
Middleware for Mobile Information Access

Dipanjan Chakraborty, Filip Perich, Anupam Joshi, Timothy Finin, Yelena Yesha�
dchakr1,fperic1,joshi,finin,yeyesha � @cs.umbc.edu

Abstract

Mobile information access involves retrieving informa-
tion from wired service providers. Often there are situa-
tions where the information is not available from a single
service provider but can be obtained by combining infor-
mation from multiple service providers. It is inefficient and
some times impossible for a resource poor mobile device
connected over a low bandwidth wireless link to coordi-
nate such activity. In this paper, we describe a middleware
to support this mode of access from resource poor mobile
devices that take into consideration mobility, resource con-
straints and service heterogeneity.

1. Introduction

Relentless progress in a wide range of mobile technolo-
gies, from networking protocols to smart devices has ush-
ered in a new age of information access. We are seeing the
deployment of heterogeneous mobile devices like iPaqs,
PalmPilots, HP jornadas each of which differ from the other
in terms of platform specifications, processing power, mem-
ory availability etc. In the past, these devices were mostly
used as standalone personal digital assistants. However,
with the advance of wireless networking technologies most
of these devices have some type of connectivity to the Inter-
net. Thus, a change is being observed in the usage pattern
of these devices. Consumers of these devices have started
using them not only as standalone organizers, but also as
clients to connect to servers or services in the wired Inter-
net to access information or carry out transactions. The In-
ternet has always been a huge repository of information and
services. Internet-based wired services are capable of pro-
viding general as well as customized information to their
clients. However the key difference of accessing these ser-
vices from mobile units rather than accessing them from
wired clients lies in the last mile, the disconnection prone
and bandwidth limited wireless channel, and the end client.
Information access from mobile devices has to take into
consideration, limited resources of the mobile devices such
as display capability, processing power. Wireless link re-

lated problems like disconnection, bandwidth, jitter need
to be considered when carrying out end-to-end transactions
from wireless clients. Client-proxy-server type of architec-
tures for mobile information access [4, 15, 3, 10] was de-
veloped in the academia for this purpose, where the proxy
handles the above-mentioned problems and standard solu-
tions (e.g. Wireless Application Protocol) are being used
in the industry.

The assumption behind the client-proxy-server model is
that the information that the mobile device needs is avail-
able from a single service provider on the wired side. This
is not always the case. Often the information a mobile de-
vice needs is not available from one single service provider
but can be generated by combining multiple different ser-
vices [14, 12] in the fixed wired infrastructure. Examples
of such requests may be that of a business person request-
ing a change in the business appointments due to a sudden
change of plans, which might include notifying other peo-
ple about a change in meeting time or canceling a hotel
reservation etc.

This gives rise to a client-proxy-multiple-servers type of
scenario. Multiple services coordinate with each other and
are executed in a certain manner to provide information to
the end-user. It is essential for some entity to act as the co-
ordinator for such requests. Clearly, it is very difficult for
mobile devices to coordinate such activity not only because
it might not have the required resources, but also because
some of the transactions might need a disconnection-free
high bandwidth channel. Multiple heterogeneous services
also need to have an uniform way of interacting with each
other.

There might be instances where some part of the compu-
tation needs to be done at the end-client because of the in-
teraction level required with the user. This might be a prob-
lem in mobile devices. Standard proxy-based solutions to
mobile information access do not handle such cases.

In this paper we describe an agent-based middleware ar-
chitecture to address the above-mentioned problems that
arise when a mobile unit asks for information that require
coordination of multiple services. Central to our design is
the concept of a broker agent that resides on the wired in-
frastructure and handles queries from mobile devices. The

1



middleware has been developed over the Ronin Agent De-
velopment framework [6]. The Ronin Agent Development
framework provides an uniform communication infrastruc-
ture for multiple agent-services to collaborate with each
other. It also has the notion of agent-deputy that is ca-
pable of handling disconnections in the wireless channel.
Services are modeled as Ronin Agents by wrapping up the
actual services with the corresponding wrapper. Agent-
services are discovered in the system using DReggie: a
semantic service discovery system that uses DAML+OIL
[13] to describe and reason about capabilities of services.
The middleware broker receives a profile of the resource
limitations of the mobile device along with the request and
schedules or organizes the computations accordingly. It
also carries out optimizations to reduce bandwidth utilized
while carrying out the execution of multiple services and
hence reduce the cost of executing a request.

