
An Approach to using XML and a Rule-based

Content Language with an Agent

Communication Language

Benjamin N. Grosof1 and Yannis Labrou2

1 IBM T.J. Watson Research Center,
P.O. Box 704, Yorktown Heights, NY 10598, USA

grosof@us.ibm.com (alt.: grosof@cs.stanford.edu),
http://www.research.ibm.com/people/g/grosof/

2 Electrical Engineering and Computer Science Department
University of Maryland, Baltimore County, Baltimore, MD, 21250, USA

jklabrou@cs.umbc.edu,
http://www.cs.umbc.edu/~jklabrou

Abstract. We argue for an XML encoding of FIPA Agent Communica-
tion Language (ACL), and give an alpha version of it, called Agent Com-
munication Markup Language (ACML), which we have implemented.
The XML approach facilitates: (a) developing/maintaining parsers, in-
tegrating with WWW-world software engineering, and (b) the enrich-
ing capability to (hyper-)link to ontologies and other extra information.
The XML approach applies similarly to KQML as well. Motivated by
the importance of the content language aspect of agent communication,
we focus in particular on business rules as a form of content that is
important in e-commerce applications such as bidding negotiations. A
leading candidate content language for business rules is Knowledge In-
terchange Format (KIF), which is currently in the ANSI standards com-
mittee process. We observe several major practical shortcomings of KIF
as a content language for business rules in e-commerce. We argue in-
stead for a knowledge representation (KR) approach based on Courteous
Logic Programs (CLP) that overcomes several of KIF's representational
limitations, and argue for this CLP approach, e.g., for its logical non-
monotonicity and its computational practicality. CLP is a previous KR
that expressively extends declarative ordinary logic programs cf. Prolog;
it includes negation-as-failure plus prioritized conict handling. We argue
for an XML encoding of business rules content, and give an alpha version
of it, called Business Rules Markup Language (BRML), which we have
implemented. BRML can express both CLP and a subset of KIF (i.e.,
of �rst-order logic) that overlaps with CLP. BRML expressively both
extends and complements KIF. The overall advantages of an XML ap-
proach to content language are similar to those for the XML approach to
ACL, and indeed complements the latter since content is carried within
ACL messages. We have implemented both ACML and BRML/CLP;
a free alpha prototype of BRML/CLP, called IBM CommonRules, was
released on the Web in July of 1999.

1 Introduction

The concept of an Agent Communication Language (ACL) has its origins in
the work of the Knowledge Sharing E�ort (KSE). The KSE work gave birth
to Knowledge Query and Manipulation Language (KQML) in the early 1990's,
which in turn infuenced the Foundation for Intelligent Physical Agents (FIPA
standards body) ACL1. (Terminology: In this paper, by \ACL" we mean either
KQML (which has now several variants) or FIPA ACL. Since then the problem
of an adequate semantics of an ACL has dominated the debate on ACL's. De-
spite the substantial amount of work on this problem, the issue of an agent's
conformance with the ACL semantics is as thorny as ever [20] and moreover puts
into question the degree of usefulness of semantic accounts. But even worse, the
emphasis on ACL semantics has drawn attention away from other issues that
are perhaps even more important to the success of ACL's: (1) how do agents
�nd one another and manage to establish a \conversation"; (2) having achieved
that, what is the \content" about which they actually talk; and (3) the relation-
ship between ACL's and WWW technologies. We are interested in the latter two
issues. 2

KQML and FIPA ACL have evolved at a considerable distance from the
mainstream of Internet technologies and standards. No Internet standardiza-
tion organization has ACL's in their agenda. With the exception of the Artimis
project (France Telecom), no major industry player has committed major re-
sources to depend upon, or to develop, ACL's, although there are some plans
for future work that will take advantage of FIPA technologies, as they become
available. At the same time the WWW is a huge repository of information and
agents are almost always referred to in conjuction with the WWW. ACL's are
driving a great part of the agent work (FIPA ACL is the centerpiece of the FIPA
e�ort); it is thus reasonable to suggest that ACL work ought to integrate easily
with the WWW and to be able to leverage WWW tools and infrastructure. This
motivates us to give (and to advocate) an Extensible Markup Language (XML)
encoding of ACL messages, as a �rst step towards this kind of integration.

Agents, while conversing, exchange their information content; speci�cally we
focus on the language used to describe it, i.e., the content language in ACL ter-
minology. An ACL message's content layer, which contains descriptions in the
content language, is distinct from the propositional-attitude layer which contains
the (speech act type of) primitive of the ACL message. (Terminology: In this
paper, by an ACL communication \primitive", we mean what KQML calls a
\performative" and what FIPA ACL calls a \communicative act".) The KSE
developed the Knowledge Interchange Format (KIF) as a general-purpose con-
tent language. However, it is important for ACL's to support multiple, e.g.,
special-purpose, content languages. We are particularly interested in represent-
ing business rules for e-commerce applications of communicating agents. For this
purpose, we observe that KIF has signi�cant shortcomings, notably, its inability

1 http://www.�pa.org
2 We do not deal with the �rst issue in this paper. See [13] for such a discussion.

to represent logical non-monotonicity. Accordingly, we give a new content lan-
guage for business rules: an extended form of logic programs, with deep declara-
tive semantics, encoded moreover in XML. This language, called Business Rules
Markup Language (BRML), overcomes several limitations of KIF, yet broadly
overlaps with KIF both syntactically and semantically; it thus extends and com-
plements KIF.

Next, we give an outline of the remainder of this paper. In Section 2, we
argue for the advantages of encoding ACL messages in XML and then present
ACML, an XML language for that purpose. In Section 3 we review the content
language concept and some existing content languages, then discuss our focus
on business rules for e-commerce applications such as bidding negotiations. In
Section 4, we review KIF and critique its shortcomings as a representation for
business rules. In Section 5, we give a business rules content language, called
Courteous Logic Programs (CLP), that extends and complements KIF, while
addressing several of KIF's shortcomings. In Section 6 we present BRML, the
XML encoding of CLP. In Section 7, we describe our implementation. A free
alpha prototype of BRML/CLP, called IBM CommonRules , was released on
the Web in July of 1999. Current and future work directions are discussed in
appropriate spots throughout the paper but we summarize them in Section 7.

2 XML Embodiment of FIPA ACL

In this section, we give an encoding of FIPA ACL messages in XML, and ob-
serve that using XML has several advantages. This leads us to suggest that in
future industry practice, the preferred encoding for ACL messages should be
XML rather than pure ASCII. (We are focusing on FIPA ACL but the same
arguments and approach would apply to KQML too.) Finin, Labrou, and Grosof
together �rst advocated this idea to FIPA during the FIPA meeting in Dublin,
in July 1998. Although other groups of researchers have been considering a XML
encoding for FIPA ACL, this paper is (to the the best of our knowledge) the �rst
published treatment of this issue. As we will detail in Section 6, we advocate
using XML also for the content of the ACL message itself, for similar reasons.
Keep in mind, however, that the content need not be in XML even if the ACL
message is in XML, or vice versa.

