
An Agent System for Application Initialization in an
Integrated Manufacturing Environment

Yun Peng, Tim Finin, Harry Chen, Ling Wang, Yannis Labrou, R. Scott Cost
Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County, Baltimore, MD 21250, USA

Bill Chu, Valerie Cross, Mike Russell, Bill Tolone
Department of Computer Science

University of North Carolina, Charlotte, NC 28223, USA

Akram Boughannam, Jerry McCobb
IBM Corporation, Boca Baton, FL 33431, USA

ABSTRACT

A great deal of research and development effort has been
undertaken in recent years to integrate otherwise disconnected
manufacturing production and planning (P/E) application
software systems so that the enterprises can react quickly and
accurately to the ever changing market dynamics. In such an
integrated P/E environment it is, at times, necessary to bring in
a new application in order to replace an outmoded one or to
provide functionality that is not available in the existing
environment. The process of introducing a new application,
Application Initialization, is very complicated and can be
extremely costly in terms of time and resources.

In this paper we propose a multi-agent system (MAS) to assist
with the application initialization process. A collection of eight
agents with specialized expertise is assembled to carry out the
operational steps of the initialization process. These agents
interact with each other, with other applications in the
environment, and with the human specialist in the process. All
agents speak KQML language, supported by Jackal, a JAVA
based, light-weighted and flexible agent communication
infrastructure we have developed.

The MAS is tested with an integrated environment involving
real P/E applications. The success of the experiment
demonstrates that MAS is a technically viable approach for
providing flexible and inexpensive solutions to difficult tasks
(application initialization and others) in the integration of
manufacturing planning and execution.

Keywords: Multi-agent Systems, Agent Communication,
Manufacturing integration, Application Initialization.

1. INTRODUCTION

The production management system used by most of today’s
manufacturers consists of a set of separate planing and
execution (P/E) application software [15, 17] such as Capacity
Analyzer (CA), Enterprise Resource Planner (ERP), Finite
Scheduler (FS), and Manufacturing Execution System (MES).
Most of these P/E applications are legacy systems developed
over years. Although performing well for their respective
designated tasks, they are not equipped to automatically handle
complex business scenarios in which several P/E applications
are involved [10, 13]. A great deal of research and
development effort has been undertaken in recent years in
order to develop technologies for integrating otherwise

disconnected (P/E) applications so that an enterprise can react
quickly and accurately to the ever changing market dynamics.

We at the Consortium for Intelligent Integrated Manufacturing
Planning-Execution (CIIMPLEX) have take the manufacturing
integration our primary research goal, and have adopted as one
of its key technologies the approach of intelligent software
agents [3, 11]. In sharp contrast to traditional software
programs, software agents are programs that help people to
solve problems by collaborating with other software agents and
other resources in the network [2, 7, 11]. A multi-agent system
(MAS), as a society of autonomous agents, is inherently open
and distributed, and the system’s inter-agent communication
capability provides the essential means for agent collaboration
that aids interoperability of the system. [13]. A number of
MAS prototypes have been constructed recently for enterprise
integration. Examples of such systems include ADEPT [10] for
business management, COOL for supply chain management
[1], AMBEI for manufacturing integration [14], to mention just
a few. In the past, we have also developed MAS for monitoring
and management of exceptions in shop-floor [11] and in
exchanges of transactional data [16].

Recently we have focused on another type of problem, namely,
the problem of Application Initialization. The integrated P/E
environment can be viewed as dynamically evolving, and it is,
at times, necessary to introduce into the integrated environment
a new application in order to replace an outmoded application
or to provide function that is not available in the existing
environment. Among other things, to ensure that the new
application works properly with the environment, its state must
be brought in sync with other, existing applications in the
environment (the process is thus also called Initial Sync). This
is a complex process involving dynamic interactions among the
integration specialist, the new application, the existing
applications, and the integration services provided by the
integrated environment. It can be extremely costly in terms of
time and resources. In some cases, it takes an experienced
specialist weeks or even months to complete the initial sync of
a particular application before it can be put into operation.

In this paper we report our research efforts and experiences in
developing a MAS that assists human integration specialists for
application initialization. The rest of the paper is organized as
follows. To help motivate the work, we describe in Section 2 in
detail what is involved in application initialization through an
example scenario. Section 3 presents the design of the MAS,
including the functionality of individual agents in the system.