2. Middleware Design

In this section, we present the layered design architec-
ture of the middleware. We discuss the various layers and
the functionalities enclosed within each layer.

Broker Layer

Network Layer
(TCP/IP, UDP, W/ATM, CDPD)

Uniform Agent Communication
Layer

Dynamic Service
Discovery Layer

Figure 1. Layered Architecture

Network Layer: The Network Layer is the lower most
layer in our architecture. This layer represents the under-
lying communication infrastructure being used to commu-
nicate between different Ronin Agents in our system. The
Network Layer encapsulates the whole underlying trans-
port module needed to transfer data from one system to
another. The Ronin Agent development framework allows
the use of different protocols for transferring its messages.
The Network Layer provides the upper layer with the re-
quired abstraction to switch between different networks as
and when required.

Uniform Agent Communication Layer: This layer man-
ages the delivery of information between agents. The Ronin
Agent Framework [6] provides a network-layer indepen-
dent uniform mechanism of communication between dif-
ferent agent-services. Each agent consists of two parts:
Ronin Master Agent and Ronin Agent Deputy. Unlike a
traditional Jini service that only provides services through
the predefined service methods, a Ronin Master Agent pro-
vides services through agent communication as well. The
Agent Deputy mediates agent communication with its mas-
ter agent and acts as the local lightweight representative for
its owner master agent in the network. The communication
is carried out in a language and network independent man-
ner. An Agent Deputy communicates with master agents
using “Envelope” objects that contain the recipient, sender,
agent language being followed and deputy locator that pro-
vides an object to locate the agent deputy of the sender
agent. This makes the communication independent of any
agent language. The framework is open and hence imple-
mentation independent.

The Agent Deputy part of the Ronin Agent Framework
is responsible for handling messages in this layer in our
middleware. When a mobile host represents a Ronin Agent,
its Agent Deputy sits on the wired network. Similarly, the
Agent Deputy of a Ronin Agent sitting on the wired net-
work could reside in the mobile host. The design of the
Agent Deputy enables us to change the network transport
mechanism dynamically when a mobile host moves across
networks and hence achieves network independence.

Broker Layer: The Broker Agent is the core engine, which
finds the individual services required in computing required
information and manages the execution of services. This
layer has the knowledge base of what services should in-
teract to produce the required information to the end-user.
Broker Agents are domain-specific and capable of execut-
ing complex queries for a particular domain. In a nutshell,
each Broker performs the following tasks:

� Task Decomposition: Once a Broker receives a par-
ticular task to be executed, first it tries to figure out
whether the task can be broken down into multiple
subcomponents. The problem of splitting a task into
sub-tasks is complex and goes into the domain of
planning [8] in AI, which is outside the scope of our
present work. Current implementation of our archi-
tecture assumes the Broker has the adequate static
knowledge to decompose a query into its subcom-
ponents. It is a straightforward exercise to plug in
an external planning system into the design that will
provide the system with a process model of execu-
tion for a composite service.



� Service Discovery and Hierarchical Service Screen-
ing: The Broker Agent uses the DReggie [5] system
to discover Ronin Agents capable of providing the
individual services. Using the DReggie system the
Broker also obtains a description of the current re-
sources available on particular agent platforms. Mul-
tiple instances of same agent-services are screened
in a hierarchical manner based on certain parameters
such as estimated execution time, estimated wait-
time, etc. The best available agent-service is chosen
amongst the ones discovered.

� Execution of the components and run-time optimiza-
tions: Once the various services have been discov-
ered, the Broker tries to determine an optimal way
of executing the query. Optimization criteria used
may be, amount of data transfer over the network,
amount of bandwidth utilized, amount of CPU re-
sources used or average response time. Information
about the service platforms is obtained while discov-
ering the services using the DReggie system. The
Broker Agent gathers this information and determines
an execution path to be followed to execute the query.
The Broker then manages the invocation of the dif-
ferent agent-services and manages the execution fol-
lowing the path it has determined. Based on the re-
source capability of the mobile device (e.g. high-end
laptops), the Broker Agents might decide to execute
some component at the client also.