2.1 Brief Review of XML

XML is a language for creating markup languages that describe data. XML is a
machine-readable and application-independent encoding of a \document", e.g.,
of a FIPA ACL message including its content.

In contrast to HTML which describes document structure and visual pre-
sentation, XML describes data in a human-readable format with no indica-
tion of how the data is to be displayed. It is a database-neutral and device-
neutral format; data marked up in XML can be targeted to di�erent devices

using, for example, eXtensible Style Language (XSL). The XML source by it-
self is not primarily intended directly for human viewing, though it is human-
understandable. Rather, the XML is rendered using standard available XML-
world tools, then browsed, e.g., using standard Web browsers or specialized
other browsers/editors. (Netscape and Microsoft already are supporting XML
in the latest versions of their Web browsers, for example.) One leading method
for rendering is via XSL, in which one speci�es a stylesheet.

XML is a meta- language used to de�ne other domain- or industry-speci�c
languages. To construct a XML language (also called a "vocabulary"), one sup-
plies a speci�c Document Type De�nition (DTD), which is essentially a context-
free grammar like the Extended BNF (Backus Naur Form) used to describe
computer languages. In other words, a DTD provides the rules that de�ne the
elements and structure of the new language. For example, if we want to describe
employee records, we would de�ne a DTD which states that the <NAME>
element consists of three other elements called <FIRST>, <MIDDLE>, and
<LAST>, in that order. The DTD would also indicate if any of the nested el-
ements is optional, can be repeated, and/or has a default value. Any browser
(or application) having an XML parser could interpret the employee document
instance by "learning" the rules de�ned by the DTD.

2.2 Review of ACL

The core semantics of an ACL is de�ned as the \deep" semantics (i.e., seman-
tics in the sense of declarative knowledge-representation) of its (communication)
primitives. This semantics are expressed in some knowledge representation lan-
guage: SL in the case of FIPA ACL. This semantics only takes into account the
speaker, the hearer (in speech act terminology) and the content of the communica-
tive act. The speaker, the hearer and the content correspond to the :sender,
the :receiver and the :content of the syntactic representation of the ACL.
The previous canonical syntactic form of the ACL message (for both KQML
and FIPA ACL) is a Lisp-like ASCII sequence.

The (previous) canonical ACL message syntax (both in FIPA ACL and
KQML) further includes additional message parameters whose semantics go be-
yond that of the primitives. These parameters are unaccounted for in the deep
semantics but are essential to the processing of an ACL message. In other words,
the ACL includes several \pragmatic" (i.e., operational) aspects, in addition to
the primitives aspect. One pragmatic aspect is parsing in and out of the ACL,
i.e., digesting and composing well-formed ACL syntax (which is Lisp-like) to ex-
tract or insert message parameters. A second pragmatic aspect is queueing (and
de-queueing) ACL messages for delivery through TCP or some other network
protocol.

Further pragmatic issues being dealt with in the context of ACL e�orts in-
clude the agent naming scheme, and the conventions for �nding agents and
initiating interaction; although, in our view, these issues are actually outside of
the ACL's scope. Actually, the various APIs for KQML and FIPA ACL provide

nothing (as expected) regarding the actual processing of ACL messages (depend-
ing on the primitive), since respecting the deep semantics of the primitives is the
responsibility of the application that makes use of those API's. Such API's today
mainly take care of the parsing and queueing tasks mentioned above. Perform-
ing these tasks is what using KQML (or FIPA ACL, for that matter) has come
to mean. For all intents and purposes, compliance with the ACL's speci�cation
means compliance with all these pragmatic conventions. Such conventions are
not part of the standard (to the extent that the ACL semantics is standardized)
and the subtle (or not so subtle) discrepancies amongst their implementations
account in large part for the situation today in which there is often a lack of
interoperability between systems using the same ACL. 3

2.3 Introducing ACML

Next, we give an alpha-version speci�cation of FIPA ACL in XML, which we
call Agent Communication Markup Language (ACML). To begin with,
we need to de�ne a DTD for ACML 4. We have indeed de�ned an alpha-version
DTD for ACML, and have a running prototype implementation of ACML that
uses this DTD.

We begin with an example of a XML encoding of a FIPA ACL message.
Figure 1 shows an example FIPA ACL message, in the previous (ASCII, Lisp-
like) syntax. Figure 2 shows the same FIPA ACL message encoded in XML, i.e.,
in ACML. The content is a KIF expression which is not encoded in XML in this
example. The DTD for ACML is shown in Figure 3. This is an alpha version.

The deep semantics of the communication primitives in ACML is simply
taken to be the same as previously. This semantics is not a�ected by encoding
in XML instead of the previous ASCII; it is de�ned independently of the choice
of syntactic encoding.

By XML-ifying the syntactic representation we enhance (i.e., extend) the
(previous) canonical (pure ASCII) syntactic representation by introducing mark-
up for parsing (the \tags", in XML terminology). This markup signi�cantly
facilitates the development e�ort needed for parsing in and out.

The XML representation also facilitates introducing pragmatic/operational
elements that go beyond what the pure ASCII previous syntax did: notably, via
links (in a similar sense as does HTML compared to ASCII). And we indeed
introduced such extras in our alpha DTD and example. For example, the ACL
message of Figure 2 includes information beyond what is equivalent to that in
Figure 1. Here (Figure 2), the receiver is not just some symbolic name but is
also a URL that points to a particular network location which could provide
additional information about the receiver agent's identity (e.g., how to contact
its owner, its network ports, etc.).

3 The di�erences in sets of primitives used and their intended meaning constitute a
second-in-order interoperability barrier that is not confronted due to these more
mundane \lower-level" obstacles.

4 The same will be done for the content language (see Section 6).

2.4 Advantages of XML Approach

Encoding ACL messages in XML o�ers some advantages that we believe are
potentially quite signi�cant.

(1) The XML-encoding is easier to develop parsers for than the Lisp-
like encoding. The XML markup provides parsing information more directly.
One can use the o�-the-shelf tools for parsing XML | of which there are several
competent, easy-to-use ones already available | instead of writing customized
parsers to parse the ACL messages. A change or an enhancement of the ACL
syntax does not have to result to a re-writing of the parser. As long as such
changes are reected in the ACL DTD, the XML parser will still be able to
handle the XML-encoded ACL message. In short, a signi�cant advantage is that
the process of developing or maintaining a parser is much simpli�ed.