Section 4 describes the communication aspects of the system
and the supporting infrastructures. Section 5 briefly describes
the operation of the system and experiments with a real-world
integration environment. Finally, we discuss issues and
directions for future research in Section 6.

2. AN INITIAL SYNC SCENARIO

In this section we describe an example scenario of application
initialization and the key steps of operations involved. As
depicted in Figure 1, a new application, a finite scheduler
(BOOM, a Berclain product) is to be added into an existing
integrated environment, which includes a number of P/E
applications, such as one or more enterprise resource planners
(ERP), manufacturing execution systems (MES), etc. These
applications exchange transactional data by sending messages
to each other via CIIMPLEX Infrastructure [13]. To ease the
problem caused by heterogeneity of native data representations
in these applications, a neutral, common format, the Business
Object Document (BOD) sponsored by Open Application
Group (OAG), was adopted for the message contents when
applications communicate with each other through the
infrastructure. A BOD consists of a verb, a noun, and one or
more data area that is a formatted encoding of a business
transactional data record. For example, a SyncItem requests the
recipient application to insert the item record into its database.

One property that distinguishes application initialization from
the more familiar process of auto installation of software is that
the database of the new application needs to be initialized with
transactional data from the existing applications. For example,
before BOOM can make a proper production schedule, it needs
to know the current state of the production (what are the
quantity and delivery date of each outstanding order, what
items are in what operation stages with what machines,
available machines and their capabilities, available human
operators, etc.) Extracting this data from existing applications
is very time consuming. It requires identifying the owner
application(s) of each type of the data needed, interacting with
the CIIMPLEX Infrastructure to obtain the actual data,
mapping the imported BOD into BOOM's native representation
etc. Moreover, the data import is often an iterative process
involving tentative decisions of data mapping and mediation on
a trial-and-error basis. This process thus needs to be closely
monitored by a human operator or a monitoring program. In
case an error occurs, the process should effectively restore the
database to the latest error-free state (or the initial state) before
another set of mappings is tried.

After the consulting with the BOOM specialists and the
integration experts, it becomes clear that the application
initialization process would include at least the following steps.

1) Notifying and registering the new application with the
environment,

2) Obtaining relevant information of the existing applications
in the environment,

3) Obtaining the data requirement (types of BODs) for
BOOM database initialization,

4) Obtaining the ownership of each required type of data,
5) Contacting the CIIMPLEX Infrastructure to request a

specific number of BOD instances of specific BOD types,
6) Importing the required BOD instances to BOOM,
7) Converting BOD into BOOM's native representation

based on a tentative mapping table,

8) Checking BOOM's database for any inconsistency or
other types of error,

9) Notifying the system the completion of the initialization
process, and registering with the system the types of BOD
BOOM can provide (to others).

Figure 1 at the end of the paper depicts the functional
components and the sequence of actions involved in
application initialization. The System Management Service
mainly provides registration service of applications, including
registering their functionality and status. The Data Retrieval
Service handles all actions related to transferring data from the
environment to BOOM. It obtains the BOD ownership from
the System Data Registry, interacts with CIIMPLEX
Infrastructure, and imports BOD instances from the
Infrastructure to BOOM. The Coordination Service coordinates
all these components, and interacts with BOOM's human
operator. Step 0 indicates the human operator can start the
entire initialization process. Steps 7 and 8, not shown on the
figure, will not be handled by the agent system in the current
prototype but by the operator using other software tools. As
mentioned earlier, the BOD importing is an iterative process,
the steps involving actual BOD importing (5 and 6) thus may
be aborted, stopped and resumed later.

3. MAS DESIGN

In this section we present our design of the MAS for
application initialization, including the individual agents and
their functionality. All agents in the MAS use KQML as the
communication language and protocol, and use a subset of KIF
that supports Horn clause deductive inference as the content
language [5, 6, 12].

3.1. The agents

The following eight agents are employed to carry out the initial
sync scenario described in Section 2.

1) Agent Name Server (ANS). This agent provides “white
page” service for agent name registration and name-
address mapping.

2) Broker Agent (BA). This agent provides “yellow page”
service to help the agents in the system to find the service
provider.