Fixed networked hosts (that are resource-rich) are capable
of providing general-purpose execution platforms to exe-
cute components/services remotely. The Broker utilizes
these execution platforms when some computation cannot
be done at the mobile client. These platforms are also uti-
lized when due to system overloading or some other rea-
sons, a service platform (hosting a particular agent-service)
might be unwilling to serve a certain request locally. Rather
it might be willing to give a serialized code out that could
be executed in the execution platform.

Dynamic Service Discovery Layer: This layer represents
the mechanisms through which agent-services are discov-
ered and the mechanisms through which agent-services ex-
press them. Traditional approach to service discovery uses
either interface-based or attribute-based [1, 11] or unique-
id based service matching [2] to discover matching ser-
vices. However, such forms of service discovery are un-
able to discover services based on their functionality de-
scriptions or by reasoning about the capabilities of services
in a semantically meaningful way.

We developed the DReggie system: a Jini-based service
discovery framework where service discovery is done us-
ing semantic descriptions of services using DAML+OIL.

Service requests are also encoded in DAML+OIL and those
requests are matched with service descriptions. We use
the class-subclass hierarchy of DAML+OIL and the rules
provided within it to reason with service descriptions and
discover “nearly” matching services (e.g. discover a color
printer when the request was to discover a black-and-white
printer). This increases the flexibility in discovering a broad
range of heterogeneous services.

In this middleware, Ronin Agent-services can be dis-
covered using agent attributes (Ronin Common Agent at-
tributes and Domain Agent attributes) [7]. However, in ad-
dition to that, we have also provided a DAML+OIL de-
scription of the agent and the service it encapsulates. We
have represented an agent-service in terms of service name,
service capabilities, service requirements (platform type,
memory needed), service inputs, service outputs and ser-
vice platform characteristics (resource details of the plat-
form on which the agent-service is residing now). The on-
tology we developed for this purpose can be obtained from
http://daml.umbc.edu/ontologies/dreggie- ont.daml. Thus
Broker Agents can specify different features that it wants
an agent-service to satisfy to discover services. This adds
great flexibility to the process of discovering agent-services.

3. Implementation

As an example implementation of the above middleware
architecture, we implemented a set of agents and services
to handle complex stock related queries from resource poor
mobile clients. These queries need the cooperation of mul-
tiple information providers and computation platforms to
provide an answer back to the client. We implemented a
broker that can handle complex stock-related queries. The
essential entities in our system are listed below:

3.1. End User

The End User (client) of our system is essentially a per-
son with a mobile device (Laptop or iPaq). An End User
discovers broker agents capable of performing complex tasks
that require coordination amongst multiple agent-services.
The client obtains a list of the functions that a Broker Agent
can perform. It invokes the required task accordingly.

3.2. Broker Agent

We have implemented vertical brokers capable of han-
dling requests from mobile clients. As an example, one
broker handles complex stock related requests. All brokers
are Ronin Agents. When a Broker receives a request, it de-
termines the different subcomponents required to execute
that request. We have implemented this section by keeping



a plan of the different agent-services required to execute a
certain job and the partial order in which they should be
executed.

The Broker uses the DReggie system to discover and
screen appropriate services. It also obtains a description of
the resource availability on the service platforms and the
mobile device. It discovers computation platforms that can
execute serialized code of services. It then performs the
process of execution of the individual components. The
Broker tries to optimize some essential parameters like band-
width, or execution time while performing the component
executions. Components/services could be executed either
at the mobile device (based on requirement), or at the ser-
vice platform or at another execution platform (provided
the component is serializable) . The Broker schedules com-
putations that cannot be done at the mobile client to the dif-
ferent execution platforms. It also handles transferring the
execution of agent-services to execution platforms if the
local platform is heavily loaded with requests.