Indeed, we have �rst-hand experience that this parsing advantage is signif-
icant. In our own implementation e�orts, we have developed parsers for FIPA
ACL and for content languages (both KIF and logic programs), both for ASCII
encoding and for XML encoding.

(2)More generally, XML-ifying makes ACLmore \WWW-friendly", which
facilitates Software Engineering of agents. Agent development ought to take
advantage and build on what the WWW has to o�er as a software development
environment. XML parsing technology is only one example. Using XML will
facilitate the practical integration with a variety of Web technologies. For exam-
ple, an issue that has been raised in the ACL community 5 is that of addressing
security issues, e.g. authentication of agents' identities and encryption of ACL
messages, at the ACL layer. The WWW solution is to use certi�cates and SSL.
Using the same approach for agent security considerations seems much simpler
and more intuitive than further overloading ACL messages and the ACL infras-
tructure to accommodate such a task.

As we mentioned earlier, the operational semantics of the pragmatic aspects
of ACL can di�er subtly between implementations or usages, and there is today
a practical problem of interoperability. XML can help with these pragmatics, by
riding on standard WWW-world technologies: to facilitate the engineering, and
as a by-product to help standardize the operational semantics, thereby helping
make interoperability really happen.

(3) Because XML incorporates links into the ACL message, this takes a
signi�cant step toward addressing the problem (or representational layer) of
specifying and sharing the ontologies used in an ACL message's content. The
values of the ACL parameters are not tokens anymore, but links that can point
to objects and/or de�nitions. Although the ontology slot has been present since
the inception of ACLs, the ACL community has not been very clear on how this
information is to be used by the agent. This vagueness, further compounded by
the scarcity of published ontologies, can be addressed by \interfacing" the ACL
message to the knowledge repository that is the WWW.

(4)More generally, links may be useful for a variety of other purposes.
For example, the receiver parameter might have a link to network location that
5 Private communication at FIPA meetings

provides information about the agent's identity: e.g., its owner, contact and ad-
ministrative information, communication primitives that the agent understands,
network protocols and ports at which it can receive messages, conversation proto-
cols it understands, etc.. This type of information is necessary for a establishing
an extended interaction with another agent and has to somehow be available to
an agent's potential interlocutors. The same argument can be made about the
other message parameters.

3 ACL Content Languages, e.g., for Business Rules

3.1 Layered Approach of Knowledge Sharing E�ort

Our and many other current e�orts in inter-agent communication approaches
are inuenced by the pioneering approach of the Knowledge Sharing E�ort [15,
16] (KSE)6 The KSE was initiated as a research e�ort circa 1990 with encour-
agement and relatively modest funding from U.S. government agencies (DARPA
especially). The KSE was highly active for roughly �ve years thereafter, and
enjoyed the participation of dozens of researchers from both academia and in-
dustry. Its goal was to develop techniques, methodologies and software tools for
knowledge sharing and knowledge reuse between knowledge-based (software) sys-
tems, at design, implementation, or execution time. Agents, especially intelligent
agents, are an important kind of such knowledge-based systems (other kinds in-
clude expert systems or databases, for example). The central concept of the KSE
was that knowledge sharing requires communication, which in turn, requires a
common language; the KSE focused on de�ning that common language.

In the KSE model, agents (or, more generally, knowledge-based systems) are
viewed as (virtual) knowledge bases that exchange propositions using a language
that expresses various propositional attitudes . Propositional attitudes are three-
part relationships between: (1) an agent, (2) a content-bearing proposition (e.g.,
\it is raining"), and (3) a �nite set of propositional attitudes an agent might have
with respect to the proposition (e.g., believing, asserting, fearing, wondering,
hoping, etc.). For example, < a; fear; raining(tnow) > .

The KSE model includes three layers of representation: (1) specifying propo-
sitional attitudes; (2) specifying propositions (i.e., \knowledge") | this is often
called the (propositional) content layer; and (3) specifying the ontology [12] (i.e.,
vocabulary) of those propositions. The KSE accordingly includes a component
(with associated language) for each of these: Knowledge Query and Manipula-
tion Language (KQML) for propositional attitudes, Knowledge Interchange
Format (KIF) [4]7 for propositions, and Ontolingua [3] (which had supporting
software tools) for ontology.

Within the KSE approach, the three representational layers are viewed as
mainly independent of another. In particular, the language for propositional

6 http://www.cs.umbc.edu/kse/
7 http://logic.stanford.edu/kif/ and http://www.cs.umbc.edu/kif/

content (i.e., the content language) can be chosen independently from the lan-
guage for propositional attitudes. In other words, in the KSE approach, the role
of an ACL such as FIPA's is only to capture propositional attitudes, regardless
of how propositions are expressed, even though propositions are what agents will
be \talking" about.

In a similar spirit, the approach of the technical committee that worked on
FIPA ACL is that the content language should be viewed as orthogonal to the
rest of the ACL message type.

The KSE focused especially on developing one general-purpose content lan-
guage: KIF. However, the KSE also recognized that it is important to sup-
port multiple special-purpose content languages, since some are more expressive
or more convenient for a particular purpose. Indeed, the KSE also included a
fourth component e�ort (abbreviated \KRSS") devoted to de�ning a special-
purpose content language for \description logics" (a.k.a. \terminological logics",
descended from KL-ONE).

We agree with the view that it is important to support multiple content lan-
guages. Beyond the KSE, a number of important specialized content languages
have been developed which are particularly good at describing certain �elds. For
example, STEP (Standard for the Exchange of Product Model Data) [12] is an
ISO standards project working towards developing mechanisms for the represen-
tation and exchange of a computerized model of a product in a neutral form.
SGML is an example of a language, which is designed to describe the logical
structure of a document. There are special languages for describing workow,
processes, chemical reactions, etc. SQL and OQL are somewhat more general
content languages: for relational and object databases.

3.2 Business Rules in E-Commerce as focus

Motivated by the importance of the content language aspect of agent communi-
cation, we focus in particular on rules as a form of content that is important in
e-commerce applications such as bidding negotiations, i.e., \business rules". We
are particularly interested in this kind of application, and have been developing
techniques for it [10] [17] (to describe these is beyond the scope of this paper,
however).

In bidding negotations, agents exchange requests for bids, (i.e., proposals),
make proposals, make counter-proposals, until agreeing or giving up. Rules are
useful to represent the contents of these proposals and requests for proposals:
e.g., to describe the products/services, prices, quantities, delivery dates, cus-
tomer service agreements, contractual terms & conditions, and other surround-
ing agreements that together constitute the content of a bid. Rules are also useful
to represent relevant aspects of business processes, e.g., how to place an order,
respond to an RFQ, return an item or cancel a delivery.

