
The Interoperability Problem: Bringing together
Mobile Agents and Agent Communication Languages

Yannis Labrou, Tim Finin and Yun Peng
Computer Science and Electrical Engineering

University of Maryland Baltimore County
Baltimore MD 21250 USA

fjklabrou , finin , ypengg@csee.umbc.edu

Abstract

Interoperability is a central issue for both the mobile
agents community and the wider agents community. Unfor-
tunately, the interoperability concerns are different between
the two communities. As a result, inter-agent communica-
tion is an issue that has been addressed in a limited man-
ner by the mobile agents community. Agent communication
languages (ACLs) have been developed as tools with the
capacity to integrate disparate sources of information and
support interoperability but have achieved limited use by
mobile agents. We investigate the origins of the differences
of perspective on agent-to-agent communication, examine
the reasons for the relative lack of interest in ACLs by mo-
bile agents researchers and explore the integration of ACLs
into mobile agents frameworks.

Copyright 1999 IEEE. Published in the Proceedings of
the Hawaii International Conference On System Sciences,
January 5-8, 1999, Maui, Hawaii.

1. Introduction

There are two kinds of discussions that have plagued
agent-related mailing lists and similar forums, over the past
few years: (a) what is an agent, and (b) why do we need mo-
bile agents. Enormous time and bandwidth have been spent
only to leave the impartial observer with the conclusion that
the answers to both questions mostly come down to mat-
ters of taste. The lurking provocateurs might suggest that
it is the lack of convincing agent applications that makes
these questions irrelevant to the practice of software devel-
opment and prone to subjective philosophical musings. We
will forego giving our perspective on these questions and
will instead focus on another question, which much to our
surprise, has not attracted much attention in such forums.
Even though agent to agent communication is a central is-

sue in the pursuit of interoperability in the agent commu-
nity, why is it rarely the case that agent communication
languages (ACLs) and mobile agents are mentioned in the
same context?

We support the view of software agents [28] as an emerg-
ing software-building paradigm. Leaving the hype aside,
the paradigm introduces a powerful and ubiquitous abstrac-
tion that exhibits the following key concepts: (a) a software
agent is an autonomous goal-directed process capable of
performing actions, (b) is situated in, is aware of and re-
acts to its environment, and (c) cooperates with other agents
(software or human) to accomplish its tasks. In the context
of the question we are asking, we adopt the viewpoint that
suggest that mobile agents may be thought as programmed
entities that can freely roam the network and act on behalf
of their users [25]. A slightly more technical definition sug-
gests that mobile agents are programs, typically written in
a script language, which may be dispatched from a client
computer and transported to a remote server computer for
execution [19]. From a historical perspective, the work
on distributed computing led to mobile agents following a
route through the problem of process migration and the con-
cept of mobile objects [25]. A large part of the work on
agents, on the other hand, has its roots in various branches
of Artificial Intelligence. We intend to further explore the
different lineage between mobile agents and (just) agents.

If mobile agents are first and foremost agents and sec-
ondarily “mobile” artifacts, why have they remained un-
touched by the discourse on ACLs? We will start by ex-
amining, in Section 2, what interoperability has come to
mean for the mobile agent community and the (largely non-
mobile) agent community, respectively. We will then argue
our case for ACL support for mobile agents in Sections 3
and 4; our argument is based on the power of an ACL as an
interoperability mechanism and tool, and the observation
that such interoperability is at least as important for mobile
agents as it is for any other kind of agents. After a brief



coverage of today's ACLs and their status in Section 5, we
discuss reasons why the mobile agent community might be
reluctant to fully engage ACLs and explore their integration
in mobile agent frameworks and systems.

2. Agents and interoperability

Agents are meant to work with other agents. A central
point of the agent paradigm of software development is that
communities of agents are much more powerful than any in-
dividual agent, which immediately raises the necessity for
interoperable agent systems. But the mobile agent commu-
nity and the agent community at-large do not necessarily re-
fer to the same things or are concerned about the same prob-
lems when talking about interoperability amongst agents.
Before exploring the historical roots of these conceptual dif-
ferences, we will try to identify the issues that each com-
munity associates with interoperability. Briefly, for the mo-
bile agents community interoperability work focuses on the
execution environment and the standardization of some of
its aspects and features; in the case of (non-mobile) agents,
there is no notion of an execution environment and the focus
is on communication as the means for achieving interoper-
ability. In the latter case, interoperability is akin to effec-
tively exchanging the information and knowledge content
of the agents.