Some executable service components are sent to the mo-
bile client if it is capable of performing certain computa-
tions.

3.3. Agent Services

We have implemented various types of agent-services to
handle various stock-related queries. All the agent-services
are resident on the wired infrastructure and the end client is
mobile. These agent-services are essentially wrappers over
the actual web services that provide the information. All
agents in the system use Ronin’s uniform communication
infrastructure to communicate with each other. Some of
the agent-services are enlisted below:

� Single Stock Quote Provider Agent: This Agent is
capable of providing stock quotes of a company on
that day. It connects to a stock provider agency (ya-
hoo.com in our implementation) and retrieves real-
time stock information from it.

� Execution Platform Agent: This agent provides an
execution platform for computations that cannot be
performed on the mobile client or computations that
current service platforms are unwilling to perform
(due to load on the local system). The main con-
cept behind creating the service is that due to system
overloading or some other reasons, a wired service
might be unwilling to serve a certain request locally.
Rather it might be willing to give a serialized code
out to the client to be executed locally. However, a
mobile client might not have resources to execute the
code locally. These types of agent-services provide
an execution platform for execution of those types of
components.

� Average-Stock-Calculator Agent This Agent accepts
a range of stock values and computes the average of
those stock values. This is a simple service. We im-
plemented this service to show the dynamic interac-
tion of different such services in our system. In the
future, there could and will be complex services do-
ing specific tasks like computing the standard devi-
ation of some values. The main aim is to show that
such services can easily be injected into our system.

3.4. Communication Deputies

We have implemented two different types of concrete
agent deputies in order to facilitate efficient agent com-
munication in different environments. An Agent Deputy
may be implemented to offer various different proxy type
services to the owner agent. Each implementation of an
Agent Deputy holds a transport object that actually per-
forms the task of transmitting the data over a particular
network. Whenever a deputy is asked to deliver a mes-
sage to the corresponding owner agent, it delegates this re-
sponsibility to the “Transport” object it holds. Thus the
transport object can be dynamically changed as the net-
work of a mobile device changes. We have implemented
two different implementations of Agent Deputies; a Sim-
ple Reliable Agent Deputy and Store-and-Forward Agent
Deputy. The A Simple Reliable Agent Deputy encapsu-
lates TCP sockets in its transport object and provides a
reliable connection-oriented service while the Store-and-
Forward Agent Deputy handles disconnections with the help
of store and forward control messages with the master agent.

We used the DReggie system to do agent discovery in
this environment. Agents can be discovered using agent
attributes as well as by reasoning over the DAML+OIL de-
scription of its capabilities, platform dependencies etc. We
have explained the discovery process in section 2.

3.5. Summary of Experiments

We performed several experiments to test our system
and checked the adaptive ness of our broker with respect
to different constraints of the agent-services and different
constraints on the resource availability of the platforms hav-
ing those services. We have several agent-services run-
ning on multiple platforms (Solaris with SunOS 5.7, In-
tel with Linux 2.2.16), interconnected through a 100MBPS
LAN. We used several laptops having 802.11b Wireless
LAN connectivity as mobile devices.

In our implementation of the Broker, its main objective
is to find an optimal solution path of executing multiple
service-agents by trying to optimize the amount of data
transfer over the network by taking into consideration the
available bandwidth. It also tries to optimize the average



response time required to serve a query. We have intro-
duced a notion of “monetary cost” associated with execut-
ing each service. In the future, it is quite likely for web
services to charge certain amount of money for providing
information [9]. The broker, while doing hierarchical ser-
vice screening takes into consideration the cost of execut-
ing a service. It considers the mobility of the components
at a later stage of service screening. The Broker calculates
an optimal path by balancing several factors like cost, mo-
bility, amount of data transfer required over the network,
bandwidth available etc. In our implementation, the Broker
gives highest priority towards optimizing bandwidth usage
over the network.