3) Application Initialization Assistant (AIA). This agent
plays a dual role. It acts as a proxy for the new application
and interacts with the rest of the MAS. It also serves as
the interface, via its GUI, for the human operator to
communicate with the agent world. AIA roughly
corresponds to the Coordination Service component in
Figure 1, and all initialization operations are initiated from
AIA.

4) Initialization Monitoring and Management Agent
(IMMA). This agent manages BOD transfers during
initialization. IMMA roughly corresponds to the Data
Retrieval Service component in Figure 1.

5) BOD Service Agent (BSA). This agent can build BOD’s
when asked by others. During application initialization, it
will build special BODs that IMMA uses to access the
CIIMPLEX Infrastructure.

6) Process Monitoring and Management Agent (PRMMA).
This agent monitors the BOD transactions to the new
application during the initialization process. In the case of
an error or an exception, detail information is logged and
reported to human operator via AIA's GUI.

7) System Management Service Agent (SMA). This agent
imitates a small subset of the functions of the System
Management Service component in Figure 1. In particular,
SMA provides registration service to applications in the
integrated environment, and handles inquiries about the
status of the existing applications in the environment.

8) BOD Registry Agent (BODRA). This agent maintains the
BOD registration, including ownership and other relevant
information of different types of BODs. It also handles
inquiries for information regarding the BOD ownership
and other properties. BODRA corresponds to the System
Data Registry component in Figure 1.

3.2. Functionality and design of individual agents

ANS provides agent name and address mapping service. With
the help of ANS, two agents can communicate with each other
without knowing the other party’s physical network address.
ANS maintains an address table of all registered agents,
accessible through the agents’ symbolic names. Newly created
agents must register with the ANS their symbolic names,
physical address and possibly other information by sending to
the ANS a message with KQML performative register. (As a
presumption, every agent in the system must know how to
contact the ANS. This is achieved in the current
implementation by including the physical address of ANS in
the resource files of all other agents.) The ANS maps the
symbolic name of a registered agent to its contact address when
requested by other agents.

BA provides a “yellow page” type service. Agents register their
available services by sending BA messages with the
performative advertise. When received an advertise message,
BA analyzes the content of the message, and stores the
analyzed result in its database. An agent that is looking for a
service provider can send BA a message with the performative
recommend-one or recommend-all, with the message content
describing the specific service that it is looking for. BA tries to
find a match between a service request and advertised services
and replies the match result to the requester. For example,
SMA sends the following message advertising it can insert the
registration record of any application into its database
 (advertise

sender: SMA
receiver: BA
language: KQML
content:
 (insert
 language: KIF
 content: (Application ?name ?id ?description ?status)

))

And AIA sends the following message to BA asking who can
register a new application before it proceeds to the actual
registration:
 (recommend-one

sender: AIA
receiver: BA
language: KQML
content:
 (ask-all
 language: KIF
 content: (Application ?name ?id ?description ?status))

))
(In the current implementation of BA, the matching process is
solely based on the syntactic match and variable unification, no
inference mechanism is employed.) After a match is found, BA

will send back a reply message. The content of the message is
the content of the matched advertise message sent by the
service provider. If there were more than one matches, BA will
reply with the first service provider it finds. In a reply to a
recommend-all, BA will send a reply message similar to the
reply message for recommend-one, except that the content of
the message is a conjunction of the contents of all of the
matched advertise messages. If there is no match, BA will send
back a sorry message with null message content.

AIA. The primary task for AIA is to assist the operator during
the application initialization by reducing the human
involvement to the minimum. AIA can be viewed as a mediator
between the agent world and the human operator. It is
composed of two components, a GUI interface component that
interacts with the human operator and an agent communication
component that interacts with other agents. The GUI interface
is design to have “installation wizard” like look and feel that
will guide the initialization process through a pre-determined
(default) sequence or branches of sequences of operation steps,
similar to that described in Section 2. The order of the steps is
embedded in this “wizard” like GUI interface. With such
design the operator is not obligated to remember all possible
steps, or the order of these steps, that are involved in the
initialization process. He is required only to provide operation
specific parameters when a step is prompted, or occasionally
make a selection from a list of alternatives. In addition, the
operator is allowed, via GUI, to stop or abort, at any time, an
ongoing initialization process, and to resume a stopped process.
This provision is crucial since, as mentioned earlier,
application initialization is often an iterative process involving
tentative mapping/mediation decisions that may have to be
changed.