2.1. Mobile agents and interoperability

Mobile agents reside in a highly heterogeneous environ-
ment; this heterogeneity presents itself in many dimensions.
Mobile agents migrate to a host where an execution envi-
ronment is set up for them; upon arriving there, they might
execute code, make remote procedure calls (RPCs) in order
to access the resources of the host, collect data and eventu-
ally might initiate another process of migration to another
host. While residing on a particular host, mobile agents
might have limited interaction (communication) with other
agents on the host through an RPC-type mechanism. A po-
tential problem arises from the fact that not all platforms for
mobile agents are the same.

The Mobile Agent Facility (MAF) proposal [16], which
was subsequently replaced by MASIF [23, 24], is an attempt
to standardize some aspects of this execution environment.
The proposal was still under investigation by the Object
Management Group (OMG), as of the mid-1998. MASIF
is a collection of definitions and interfaces that provides an
interoperable interface for mobile agent systems.

MASIF's interoperability is not about language inter-
operability but instead it aims at interoperability between
agent systems written in the same language although possi-
bly by different vendors. MASIF focuses on standardizing

three things: (1) agent management,i.e., standard opera-
tions such as creating an agent, suspending it, resuming,
and terminate it; (2) agent transfer,i.e., a common infras-
tructure for agent applications to freely move among agent
systems of different types; and finally (3) names for agents
and agent systems. It is expected that the use of a standard-
ized syntax and semantics of agent and agent system names
will allow agent systems and agents to identify each other,
as well as clients to identify agents and agent systems.

There are issues that are not addressed by MASIF, either
because they are outside the scope or because the field is not
mature enough for standardization over some issues. One of
them is agent communication as it is extensively addressed
by CORBA. As such a viewpoint suggests, agent commu-
nication for the mobile agents community means, at least
most of the time, the exchange of objects or object refer-
ences.

2.2. Agents and interoperability

The broader agent community is often plagued by a less
focused view of agents. As a result its perspective on agent
communication is marked by a desire for inclusiveness.
Agent research ought to take intoaccount the following re-
alities: (a) various languages, representing different pro-
gramming paradigms (procedural, object-oriented, logic,
functional, etc.) will be used for implementing agents, (b)
hardware platforms and operating systems are expected to
be equally varied, and (c) agents are going to be written as
autonomous applications and thus few assumptions might
be made about their internal structure. The methodology
used to address these problems emphasizes the identifica-
tion of distinct layers that lead to an intuitive break-up of
the larger problem:

One layer is that of translation between languages in the
same family (or between families) of languages. This is
a very formidable task. The Object Management Group
(OMG) standardization effort is an example of work in this
direction, within the family of object-oriented languages.

Another layer is concerned with guaranteeing that the se-
mantic content of tokens is preserved among applications;
in other words, the same concept, object, or entity has a uni-
form meaning across applications even if different names
are used to refer to it. Every application incorporates some
view of the domain (and the domain knowledge) it applies
to. The technical term for this body of background knowl-
edge isontology[18].

More formally, an ontology is a particular conceptual-
ization of a set of objects, concepts and other entities about
which knowledge is expressed and of the relationships that
hold among them. An ontology consists of terms, their def-
initions, and axioms relating them [17]; terms are normally
organized in a taxonomy. For example, the fact that a book

2



can be described with attributes such as its title, its ISBN
and its authors names is a particular conceptualization of
the concept book. This conceptualization exists and makes
sense regardless of the presence of an application which
employs it or of the particular strings one uses to encode
thetitle , ISBN# andauthor attributes. A slightly dif-
ferent conceptualization that adds a selling price foreach
book might extend the previous conceptualization but this
extended version should still make sense to an application
that is not concerned with price.

A third layer relates to the communication between
agents. This is not about transporting bits and bytes be-
tween agents; agents should be able to communicate com-
plex attitudes about their information and knowledge con-
tent. Agents need to ask other agents, to inform them, to
request their services for a task, to find other agents who
can assist them, to monitor values and objects, and so on.
Such functionality, in an open environment, can not be pro-
vided by a simple remote procedure call mechanism.

3. A wider interoperability perspective

So, the first question to ask is what happens when a mo-
bile agent needs to interact with mobile agents that are cur-
rently hosted in a platform of a different design; in such
a case a mobile agent can not even visit such a platform.
Hopefully, a wide acceptance of the MAF/MASIF proposal
will help with this problem. But, let us consider the case
of a mobile agent that needs to interact with some agent
that is not endowed with mobility. In this case, there is no
agent platform to visit. Should the mobile agent be pre-
vented from interacting with the static agent? Yet another
awkward case might arise when a mobile agent needs to in-
teract with an information source that is not a full fledged
agent but might offer some way of interacting with its infor-
mation content. Nevertheless, regardless of these discrep-
ancies, it will be necessary for all these disparate sources
of information content to seamlessly interact with one an-
other. Interaction means more than simply exchanging mes-
sages; it also involves facilities for finding these information
sources. Finding, means not only physically locating them
on the network, but also been able to identify them or judge
them relevant based on their apparent content or capabili-
ties. And even in a world where everything is anobject,
finding an object does not tell you what the object is about.