The usefulness of rules for the overall area of agent communication, par-
ticularly for such e-commerce applications is based largely on their following
advantages relative to other software speci�cation approaches and programming

languages. First, rules are at a relatively high level of abstraction, closer to hu-
man understandability, especially by business domain experts who are typically
non-programmers. Second, rules are relatively easy to modify dynamically and
by non-programmers.

Rules provide an expressive yet automatically executable form for the sub-
stance of these speci�cations. Rules with deep declarative semantics8 are valuable
because they help enable business rules to be speci�ed dynamically, i.e., at run-
time, and relatively easily by business domain experts who are non-programmers.

There are a number of di�erent rule representations in wide deployment
today. A major challenge in communicating content between e-commerce agents
is thus the heterogeneity of rule representations (within agents/applications)
to be integrated, e.g., during negotation. In translating content via a common
rule representation, deep semantics (in the sense of declarative KR) is desirable.
However, one can only hope to obtain deep semantics for expressive cores , i.e.,
for the expressive cases that overlap between the source and target rule KR's.
Beyond the cores, translation must be performed with super�cial semantics.

To begin with, we are focusing on three broad families of rule representations
that are currently commercially important for business rules in e-commerce.
These are both executable and practically important in the software world at
large. One family is logic programs (LP's): including, but not limited to, Prolog.
Logic programs have a general, declarative sense; they can be forward-chaining
as well as backward-chaining, and need not be a general-purpose programming
language in the manner of Prolog. Baral & Gelfond [1] gives a useful review
of declarative logic programs as a KR. Another family is production rules: de-
scendants of OPS5 [2], e.g., the public domain system Jess9. A third (relatively
loose) family is Event-Condition-Action (ECA) rules. Both logic programs and
ECA rules are important in commercial databases[19] [18] and related standards
(including SQL). Rules in these three families are to be found, for example, in
object-oriented applications and worfklows, as well.

4 KIF and its Shortcomings for Business Rules Content

A leading candidate content language for rules is KIF. KIF is currently well
along in the ANSI standards committee process. Supporting or endorsing KIF
is also being considered informally in several other standards e�orts relevant to
agent communication, e.g., FIPA.

KIF has pioneered the concept of a KR content language for agent communi-
cation. That said, there are some important di�erences between (1) the goals of
the KIF e�ort and (2) our goals for a business rules content language (for prac-
tical e-commerce agents' communication). The KIF e�ort's goals were initially

8 in the sense of declarative knowledge representation, in which a set of premises
entails a set of conclusions, independent of the inferencing procedure, e.g., whether
it is forward or backward direction, what its control strategy is, etc..

9 http://herzberg.ca.sandia.gov/jess/ . Jess is written in Java and is an update of
CLIPS (http://www.ghg.net/clips/CLIPS.html).

to facilitate exchange among research systems rather than commercial systems.
Also, it aimed to help at least somewhat with exchange of many forms of knowl-
edge beyond just rules. It was designed with an orientation towards knowledge
as a non-executable speci�cation as much or more than towards knowledge as
executable. Finally, the KIF e�ort has focused more on a highly inclusively ex-
pressive representation than on ease of developing translators in and out of that
representation.

KIF is a pre�x10 version of �rst-order predicate calculus (i.e., �rst-order
classical logic) with extensions to support the \quote" operator (thus enabling
additional expressiveness akin to that of classical higher-order logic) and de�ni-
tions. The language description includes a speci�cation not only for its syntax
but also for its semantics. Its deep semantics is based on classical logic, which is
logically monotonic. Its primary focus (in terms of deep semantics) is on �rst-
order logic, which is highly expressive and computationally intractable for the
general case (as well as logically monotonic).

KIF can express a broad class of rules. However, it has several important
shortcomings as a content language for business rules in e-commerce. In partic-
ular, it has two shortcomings of its fundamental knowledge representation.

(1) KIF is a logically monotonic KR. KIF cannot conveniently express rules
that are logically non-monotonic, e.g., rules that employ negation-as-failure
or default rules. Thus it cannot conveniently express conict handling,
e.g., where some rules are subject to override by higher-priority conict-
ing rules, e.g., by special-case exceptions, by more-recent updates, or by
higher-authority sources. Most commercially important rule systems employ
non-monotonic reasoning as an essential, highly-used feature. Typically, they
employ some form of negation-as-failure. Often they employ some form of pri-
oritized override between rules, e.g., the static rule sequence in Prolog or the
computed rule-activation sequence/\agenda" in OPS5-heritage production rule
systems.

Early in the KIF e�ort, incorporating logical non-monotonicity was consid-
ered seriously. However, no technical agreement could be reached on an approach,
largely because of its ambitions for great expressive generality in the direction
of full classical logic. The current ANSI draft proposal of KIF is logically mono-
tonic.

(2) KIF is a pure-belief KR. KIF cannot conveniently express \procedural
attachments": the association of procedure calls (e.g., a call to a Java method
ProcurementAuthorization.setApprovalLevel) with belief expressions (e.g., a log-
ical predicate such as approvalAuthorizationLevel). Procedural attachments are
crucial in order for rules to have actual e�ect beyond pure-belief inferencing,
i.e., for actions to be invoked/performed as a result after rule conclusions are
inferred. While procedures can of course be invoked by an application based on
KIF premises or conclusions, KIF provides no way to express this, and its se-

10 The current draft ANSI speci�cation of KIF
(http://logic.stanford.edu/kif/dpans.html) also includes an in�x version of
KIF intended for human consumption rather than automated exchange.

mantics do not treat the connection to such invocations, i.e., to such procedural
attachments.

5 A Logic Program Based Business Rule Content KR

5.1 Overall Approach: Ordinary, Courteous, and Situated LP's

We identi�ed two fundamental shortcomings of KIF as a KR for business rules
content: logical non-monotonicity and procedural attachments. In this paper, we
focus on selecting a business rules content KR to remedy the �rst shortcoming
only. We select a business rules content KR to enable logical non-monotonicity,
including two steps. (1) Negation-as-failure, a basic form of non-monotonicity, is
the �rst step. (2) Prioritized override between conicting rules (i.e., prioritized
default rules and conict handling) is the second step.

Our approach is to use ordinary Logic Programs to provide the �rst step. By
Logic Program, we mean in the declarative sense, e.g., cf. [1]11. Inferencing for
LP's can be run forward or backward, using a variety of control strategies and al-
gorithms; Prolog, by contrast, does backward-only inferencing, using a particular
control strategy. Ordinary LP's (OLP's) o�er several other signi�cant advantages
beyond enabling non-monotonicity, including: computational tractability, wide
practical deployment, semantics shared with other practically important rule
systems, relative algorithmic simplicity, yet considerable expressive power.