The operation steps initiated from GUI will be converted to
instructions to other agents, in the form of KQML messages,
and transmitted to other agents. The communication
component is responsible for taking communication requests
from the GUI, and delivering these requests to the appropriate
receivers. It is also responsible for receiving incoming
messages from other agents, delivering the message to the GUI
component for display if it deems that the content is of interest
to the operator. For example, when registering the new
application, AIA will send SMA the message with the content

(Application BOOM FS-1 some-description InitialSync)

meaning a new application named BOOM, with id FS-1 and
the described functions and features is to be registered with
status “InitialSync”. Other outgoing messages from AIA
include those that request IMMA to start (stop, abort, and
resume) importing particular types of BODs, e.g.,
 (achieve
 sender: AIA
 receiver: IMMA
 content: (StartImportBOD Synch Item FS-1 API

 the-parameter-list start-point 10 InitialSync-001)
)

The content of the message specifies the type of operation
(StartImport), the verb and noun of the BOD to be imported
(Sync and Item), the destination to send the imported BOD, the
API to be called at the destination (FA-1 and API), and the
number of BOD instances to import for the time being (10).
Besides replies to its outgoing messages, AIA also receives
incoming messages that include error messages from PRMMA
when the new application fails to receive BODs sent from

CIIMPLEX. The error message (including BOD type and the
error code) will be displayed and evaluated by the operator.

SMA is responsible for accepting registration requests from
new applications as well as answering queries regarding the
status of the existing applications in the system. SMA has a
database component, which, implemented by MSQL, stores the
statuses of all applications in the systems. In the current
implementation, an application can register to SMA (when it is
brought into the system or it wishes to change its status), or
withdraw its registration (when it is removed from the system).
These requests are sent to SMA as KQML messages (using
performative insert for registration or changing registration,
and delete-one for removal of registration). The message
content contains the name, the identification number, and the
status of the application described. All incoming KQML
messages are parsed, evaluated, and converted to appropriated
database operations. If the operation is successful, SMA sends
back an acknowledgement with performative reply to the
requestor. To query the status about an application, an ask-one
message is send to SMA. The content of the message can be
either a partial or a full description of the application. In
generating an answer to the inquiry, the variable unification
process is employed to fill any unspecified field in the original
query. If the unification fails, then SMA will send back a
message with performative sorry. If an error occurs at any time
during any conversation described above, SMA will send back
a message with performative error.

BODRA has a structure similar to SMA. The difference is that
BODRA handles registration for BOD’s, not applications. It
stores registration information, especially the ownership, of all
types of BOD that existing applications can produce. BODRA
will be queried by IMMA when the latter is asked by AIA to
import a particular type of BOD but does not know which
application(s) owns (and thus can provide instances of) this
BOD. At the end of initialization, the new application needs to
register to BODRA all types of BODs it can produce for others
to consume. The conversation protocols between BODRA and
other agents are the same as that for SMA.

IMMA plays a central role in importing the actual existing
transaction data (in BOD format) to the new application.
During the process of data importing, IMMA follows the
following steps.
1) Processing the message from AIA that requires importing

a list of BODs required for new application to initialize its
database.

2) Querying BODRA for the owners of these required
BODs.

3) Asking BSA to build special, inquisitory BOD
4) Using these inquisitory BOD’s to request the CIIMPLEX

infrastructure to send BOD instances of interest.
5) Forwarding received BOD to the new application.
In addition, when requested by AIA, IMMA can stop or abort
the ongoing BOD importing, and resume a stopped importing
process.

PRMMA. While IMMA focuses on moving individual BOD
instances from existing applications to the new application,
PRMMA helps to manage BOD transfers by handling errors
and anomalies during the process. For example, for each BOD
instance IMMA obtains and sends to the new application, it
receives a confirmation message back from the new

application. If the message is ConfirmFail (with a specific error
code indicating the reason of the failure), IMMA will notify
PRMMA, which will then either process and correct the error
or notify the operator via a message to AIA. Another type of
possible error that PRMMA can monitor and report is called
unit of work violation, which occurs when the number of BOD
instances the new application receives is different from what is
originally required or these BODs arrive in an incorrect order.
In addition, PRMMA is also responsible to notify AIA when
the transfer of a group of BOD instances (a unit of work) is
correctly completed.