A whole different (qualitatively) range of problems ap-
pears at a different level. These potential conversants for
the mobile agents,i.e., mobile agents implemented for dif-
ferent platforms, static agents and non-agent information
sources, may be implemented or make use of languages dif-
ferent from the mobile agent's one. Furthermore, the tokens
they use to refer to the same concepts, entities and objects
might differ; one agent might refer to the title of a book

asbook title and another might use the tokentitle ,
but we would like to think of both as referring to the same
concept.

There is, finally, another issue of a different nature,
which is particular to mobile agents. Mobile agents carry
their own code that prescribes the“how to” of the tasks
they can tackle. This procedural approach towards problem-
solving can be very limiting. In the current mobile agents
paradigm there is not much room for a declarative approach,
i.e., one in which agents simply specify the task they want
performed, leaving the details of carrying out the task to the
recipient of the request. The procedural vs. declarative de-
bate can be a particularly lengthy one; regardless of where
one stands on this issue, it is certain that the declarative ap-
proach requires an amendment in the current conceptual-
ization of mobile agents. In this revised framework, mobile
agents ought to be able to communicate tasks in a common
language. The mobile agent paradigm hints to an expecta-
tion of all information sources been accessible through pro-
cedural means, which we find unrealistic. To address all
of these issues the community has suggested a layered ab-
straction that treats agents at a higher level than the details
of their internal structure.

4. ACLs as an interoperability mechanism

One common abstraction of an agent is as aVirtual
Knowledge Base[13, 15] – a collection of (mostly) declar-
ative information and knowledge and an associated infer-
ence mechanism that allows it to proactively make infer-
ences, answer queries, and (perhaps) take action. In this
context interoperability is often interpreted as a problem of
enabling agents with sharing their information and knowl-
edge content.

Three basic problems need to be addressed for agents to
effectively share knowledge. First, how we can translate
from one knowledge representation language to another;
second, how we can guarantee that the meaning of concepts,
objects, relationships is the same across different agents;
and third, how this potentially sharable knowledge is going
to actually be shared, communicated between agents.

An Agent Communication Language (ACL) is a tool that
follows the path of this layered abstraction of the interoper-
ability question. An ACL can be thought of as a collection
of message types each with a reserved meaning. A com-
munication language is not concerned with the physical ex-
change, over the network, of an expression in some lan-
guage, but rather with stating an attitude about the content
of this exchange.

Therefore, for example, a communication language can
distinguishbetween a particular message exchange that sug-
gests a query, an interest for a particular content, a promise
or commitment to perform a future action, or an assertion.

3



From a software engineering point of view, an agent com-
munication language can be viewed as another messaging
protocol, but with two major differences: (a) it describes the
application and the actions it can perform, or it can be re-
quested to perform, at a higher level of abstraction, and (b)
offers a larger variety of message types. An ACL thus in-
troduces a powerful abstraction because it separates (1) the
expressions that are the content of the exchange and (2) their
meaning, from the attitude that is expressed about them.

ACLs offer a conceptual framework that can assist us in
addressing the difficult problem of achieving interoperabil-
ity between applications. Although interoperability is not a
problem unique to agents, the very fact that software agents
are meant to be, almost by definition, autonomous appli-
cations designed with minimal a priori expectations for the
state of the rest of the universe brings interoperability to the
forefront. Mobile agents are even more susceptible to the
perils of heterogeneity.

An agent communication language offers three kinds of
advantages.

First, an ACL supports interoperatiblity between static
and mobile agents, between mobile agents designed for dif-
ferent agents platforms, and also between mobile agents and
static agentified information sources. Second, the declara-
tive nature of most ACLs provides many features that make
interoperability easier, such as abstracting away some of
the lower-level, more procedural aspects of the systems in-
volved. Finally, the higher level of abstraction at which
ACLs operate can accommodate multiple paradigms.

Thus far, most of the work on mobile agents has fo-
cused on the problem of designing the agent platform and
addressing major issues surrounding its design, such as se-
curity and authentication. Agent communication has been
put in the back-burner, partly because of the concentration
on fundamental issues and partly because the ACL alludes
to a declarative approach that contradicts the procedural ap-
proach implicit in the mobile agent paradigm. There are
some exceptions to this situation, of course, such as some
experimental work in integrating Agent Tcl and KQML
[32].