Our approach is then to use Courteous Logic Programs (CLP's), an
expressive extension of ordinary Logic Programs, to provide the second step.
Courteous Logic Programs [6] [9] [7] provide a computationally low-overhead,
semantically-clean capability for prioritized handling of conicts between rules.
CLP's permit classical negation; syntactically they also permit optional rule
labels which are used as handles for specifying prioritization.

In current work, we are also enabling procedural attachments as well | in a
semantically clean manner (i.e., declaratively in a particular well-de�ned sense).
Our approach to enabling procedural attachments is based on Situated Logic
Programs, another expressive extension of ordinary logic programs. Situated
Logic Programs [5] [11] hook beliefs to drive procedural API's. Procedural at-
tachments for testing conditions (sensing) and performing actions (e�ecting) are
speci�ed as part of the knowledge representation: via sensor and e�ector link
statements. Each sensor or e�ector link associates a predicate with an attached
procedure.12

5.2 Ordinary LP's: Core & Advantages

Our point of departure for the business rules content KR is pure-belief ordinary
LP's. \Pure-belief" here means without procedural attachments.
11 They call an ordinary LP: a \general" LP. This is also known in the literature as a

\normal" LP, and also sometimes as (declarative) pure Prolog.
12 Note that \link" here does not mean in the sense of an XML or HTML hypertext

link.

OLP's include negation-as-failure and thus support basic non-monotonicity.
Yet they are relatively simple, and are not overkill representationally. OLP's are
also relatively fast computationally. Under commonly-met restrictions (e.g., no
logical functions of non-zero arity, a bounded number of logical variables per
rule), inferencing (i.e., rule-set execution) in LP's can be computed in (worst-
case) polynomial-time. By contrast, under similar restrictions, �rst-order-logic
(cf. KIF) inferencing is (co-)NP-hard.

To obtain deep semantics that is/will-be shared widely among heteroge-
neous rule systems, however, the core must be an expressively restricted case
of OLP's. Our alpha-version choice of this expressive restricion is: \predicate-
acyclic" (pure-belief) OLP's | below, we discuss this in more detail. This core
has a deep semantics that is useful, well-understood theoretically and highly
declarative. Moreover, this semantics reects a consensus in the rules represen-
tation community beyond just the LP community: this semantics is widely shared
among all three of the rule system families we mentioned in subsection 3.2.

This core is also relatively computationally eÆcient, in the sense we described
above.

The unrestricted case of declarative OLP's, with unrestricted recursion/cycli-
city (in a sense explained below) interacting with negation-as-failure, has prob-
lems semantically, is more complex computationally and, perhaps even more
importantly, is more diÆcult in terms of software engineering. It requires more
complicated algorithms and is not widely deployed.

OLP's have been widely deployed practically, in contrast to full �rst-order-
logic which has not been. Moreover, there is a large population of software de-
velopers who are familiar with Prolog and OLP's, in contrast to general �rst-
order-logic theorem-proving for which there is not.

5.3 Ordinary LP's: Semantics & Recursion

Ordinary LP's have been well-studied, and have a large literature (reviewed, for
example, in [1]). For several broad but restricted expressive cases, their (declar-
ative) semantics is uncontroversial.13 However, OLP's have problematic seman-
tics for the unrestricted case, due essentially to the interaction of recursion with
negation-as-failure. \Recursion" here means that there is a cyclic (path of syn-
tactic) dependency among the predicates (or, more generally, among the ground
atoms) through rules. 14

There is a lack of consensus in the research community about which semantics
to adopt for the fully general case of OLP's: e.g., well-founded semantics versus

13 e.g., for the predicate-acyclic, strati�ed, locally strati�ed, and weakly strati�ed cases;
these form a series of increasing expressive generality

14 In each rule, the predicate(s) appearing in the consequent/head of the rule has a
directed dependency arc to each of the predicates appearing in the antecedent/body
of the rule. Accumulating such dependency arcs for a whole rule set, and taking their
transitively closed paths, de�nes which predicates are dependent on which others for
a given LP.

stable semantics, etc.; these semantics coincide for the uncontroversial restricted
cases but diverge beyond that. Under the well-founded semantics, probably the
currently most popular semantics, the unrestricted case is tractable.

Our approach for an initial practically-oriented LP-based business rules con-
tent KR is to keep to expressively restricted cases that have uncontroversial
(i.e., consensus) semantics; these have other virtues as well: e.g., they are al-
gorithmically and computationally simpler. More precisely, our approach is to
de�ne/expect deep semantics (including for translation between agents) only for
these restricted cases.

Our starting choice for such an expressive restriction is: predicate-acyclic,
i.e., where there are no cycles of (syntactic) dependency among predicates. This
expressive restriction can be checked syntactically with a relatively simple algo-
rithm and with relatively low computational cost. Inferencing for the predicate-
acyclic case is also simpler algorithmically and computationally than for the
expressively unrestricted case.

In our XML embodiment (next section) of the LP-based content language,
we de�ne an alpha-version DTD that is syntactically inclusive: it permits unre-
stricted OLP's. It is thus useful there to have an optional tag to indicate which
semantical variant of LP's is intended: the DTD accordingly de�nes an optional
\documentation" link which can be used to specify the intended semantics (e.g.,
well-founded versus stable). For the alpha-version, our approach is to choose the
well-founded semantics to be the default semantics for the expressively unre-
stricted case.

5.4 Courteous Logic Programs

Courteous LP's expressively generalize OLP's by adding the capability to con-
veniently express prioritized conict handling, i.e., where some rules are subject
to override by higher-priority conicting rules. For example, some rules may be
overridden by other rules that are special-case exceptions, more-recent updates,
or from higher-authority sources. Courteous LP's facilitate specifying sets of
rules by merging and updating and accumulation, in a style closer (than ordi-
nary LP's) to natural language descriptions.

Courteous LP's also expressively generalize ordinary LP's and permit classi-
cal negation to appear in head (i.e., consequent) or body (i.e., antecedent) lit-
erals (negation-as-failure must appear outside, not inside, the scope of classical-
negation). They also permit rules to have optional labels, which are used as han-
dles for specifying priorities. A syntactically-reserved (but otherwise ordinary)
predicate overrides is used to specify prioritization. Priorities are represented
via a fact comparing rule labels: overrides(lab1; lab2) means semantically that
a rule having label lab1 has higher priority than another rule having label lab2.
If two such rules conict, then the rule with the higher priority will win the
conict; the lower priority rule's head will not be concluded.

The prioritization speci�ed is a partial ordering, rather than a total order-
ing. Classical negation is enforced: p and classical-negation-of-p are never both
concluded, for any belief expression p.