4. COMMUNICATION

In this section, we briefly discuss the infrastructures that
support the two types of communication involved in our MAS.
They are Jackal for communication between agents, and CABS
for communication between components within an agent.

4.1. Inter-agent communication.

Jackal is a Java-based, multi-threaded infrastructure for
communication and interaction between KQML speaking
agents [4, 13]. It is also well in sync with the recent
international standards effort of ACL carried by the Foundation
for Intelligent Physical Agents [8]. Jackal supports all of the
important functionality for agent communication and
interaction. In particular
• It supports ANS transparently through an automatic

registration to ANS of each newly created agent and
intelligent address caches at individual agents.

• It facilitates processing incoming and outgoing messages
(e.g., message composition and parsing). Moreover, it
automatically assigns and matches communication related
message parameters (such as reply-to, in-reply-with
fields).

• Its Conversation Interpreter enforces conversation
policies which, based on the semantics of performatives,
specify the sequence of message exchanges for a
meaningful agent-agent conversation.

• Its Distributor guarantees correct message delivery within
an agent (between separate threads for individual
conversations).

Jackal is very easy to use when developing and implementing
software agents. Although it consists of roughly seventy
distinct classes, all user interactions are channeled through one
class, the Intercom, hiding most details of the implementation.
In addition, Jackal is flexible to support multiple, different
transport mechanisms or protocols. Additional protocols can be
easily added into Jackal. Similarly, specifications of additional
conversation policies can be added easily.

4.2. Intra-agent communication.

A complex agent is often composed of multiple functional
components, which are relatively independent of, and loosely
connected to each other. This is the case for some agents in our
MAS. For example, AIA has two major components, the GUI
and the KQML Communication module. These two
components interact with each other only when an initialization
step initiated from GUI needs to be transmitted to a destination
agent or an incoming message to AIA is of interest to the
operator and needs to be displayed on GUI’s screen. This is
similarly the case for IMMA, which has, among other things, a

KQML communication module, a CIIMPLEX Infrastructure
Adapter, and a component that can directly communicate with
BSA via remote method call rather than KQML messages.
Instead of hard coding the inter-component interaction within
an agent, we have developed a blackboard-based framework
for intra-agent communication. This framework, called
CIIMPLEX Agent Builder Shell (CABS) was used to develop
AIA and IMMA. The benefits of using a blackboard system
like CABS to support the interactions between loosely coupled
components within an agent include flexibility, extensibility,
and reusability.

CABS is composed of a blackboard that is used to store publish
and subscribes events, as well as a Java-based rules engine that
interprets CABS rules, JESS [9]. A component can publish an
event on the board by simply calling a CABS method
(“AddCBASItem”). Other components can subscribe to the
blackboard a set of events that it would like to be notified when
any of these events is posted onto the blackboard. When a
given rule is triggered by a newly published event, CABS will
notify the subscriber by calling a callback method. In the
following is a partial String representation of a CABS rule:

 Trigger condition: (AddedAIA.events.RegAppEvent ?itemId)"
 Pre-condition: (RegAppEvent (itemId ?itemId)
 (attention \"AIACommunicator\"))
 Action: subscribe

This rule is added to CABS by AIA’s communication
component to subscribe RegAppEvent, which is to be posted
by AIA’s GUI component to request registering a new
application. When an application registration request is
generated by the GUI component, the registration information
is wrapped within the event object and posted onto the
blackboard. When this rule is triggered, that is, when the newly
published event object contains the attribute values matched
the pre-condition of a subscribe event, the callback method of
the subscriber is called. In our example, the communication
component is notified after a RegAppEvent is posted. Within
the communication component, a sequence of KQML
messages is exchanged with other agents in the system(with
BA to obtain SMA, and then with SMA for the actual
registration) until the registration is done. In the reverse
direction, the final result of the registration will be posted onto
the blackboard by the communication component and passed to
the GUI component (for display) with the similar publish and
subscribe mechanism.

5. MAS OPERATION AND EXPERIMENT

In this section, we describe how these agents work together to
achieve the application initialization scenario through an
experiment in which a new application (BOOM, a finite
scheduler) is added into an existing integrated environment. In
the environment some real P/E applications have already been
up and ruing. In particular, we demonstrate how our MAS
helps BOOM to obtain BODs from an existing application
(MfgPro, an ERP product of IBM) to populate its database. In
the experiment, instances of only one type of BOD, namely
SyncItem, were imported from MfgPro to BOOM.