In our experiments, we have observed that the overall
nature of the system is flexible and adaptive to the resource
changes in the environment. For a weak mobile client (a
client having low processing power and memory), all the
computations are performed at the agent-service platform
or the execution platforms. If the service-agent platform
is heavily loaded, then the execution is moved to an exe-
cution platform that can execute the serialized code of the
service-agent (provided the agent-service is serializable).
For moderately capable clients, some of the components
are sent to the mobile host again depending on the amount
of data transfer required. The Agent Deputies handle cer-
tain other limitations like disconnection. Due to space lim-
itations, we are unable to provide a detailed description of
the experiments.

4. Conclusions

To realize the vision of ubiquitous information access
from mobile devices, we need to consider instances where
the information is not readily available from information
sources but needs to be generated by combining multiple
such heterogeneous service providers. In this paper, we
have presented an agent-based middleware architecture to
address this problem. We have used the Ronin Agent Frame-
work and the DReggie semantic service discovery system
to address the problem of heterogeneity of information sources,
network resources and facilitate flexible service-agent dis-
covery. The middleware broker architecture computes a
cost-effective way of executing multiple services by taking
into consideration resource limitations of the various plat-
forms and bandwidth for information transfer.

References

[1] K. Arnold, A. Wollrath, B. O’Sullivan, R. Scheifler, and
J. Waldo. The Jini specification. Addison-Wesley, Reading,
MA, USA, 1999.

[2] S. Avancha, A. Joshi, and T. Finin. Enhancing the Bluetooth
Service Discovery Protocol. Technical report, University of
Maryland Baltimore County, August 2001. TR-CS-01-08.

[3] H. Bharadvaj, A. Joshi, and S. Auephanwiriyakyl. An ac-
tive transcoding proxy to support mobile web access. In
Proc. IEEE Symposium on Reliable Distributed Systems,
October 1998.

[4] C. Brooks, M. S. Mazer, S. Meeks, and J. Miller.
Application-specific proxy servers as http stream transduc-
ers. In Proc. WWW-4, Boston, May 1996.

[5] D. Chakraborty, F. Perich, S. Avancha, and A. Joshi. Dreg-
gie: A smart service discovery technique for e-commerce
applications. In 20th Symposium on Reliable Distributed
Systems, october 2001.

[6] H. Chen. Developing a Dynamic Distributed Intelligent
Agent Framework Based on the Jini Architecture. Master’s
thesis, University of Maryland Baltimore County, January
2000.

[7] H. Chen, A. Joshi, and T. Finin. Dynamic service discov-
ery for mobile computing: Intelligent agents meet jini in the
aether. Baltzer Science Journal on Cluster Computing, Spe-
cial Issue on Advances in Distributed and Mobile Systems
and Communications, 2001.

[8] K. Erol, J. Hendler, and D. Nau. HTN planning: Complex-
ity and expressivity. In Proc. AAAI., 1994.

[9] P. Fishburn, A. Odlyzko, and R. Siders. Fishburn, p.c., a.m.
odlyzko and r.c. siders. In Hurley, D., Kahin, B., Varian, H.
(eds.) Internet publishing and beyond: The economics of
digital information and intellectual property. Cambridge,
MA: MIT Press, 1997.

[10] A. Fox, I. Goldberg, S. Gribble, D. Lee, A. Polito, and
E. Brewer. Experience with top gun wingman: A proxy-
based graphical web browser for the USR palmpilot. In
Proc. IFIP International Conference on Distributed Sys-
tems Platforms and Open Distributed Processing (Middle-
ware ’98), 1998.

[11] E. Guttman, C. Perkins, and J. Veizades. RFC 2165: Ser-
vice location protocol, 1997.

[12] R. Katz, E. A. Brewer, and Z. Mao. Fault-tolerant, scalable,
wide-area internet service composition. Technical Report.
UCB/CSD-1-1129. CS Division. EECS Department. UC.
Berkeley, January 2001.

[13] D. A. M. Language and O. I. Layer. http://www.
daml.org/2001/03/daml+oil.daml.

[14] D. Mennie and B. Pagurek. An architecture to support dy-
namic composition of service components. Systems and
Computer Engineering. Carleton University, Canada.

[15] B. Zenel. A Proxy Based Filtering Mechanism for The Mo-
bile Environment. PhD thesis, Department of Computer
Science, Columbia University, N/A.