In the alpha-version business rules content KR (BRML) given here, the Cour-
teous LP KR is also expressively restricted in two further regards cf. [6]: (1)
priority is speci�ed via ground facts only, and (2) priority is speci�ed to be a
strict partial order. Elsewhere [7] [9] [8] [10], we give an expressively general-
ized version of Courteous LP's and BRML that relaxes these restrictions and
the predicate-acyclicity restriction, and adds several further expressive gener-
alizations, notably to permit conditional pairwise mutual exclusion constraints
(mutex 's) that specify the scope of conict handling.

Courteous LP's have several virtues semantically and computationally. A
Courteous LP is guaranteed to have a consistent, as well as unique, set of
conclusions. Priorities and merging behave in an intuitively natural fashion. Ex-
ecution (inferencing) of courteous LP's is fast: only relatively low computational
overhead is imposed by the conict handling.

From a software engineering viewpoint as well, CLP's are a relatively straight-
forward extension of OLP's. A CLP can always be tractably compiled into a
semantically equivalent OLP | indeed, we have implemented CLP's using
such a \courteous compiler" [7] [9] [8] [10].

Detailed computational complexity analysis for courteous LP inferencing and
the courteous compiler is given in [6] [7] [8] [10]; next, we summarize that anal-
ysis. The complexity of courteous compilation is worst-case cubic, both in time
and in output size. Suppose the input LP, having size n, is either ground or
Datalog (no logical functions of more than zero arity), and has an upper bound
v on the number of logical variables appearing in any rule. As we mentioned
earlier, the worst-case time complexity of inferencing in OLP's under these re-
strictions is tractable (i.e., polynomial). Courteous LP inferencing then has the
same worst-case time and space complexity as: OLP inferencing where the bound
v on the number of variables per rule has been increased to v + 2.

There are several other formalisms for prioritized LP's that have similar
syntax to Courteous LP's but di�erent semantics in regard to conict handling
(see [6] [7] for a review). A direction in our current work is to explore this
dimension of heterogeneity.

5.5 Relationship to KIF; Discussion

In this subsection, we discuss how the alpha-version business rules content KR,
i.e., CLP cf. [6] encoded in XML as BRML, relates to KIF.

Syntactically, the alpha CLP adds two (optional) features to OLP: classical
negation and rule labels. KIF permits classical negation but not negation-as-
failure. Also KIF remarkably lacks rule labels (or rule names/id's), even though
this is rather routine as a basic naming/scoping mechanism in rule speci�cation
systems and many programming languages. Syntactically, the alpha CLP thus
adds two (optional) features to KIF: negation-as-failure and rule labels.

Syntactically, OLP and �rst-order-logic/KIF overlap to a considerable degree:
OLP without negation-as-failure is logically monotonic15. Syntactically and se-
15 when one interprets lack of membership in the minimal/least model of the OLP as

corresponding to classical non-entailment rather than to classical falsity

mantically, such monotonic OLP is simply Horn and is thus a restricted case
of �rst-order logic/KIF. Semantically, OLP entailment/inferencing is sound but
incomplete when compared to �rst-order-logic (FOL). The incompleteness can
be described as: an OLP's entailed conclusions are equivalent to a set of ground
atoms.

Syntactically, CLP and FOL/KIF overlap to an even more considerable de-
gree: CLP without negation-as-failure is logically monotonic. Such monotonic
CLP with its labels omitted or ignored is thus syntactically a restricted case
of FOL/KIF. Semantically, a monotonic CLP may contain conict; we say it is
\classically consistent" or \conict free" when it is consistent when viewed as
FOL. Semantically, a consistent monotonic CLP is sound but incomplete when
compared to FOL. The incompleteness is similar to that of OLP; it can be de-
scribed as: a CLP's entailed conclusions are equivalent to a set of ground classical
literals.

6 XML Embodiment: Business Rules Markup Language

Just as we have de�ned an XML encoding for ACL messages in Section 2.3,
we have de�ned an XML encoding for CLP rulesets. We refer to this language
as Business Rules Markup Language (BRML). BRML inherits the deep
semantics of CLP.

Figure 4 gives an example of a single-rule CLP ruleset, in BRML. See the IBM
CommonRules release package (http://alphaworks.ibm.com) for an extensive
collection of examples, including about price discounting, targeted ads/promo-
tions, refunds, creditworthiness, etc.. Figure 5 gives the (alpha) BRML DTD.
The XML encoding extends the pure ASCII syntactic representation of CLP
(not shown here for reasons of space and focus) with parsing information (and
eventually with various optional links). The optional documentation attribute
in the BRML DTD could point to a link which has information such as the
semantical variant of the language.

In the draft DTD shown, we do not yet allow a predicate (or another token
such as a logical constant or function, etc.) to have an associated link, because
here we are focused on specifying the basic XML encoding of CLP. However,
we plan to permit such links: e.g., the loyalCustomer predicate, for example,
could then point to a URL containing a document that provides an account in
natural language of what the particular company considers a loyal customer.
Or, in the case of the example of Figure 2, the particular laptop for sale could
include a linked picture and a URL with the full natural-language description of
the laptop's technical speci�cation.

The advantages of an XML encoding for business rules content are simi-
lar to those for ACL that we discussed in Section 2. As compared to plain ASCII
text, XML is easier to automatically parse, generate, edit, and translate: because
there are standard XML-world tools for these tasks. The hyper-text (i.e., links)
aspects of XML are also useful. For example, a rule set may via XML have some
associated URL's which point to documents describing that rule set's knowl-

edge representation or authors or application context. Or it may have associated
URL's which point to tools for processing that rule set, e.g., to execute it, edit
it, analyze it, or validate it (syntactically or semantically). Particularly useful
for our nearer-term purposes is that an associated URL may point to documents
describing the semantics and algorithms for translator services or components, as
well as to translator tools and examples. Representing business rules in XML has
a further advantage: it will complement domain-speci�c ontologies (i.e., vocab-
ularies) available in XML. Many such ontologies exist already, and many more
are expected to be developed in the next few years, including in e-commerce
domains.

Further discussion of our DTD: Actually, our BRML DTD permits a
syntactic superset of our alpha expressive core, i.e. a superset of CLP cf. [6]. Ap-
plications using the BRML need to perform additional \validation", i.e., checking
of syntactic restrictions, beyond what is furnished by XML parsers that validate
with respect to the DTD. However, such additional syntactic validation would
be necessary even if the DTD was as \tight" as XML made possible; various
other conditions such as predicate-acyclicity are impractically diÆcult (if not
impossible) to capture in a DTD.

As a syntactic convenience, we permit the OR connective and nested sub-
expressions to appear in the body, and we permit the AND connective to appear
in the head. This does not change the essential expressiveness of OLP or CLP
(see, e.g., [14]) 16.