In a normal operation mode, the MAS undergoes the following
major steps in the process.

1) All agents advertising their services to BA by sending BA
advertise messages

2) Registering BOOM to SMA. This is the first step
encoded in the initialization wizard. When prompted by
AIA’s GUI, the operator types in the registration
information (see the screen dump in Figure 2 (a) at the
end of the paper). Also included in this step is the inquiry
by AIA about the status of existing applications in the
environment.

3) Issuing commands for importing BODs. When prompted
by GUI, the operator types in the types of BODs
(SyncItem) and the number of BOD instances he wishes
to import (see Figure 2 (b)). This command is then sent to
IMMA as a KQML message.

4) Preparing BOD import. When received from AIA the
message for importing BOD, IMMA takes several steps to
prepare the actual BOD transfer. First, IMMA queries
BODRA to obtain the ownership of SyncItem BOD.
Second, it asks BSA to build “GetlistItem” BOD. This
inquisitory BOD is then sent to the source application
(MfgPro) via CIIMPLEX Infrastructure, and a list of ids
of all instances of SyncItem is returned to IMMA.

5) Importing BOD instances. IMMA asks BSA to build “Get
Item” BOD for each instance on the returned list, and then
uses it to request the CIIMPLEX Infrastructure to send the
instances of SyncItem one at the time. Each received BOD
instance is then forwarded to BOOM. PRMMA notifies
AIA when all instances required are correctly imported
into BOOM,

6) Final registration. When the operator determines the
initialization of BOOM’s database is completed, he will
first register to BOBRA all types of BOD it can produce
for the consumption of other applications (see Figure 2
(c)). Later the operator will change the status of its
registration in SMA from “InitialSync” to “Ready”,
indicating BOOM is ready to start working in the
integrated environment.

All the above steps were successfully carried out by the agent
system, and the required SyncItem instances were correctly
imported from MfgPro to BOOM. The system worked properly
when the operator, via AIA, issued commands to stop or to
abort the ongoing BOD importing process, and it was able to
restart the process at an earlier point of time (specified by the
operator) after the process was stopped.

Finally, we tested the system's error handling capability. A
ConfirmFail message was generated at BOOM in the middle of
BOD importing and sent to PRMMA. This triggers PRMMA to
send an error message (in KQML) to AIA, whose content was
then displayed on latter's GUI window.

6. CONCLUSION

In this paper we presented our design of a multi-agent system
of eight agents that can be used to assist the application
initialization process in an integrated manufacturing P/E
environment. The agents in this system interact with each
other, with other applications in the environment, and with the
human specialist to carry out the operations needed for the
process. The MAS is tested with an integrated environment
involving real P/E applications. The success of the experiment
demonstrates that MAS is a technically viable approach to
provide flexible and inexpensive solutions to difficult tasks
(application initialization and others) in the integration of
manufacturing planning and execution.

This work represents our first attempt of applying agent
technology for application initialization. The MAS we
developed can be extended easily to provide more advanced
features. First of all, the system can be extended to cover more
initialization tasks. One example of major tasks not covered by
the current system is mapping and mediation between the
representation of the imported data (in BOD format) and the
native representation in the new application's database. This
task can be helped by additional agents that understand not
only the syntax but also the semantics of these representations
and be able to directly interact with the new application, i.e., to
serve as their true proxies. Another direction of future work is
to provide more powerful automatic error handling capability.
This may be achieved by incorporating into the initial sync the
agent system for managing BOD transfer exceptions we
developed earlier [16]. Finally, the way the human operators
interacting with the agent system can be expanded. For
example, besides accepting the operator's commands via GUI,
AIA can be extended to take operation requirement from a
script written, and notify the operator when errors occur. This
feature is especially important in situations where the data
importing takes a long time (a few days) to complete and the
operator cannot (and need not to) monitor the process
constantly.

7. ACKNOWLEDGEMENT

This work is supported in part by the Advanced Technology
Program administered by the National Institute of Standards
and Technology under the agreement number
70NANB6H2000.

