes and multicast false messages. As
shown in Fig. 7, our algorithm has a higher throughput in the
presence of failures. The throughput is lower when there are
no failures because our algorithm does not repetitively send
the same message. We observe that our algorithm allows nodes
perform more efficiently after a failure has been detected.

0 1 2 3

0.85

0.9

0.95
0.95

0.83

0.93

0.83

0.82 0.82 0.82 0.82

Number of Faults

A
ve

ra
ge

D
el

iv
er

y
R

at
e

Proposed Algorithm MT2

Fig. 8: Delivery rate vs. number of faults.

Delivery rate. As shown in Fig. 8, our algorithm consistently
achieves a higher delivery rate than MT. This is because any
decrease in delivery rate caused by a faulty node is balanced
by the introduction of 〈ALERT〉 and 〈ACCUSE〉 messages.

VII. CONCLUSION

We presented the first Byzantine reliable broadcast protocol
for sparse networks that can tolerate Byzantine senders in
synchronous environments. We developed new techniques for
fault detection. Our protocol is efficient for both fault-free and
failure scenarios; in particular within gracious executions no
public key cryptographic operations are needed. Finally, we
implemented and evaluated our protocol. Our experimental
evaluation shows that our protocol has high throughput and
high failure resilience.

VIII. ACKNOWLEDGMENTS

Sisi Duan was supported in part by UT-Battelle, LLC under
Contract No. DE-AC05-00OR22725 with the Department of
Energy. Lucas Nicely was supported in part by the U.S.
Department of Energy, Office of Science, Office of Workforce
Development for Teachers and Scientists (WDTS) under the
Science Undergraduate Laboratory Internship program. Haibin
was supported in part by NSF grant CNS-1413996 for the
MACS project.

REFERENCES

[1] J. Adams and K. Ramarao. Distributed diagnosis of Byzantine processors
and links. ICDCS, pp. 562–569, 1989.

[2] P-L. Aublin, R. Guerraoui, N. Knezevic, V. Quema, and M. Vukolic. The
next 700 BFT protocols. TOCS, vol. 32, issue 4, 2015.

[3] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for
message authentication. CRYPTO 1996.

[4] M. Bellare and P. Rogaway. The exact security of digital signatures —
How to sign with RSA and Rabin. EUROCRYPT 1996, pp. 399–416.

[5] V. Bhandari and N. Vaidya. On reliable broadcast in a radio network.
PODC, pp. 138–147, 2005.

[6] G. Bracha. Asynchronous Byzantine agreement protocols. Information
and Computation 75, pp. 130–143, 1987.

[7] G. Bracha and S. Toueg. Asynchronous consensus and broadcast proto-
cols. Journal of the ACM 32(4), 824–840, 1985.

[8] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to reliable and
secure distributed programming. Springer, 2011.

[9] M. Castro and B. Liskov. Practical Byzantine fault tolerance. ACM Trans.
Comput. Syst, 20(4): 398–461, 2002.

[10] T. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of ACM, 43(2):225–267, 1996.

[11] S. Chaudhuri. Agreement is harder than consensus: set consensus
problems in totally asynchronous systems. PODC, pp. 311–324, 1990.

[12] S. Chaudhuri, M. Herlihy, N. A. Lynch, and M. R. Tuttle. A tight lower
bound for k-set agreement. FOCS, 1993.

[13] D. Dolev. The Byzantine generals strike again. Journal of Algorithms,
3(1):14–30, 1982.

[14] S. Dolev. Self-Stabilization. MIT Press, 2000.
[15] A. Doudou, B. Garbinato, R. Guerraoui, and A. Schiper. Muteness

failure detectors: Specification and implementation. EDCC, 1999.
[16] S. Duan, H. Meling, S. Peisert, and H. Zhang. BChain: Byzantine

replication with high throughput and embedded reconfiguration. OPODIS
2014.

[17] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: practical
accountability for distributed systems. SOSP, pp. 175–188, ACM, 2007.

[18] H. Hsiao, Y. Chin, and W. Yang. Reaching fault diagnosis agreement un-
der a hybrid fault model. IEEE Trans. on Computers, vol. 49, no. 9, 2000.

[19] M. Humphries and K. Gurney. Network ‘small-world-ness’: A quanti-
tative method for determining canonical network equivalence. PLoS One
3(4): e2051, 2008.

[20] C.-Y. Koo. Broadcast in radio networks tolerating Byzantine adversarial
behavior. PODC, pp. 275–282, ACM, 2004.

[21] K. Kursawe and V. Shoup. Optimistic asynchronous atomic broadcast.
ICALP 2005, pp. 204–215, 2005.

[22] L. Lamport, R. E. Shostak, and M. C. Pease. The Byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[23] A. Maurer and S. Tixeuil. Limiting Byzantine influence in multihop
asynchronous networks. ICDCS, pp. 183–192, 2012.

[24] A. Maurer and S. Tixeuil. On Byzantine broadcast in loosely connected
networks. In DISC, pp. 253–266, 2012.

[25] A. Maurer and S. Tixeuil. Self-stabilizing Byzantine broadcast. SRDS,
2014.

[26] M. Nesterenko and S. Tixeuil. Discovering network topology in the
presence of Byzantine nodes. IEEE TPDS, 20(12):1777–1789, 2009.

[27] M. Newman. The structure and function of complex networks. SIAM
Review 45, pp. 67–256, 2003.

[28] A. Pelc and D. Peleg. Broadcasting with locally bounded Byzantine
faults. Inf. Process. Lett., 93(3):109–115, 2005.

[29] F. Preperata, G. Metze, and R. Chien. On the connection asssignment
problem of diagnosable systems. IEEE Trans. on Elec. Comp., 16(6):
848–854, 1967.

[30] K. Ramarao and J. Adams. On the diagnosis of Byzantine faults. Proc.
Symp. Reliable Distributed Systems, pp. 144–153, 1988.

[31] M. Serafini, A. Bondavalli, and N. Suri. Online diagnosis and recovery:
on the choice and impact of tuning parameters. IEEE TDSC, 4(4): 295–
312, 2007.

[32] K. Shin and P. Ramanathan. Diagnosis of processors with Byzantine
faults in a distributed computing system. Proc. Symp. Fault-Tolerant
Computing, pp. 55–60, July 1987.

[33] G. J. Simmons. A survey of information authentication. Contemporary
Cryptology, The Science of Information Integrity, IEEE Press, 1999.

[34] S. Toueg. Randomized Byzantine agreements. PODC 1984, 1984.
[35] R. van Renesse, C. Ho, and N. Schiper. Byzantine chain replication.

OPODIS 2012.
[36] A. Varge. OMNeT++. In Modeling and Tools for Network Simulation,

91–104, 2010.
[37] C. Walter, P. Lincoln, and N. Suri. Formally verified on-line diagnosis.

IEEE Trans. Software Eng, 23(11): 684–721, 1997.