It appears fairly straightforward to extend our DTD in stages so as to express
full �rst-order logic and then full KIF. A direction for future work is to create a
DTD, maximally compatibly with BRML, that expresses full KIF.

7 Discussion: Implementation; Future Work Summary

We have a running prototype implementation of ACML, and of BRML
and Courteous LP's as a Java library. Based on the DTD's we gave earlier, this
includes encoding and parsing in/out in both XML and ASCII (including KIF
for the content). It also includes translators to two other ASCII rule representa-
tions in the logic program family, used by previously existing OLP inferencing
engines built by others and implemented in C. One is backward-direction: XSB,
by David Warren et al , http://www.cs.sunysb.edu/~sbprolog/ . The other is ex-
haustive forward-direction: Smodels (�rst version), by Ilkka Niemela and Patrik
Simons, http://saturn.hut.�/html/sta�/ilkka.html . All the encoding, parsing,
and translating preserves the deep semantics of the alpha core that we described
in Section 5. The implementation further includes a courteous compiler, and a
rule inferencing/execution engine.

The prototype implementation of BRML and Courteous LP's, called IBM
CommonRules was released free on the Web in July of 1999: at

16 though in the worst-case depending on inferencing engine implementation this may
cost exponential time/space caused by converting to the representation without OR's

http://alphaworks.ibm.com. As of Nov. 10 1999, there have been more than
2000 downloads of CommonRules. Overviews of CommonRules, with e-commerce
examples, are given in [9] [10], and its courteous compiler algorithms are given
in [7] [8]. The XML DTD's are under ongoing (non-radical) revision; see the
authors' websites and CommonRules for updated versions.

Future work includes extending this XML content language expressively in
multiple directions. One such direction is to cover full KIF; another is to incorpo-
rate semantically-clean procedural attachments, cf. the existing Situated Logic
Programs KR; a third is to expressively generalize the Courteous LP conict
handling aspects .

Acknowledgements

Hoi Y. Chan (IBM), Michael Travers (IBM), and Xiaocheng Luan (of UMBC,
while at IBM), contributed to the current implementation of the CLP KR,
BRML, and the associated translators. Michael Travers' contributed especially
to the XML embodiment, using his Skij tool. Hoi Y. Chan and Miao Jin (UMBC)
contributed to the XML DTD's. Tim Finin (UMBC) contributed to the formu-
lation of our ideas for the XML embodiment of the FIPA ACL, which he �rst
presented at the FIPA meeting in Dublin, in July 1998.

References

1. Chitta Baral and Michael Gelfond. Logic programming and knowledge represen-
tation. J. Logic Programming, 19,20:73{148, 1994. Includes extensive review of
literature.

2. Thomas Cooper and Nancy Wogrin. Rule-based Programming with OPS5. Morgan
Kaufmann, San Francisco, CA, 1988. ISBN 0-934613-51-6.

3. Adam Farquhar, Richard Fikes, and James Rice. The ontolingua server: A tool for
collaborative ontology construction. In KAW96, Nov. 1996.

4. M. Genesereth and R. Fikes et. al. Knowledge interchange format, version 3.0
reference manual. Technical report, Computer Science Dept., Stanford Univ., 1992.

5. Benjamin N. Grosof. Building Commercial Agents: An IBM Research Perspec-
tive (Invited Talk). In Proc. 2nd Intnl. Conference and Exhibition on Practical
Applications of Intelligent Agents and Multi-Agent Technology (PAAM97), Prac-
tical Application Company Ltd., P.O. Box 137, Blackpool, Lancashire, FY2 9UN,
UK. http://www.demon.co.uk./ar/PAAM97, Apr. 1997. Held London, UK. Also
available as IBM Research Report RC 20835.

6. Benjamin N. Grosof. Prioritized Conict Handling for Logic Programs.
In Jan Maluszynski, editor, Logic Programming: Proceedings of the Inter-
national Symposium (ILPS-97), MIT Press, Cambridge, MA, USA, 1997.
http://www.ida.liu.se/~ilps97. Extended version available as IBM Research Re-
port RC 20836.

7. Benjamin N. Grosof. Compiling Prioritized Default Rules Into Ordinary Logic
Programs. IBM Research Report RC 21472, 1999.

8. Benjamin N. Grosof. A Courteous Compiler from Generalized Courteous
Logic Programs To Ordinary Logic Programs (Preliminary Report). Techni-
cal report, IBM T.J. Watson Research Center, included as documentation in
the IBM CommonRules 1.0 alpha prototype Web release of July 30, 1999 at
http://alphaworks.ibm.com . This is a supplementary followon to IBM Research
Report RC 21472. Revised version forthcoming as another IBM Research Report.

9. Benjamin N. Grosof. DIPLOMAT: Compiling Prioritized Default Rules Into Ordi-
nary Logic Programs, for E-Commerce Applications (extended abstract of Intelli-
gent Systems Demonstration). In Proceedings of AAAI-99, Morgan Kaufmann, San
Francisco, CA, USA, 1999. Extended version available as IBM Research Report
RC21473, May 1999.

10. Benjamin N. Grosof, Yannis Labrou, and Hoi Y. Chan. A Declarative Approach
to Business Rules in Contracts: Courteous Logic Programs in XML. In Michael P.
Wellman, editor, Proceedings of 1st ACM Conference on E-Commerce (EC-99),
New York, NY, USA, 1999. ACM Press. http://www.ibm.com/iac/ec99/ or
http://www.acm.org. Held Denver, CO, USA, Nov. 3{5, 1999. Extended version
to be available as an IBM Research Report.

11. Benjamin N. Grosof, David W. Levine, Hoi Y. Chan, Colin P. Parris, and Joshua S.
Auerbach. Reusable Architecture for Embedding Rule-Based Intelligence in In-
formation Agents. In Proceedings of the ACM Conference on Information and
Knowledge Management (CIKM-95) Workshop on Intelligent Information Agents,
http://www.cs.umbc.edu/iia/, December 1995. Held Baltimore, MD. Paper also
available as IBM Research Report RC 20305.

12. Thomas R. Gruber. A translation approach to portable ontology speci�cations.
Knowledge Acquisition, 2:199{220, 1993.

13. Yannis Labrou, Tim Finin, and Yun Peng. Agent communication languages: the
current landscape. IEEE Intelligent Systems, May 1999.

14. J. W. Lloyd. Foundations of Logic Programming, 2nd ed.. Springer, Berlin, Ger-
many, 1987.

15. R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and W. Swartout.
Enabling technology for knowledge sharing. AI Magazine, 12(3):36{56, Fall, 1991.