8. REFERENCES

1. M. Barbuceanu and M.S. Fox, The Architecture of an
Agent Building Shell. In Intelligent Agents II, 1037,
Berling: Springer Verlag, 1996, 235-250.

2. J. Bradshaw, S. Dutfield, P. Benoit, and J. Woolley,
KAoS: Toward An Industrial-Strength Open Agent
Architecture. Software Agents J.M. Bradshaw (Ed),
Boston: MIT Press, 1998, pp. 375-418.

3. B. Chu, W.J. Tolone, R. Wilhelm, M. Hegedus, J. Fesko,
T. Finin, Y. Peng, C. Jones, J. Long, M. Matthews, J.
Mayfield, J. Shimp, and S. Su, Integrating Manufacturing
Software for Intelligent Planning-Execution: A
CIIMPLEX Perspective. In Plug and Play Software for
Agile Manufacturing, Proceedings of SPIE , Vol. 2913.
Boston, MA, 1996, pp. 96-108.

4. R.S. Cost, T. Finin, Y. Labrou, X Luan, Y. Peng, I.
Soboroff, J. Mayfield, and A. Boughannam, Jackal: A
JAVA-based tool for agent development, in Working
Notes of the Workshop on Tools for Developing Agents
(AAAI Technical Report), AAAI 1998.
http://jackal.cs.umbc.edu/cost/cv/pub/aaai98.pdf.

5. T. Finin, Y. Labrou, and J. Mayfield, KQML as an agent
communication language. in Software Agents. Bradshaw,
J.M. (Ed.). Boston: MIT Press, 1998, pp. 291-316.

6. M. Genesereth, et al. 1992. Knowledge Interchange
Format, Version 3.0 Reference Manual. Technical Report,
Computer Science Department, Stanford University.

7. M. Genesereth and S. Katchpel, Software Agents.
Communication of the ACM. 37(7), 1994, pp. 48-53.

8. http://fipa.comtec.com.jp/fipa/index.htm.

9. http://www-cia.mty.itesm.mx/~escamila/software/Jess.
10. N.R. Jennings, et al, ADEPT: Managing Business

Processes Using Intelligent Agents. In Proceedings of
BCS Expert Systems Conference (ISIP Track). Cambridge,
UK. 1996.

11. H.S. Nwana, Software Agents: An Overview. The
Knowledge Engineering Review, Vol 11 (3), 1996.

12. R. Patil, et al, The DAPA Knowledge Sharing Effort:
Progress Report. In Principles of Knowledge
Representation and Reasoning: Proc. Of the Third
International Conference on Knowledge Representation
(KR’92), Dan Mateo, CA: Morgan Kaufmann, 1992.

13. Y. Peng, T. Finin, Y. Labrou, B. Chu, J. Long, W.J.
Tolone, A. Boughannam, Agetn-Based Approach for
Manufacturing Integration: the Ciimplex Experience.
Applied Artificial Intelligence, 13(1-2), 1998. pp. 39-64.

14. W. Shen, D. Xue, and D.H. Norrie, Agent-Based
Manufacturing Enterprise Infrastructure for Distributed
Integrated Intelligent Manufacturing Systems. In
Proceedings of the Practical Application of Intelligent
Agents and Multi-Agent Systems. London, UK. 1998, pp.
533-550.

15. M. Tennenbaum, J. Weber, and T. Gruber, Enterprise
Integration: Lessons from Shade and Pact. In Enterprise
Integration Modeling, C. Peter (ed.). Boston: MIT Press,
1993.

16. W.J. Tolone, B. Chu, J. Long, T. Finin, T., and Y. Peng,
Supporting Human Interactions within Integrated
Manufacturing Systems. International Journal of Agile
Manufacturing, 1(2), 1998, pp. 221-234.

17. T. Vollmann, W. Berry, and D. Whybark, Manufacturing
Planning and Control Systems. Irwin: New York, 1992.

FIGURES

CIIMPLEX Infrastructure

BOOM

Coordination
Service

System Data
Registry

Data Retrieving
Service

Human
Operator

Figure 1 Application Initialization Scenario

ER CA ME

System
Management

Service

3

1,2

0 3

9

5 6

4 9

6

(a) Registering new application

(b) Importing BODs

(c) Registering new BOD's

(d) Final registration of new application

Figure 2. AIA's GUI screen dumps