16. Ramesh S. Patil, Richard E. Fikes, Peter F. Patel-Schneider, Don McKay, Tim
Finin, Thomas Gruber, and Robert Neches. The DARPA knowledge sharing e�ort:
Progress report. In Michael Huhns and Munindar Singh, editors, Readings in
Agents. Morgan Kaufmann, 1997. (reprint of KR-92 paper).

17. Daniel M. Reeves, Benjamin N. Grosof, Michael Wellman, and Hoi Y. Chan. To-
ward a Declarative Language for Negotiating Executable Contracts. In Proc.
AAAI-99 Workshop on Arti�cial Intelligence in Electronic Commerce (AIEC-99),
1999. Proceedings published by AAAI/MIT Press (http://www.aaai.org) as Tech-
nical Report, also available at AIEC website http://www.cs.umbc.edu/aiec/.
Also available as IBM Research Report RC 21476.

18. Je�rey D. Ullman. Principles of Database and Knowledge-Base Systems, volume
1. Computer Science Press, Rockville, Maryland, 1988.

19. Je�rey D. Ullman and Jennifer Widom. A First Course in Database Systems.
Prentice-Hall, 1997.

20. Michael Wooldridge. Veri�able semantics for agent communication languages.
In International Conference on Multi-Agent Systems (ICMAS'98), Paris, France,
1998.

(inform

:sender jklabrou

:receiver grosof

:content (CPU libretto50 pentium)

:ontology laptop

:language kif)

Fig. 1. A FIPA ACL message.

<?xml version="pre-1.0"?>

<!DOCTYPE fipa_acl SYSTEM "fipa_acl.dtd">

<message>

<messagetype>

inform

</messagetype>

<messageparameter>

<sender link="http://www.cs.umbc.edu/~jklabrou">

jklabrou

</sender>

</messageparameter>

<messageparameter>

<receiver link="http://www.research.ibm.com/people/g/grosof/">

grosof

</receiver>

</messageparameter>

<messageparameter>

<ontology link="http://www.cs.umbc.edu/~jklabrou/

ontology/laptop.html">

laptop

</ontology>

</messageparameter>

<messageparameter>

<content>

(CPU libretto50 pentium)

</content>

</messageparameter>

<messageparameter>

<language link="http://www.stanford.edu/kif.html">

kif

</language>

</messageparameter>

</message>

Fig. 2. An example of a FIPA ACL message encoded in XML, i.e., expressed in ACML.
Notice that the XML encoding carries additional information as compared to the canon-
ical ASCII encoding: in particular, links (as well as parsing information).

<?xml version="pre-1.0" encoding="US-ASCII"?>

<!ENTITY % messagetp "accept-proposal | agree | cancel |cfp |

confirm | disconfirm | failure | inform | inform-if |

inform-ref | not-understood | propose | query-if | query-ref |

refuse | reject-proposal | request | request-when |

request-whenever | subscribe">

<!ELEMENT message (messagetype, messageparameter*)>

<!ELEMENT messagetype (%messagetp;)>

<!ELEMENT messageparameter (sender | receiver | content |

reply-with | reply-by| in-reply-to | envelope | language |

ontology | protocol | conversation-id)>

<!ELEMENT sender (agentname)>

<!ATTLIST sender link CDATA #REQUIRED >

<!ELEMENT receiver (agentname)>

<!ATTLIST receiver link CDATA #REQUIRED >

<!ELEMENT content (#PCDATA)>

<!ATTLIST content link CDATA #REQUIRED >

<!ELEMENT reply-with (#PCDATA)>

<!ELEMENT reply-by (#PCDATA)>

<!ELEMENT in-reply-to (#PCDATA)>

<!ATTLIST in-reply-to link CDATA #REQUIRED >

<!ELEMENT envelope (#PCDATA)>

<!ELEMENT language (#PCDATA)>

<!ATTLIST language link CDATA #REQUIRED >

<!ELEMENT ontology (#PCDATA)>

<!ATTLIST ontology link CDATA #REQUIRED >

<!ELEMENT protocol (#PCDATA)>

<!ATTLIST protocol link CDATA #REQUIRED >

<!ELEMENT conversation-id (#PCDATA)>

<!ELEMENT agentname (#PCDATA)>

Fig. 3. A DTD for ACML. The DTD is in draft form.

Let C1 be a simple example CLP ruleset that contains the single rule
giveDiscount(percent5 , ?Cust) <- shopper(?Cust) and

loyalCustomer(?Cust).

, shown here in ASCII encoding. This rule says to give a 5% discount to loyal
customers. The CLP ruleset C1 can be expressed in BRML as follows:

<?xml version="1.0"?>

<!DOCTYPE brml SYSTEM "brml.dtd">

<clp>

<erule rulelabel="emptyLabel">

<head>

<cliteral predicate="giveDiscount">

<function name="percent5"/>

<variable name="?Cust"/>

</cliteral>

</head>

<body>

<and>

<fcliteral predicate="shopper">

<variable name="?Cust"/>

</fcliteral>

<fcliteral predicate="loyalCustomer">

<variable name="?Cust"/>

</fcliteral>

</and>

</body>

</erule>

</clp>

Fig. 4. An example of a single-rule CLP ruleset expressed in BRML.

<?xml version="1.0" encoding="US-ASCII"?>

<!ENTITY % bool "yes|no">

<!ELEMENT clp (erule*, mutex*)>

<!ATTLIST documentation link CDATA #IMPLIED>

<!ELEMENT erule (head, body?)>

<!ATTLIST erule rulelabel CDATA #IMPLIED>

<!ELEMENT mutex (cliteral, cliteral)>

<!ELEMENT head (cliteral | and)>

<!ELEMENT body (fcliteral | and | or)>

<!ELEMENT cliteral ((function|variable|string)*)>

<!ATTLIST cliteral predicate CDATA #REQUIRED>

<!ATTLIST cliteral cneg (%bool;) #IMPLIED>

<!ELEMENT fcliteral ((function|variable|string)*)>

<!ATTLIST fcliteral predicate CDATA #REQUIRED>

<!ATTLIST fcliteral cneg (%bool;) #IMPLIED>

<!ATTLIST fcliteral fneg (%bool;) #IMPLIED>

<!ELEMENT and ((cliteral|fcliteral|and|or),

(cliteral|fcliteral|and|or)+)>

<!ELEMENT or ((fcliteral|and|or), (fcliteral|and|or)+)>

<!ELEMENT function ((function|variable|string)*)>

<!ATTLIST function name CDATA #REQUIRED>

<!ELEMENT variable EMPTY>

<!ATTLIST variable name CDATA #REQUIRED>

<!ELEMENT string EMPTY>

<!ATTLIST string value CDATA #REQUIRED>

Fig. 5. A DTD for BRML. The DTD is in draft form.