5. Current ACLs

The Knowledge Sharing Effort [26, 29] (KSE) was ini-
tiated circa 1990 by DARPA and it enjoyed the participa-
tion of dozens of researchers from both academia and in-
dustry. Its goal was to develop techniques, methodologies
and software tools forknowledge sharing and knowledge
reuse, at design, implementation, or executiontime. The
central concept of the KSE was that knowledge sharing re-
quires communication, which in turn, requires a common
language; the KSE focused on defining that common lan-
guage. In the KSE model, software systems are viewed as

(virtual) knowledge bases that exchange propositions using
a language that expresses various complex attitudes1 about
these propositions.

Although originally agents were not part of the KSE vo-
cabulary the conceptual break-down of the “common lan-
guage problem” is applicable to what we currently refer to
as agents. Expressions in a given agent's native language
should be understood by some other agent that uses a dif-
ferent implementation language and domain assumptions.
So, the first layer is that of (syntactic) translation between
languages in the same family (or between families) of lan-
guages2. An other layer is concerned with guaranteeing
that the semantic content of tokens is preserved among ap-
plications; in other words, the same concept, object, or en-
tity has a uniform meaning across applications even if dif-
ferent “names” are used to refer to it. Every agent incorpo-
rates some view of the domain (and the domain knowledge)
it applies to. The technical term for this body of “back-
ground” knowledge isontology. More formally, an ontol-
ogy is a particular conceptualization of a set of objects, con-
cepts and other entities about which knowledge is expressed
and of the relationships that hold among them. An ontology
consists of terms, their definitions, and axioms relating them
[17]; terms are normally organized in a taxonomy.

A final layer addresses the communication between
agents. This is not about transporting bits and bytes be-
tween agents; agents should be able to communicate com-
plex “attitudes” about their information and knowledge con-
tent. Agents need to ask other agents, to inform them, to
request their services for a task, to find other agents who
can assist them, to monitor values and objects, and so on.
Such functionality, in an open environment, can not be pro-
vided by a simple RPC mechanism. Agents issue requests
by specifying not a procedure but a desired state in a declar-
ative language,i.e., in some appropriate agent communica-
tion language.

Within the KSE, these layers were viewed as indepen-
dent of another. The ACL is only concerned with captur-
ing propositional attitudes, regardless of how propositions
are expressed. But still, propositions are what agents will
be “talking” about. KIF [14], a particular logic language,
was proposed within the KSE as a standard to use to de-
scribe things within computer systems,e.g., expert systems,
databases, intelligent agents, etc. Moreover, it was specif-
ically designed, within the context of the KSE, to make it

1The proper term ispropositional attitudes. Propositional attitudes are
three-part relationships between: (1) an agent, (2) a content-bearing propo-
sition (e.g., “it is raining”), and (3) a finite set of propositional attitudes an
agent might have with respect to the proposition (e.g., believing, assert-
ing, fearing, wondering, hoping, being interested in,etc.). For example,
< a; fear; raining(tnow) >.

2The Object Management Group (OMG) standardization effort is an
example of work in this direction, within the family of object-oriented
languages.

4



useful as an “interlingua”. By this we mean a language
which is useful as a mediator in the translation of other lan-
guages. KIF is a prefix version of first order predicate calcu-
lus with extensions to support non-monotonic reasoning and
definitions. The language description includes both a speci-
fication for its syntax and one for its semantics. Ontolingua
[11] and a variety of supporting tools, was the KSE “solu-
tion” to the problem of developing and maintaining ontolo-
gies. Researchers at Stanford's Knowledge Systems Labo-
ratory have developed a set of tools and services to support
the process of achieving consensus on common shared on-
tologies by geographically distributed groups. These tools
are built around Ontolingua, a language designed for de-
scribing ontologies with it, and make use of the world-wide
web to enable wide access and provide users with the abil-
ity to publish, browse, create, and edit ontologies stored on
an ontology server. Users can quickly assemble a new on-
tology from a library of existing modules, extend the result
with new definitions and constraints, check for logical con-
sistency, and publish the result back to the library.

KQML [1, 20] illustrates the basic concepts of existing
ACLs. All KQML dialects and FIPA ACL follow the same
basic concepts of KQML that we discuss here. KQML is a
high-level, message-oriented communication language and
protocol for information exchange independent of content
syntax and applicable ontology. So, KQML is independent
of the transport mechanism (TCP/IP, SMTP, IIOP,etc.), in-
dependent of the content language (KIF, SQL, STEP, Pro-
log, etc.) and independent of the ontology assumed by the
content.

5.1. KQML and ACL concepts

The KQML language is divided into three layers: the
content layer, the message layer, and the communication
layer. The content layer bears the actual content of the mes-
sage, in the programs own representation language. KQML
can carry any representation language, including languages
expressed as ASCII strings and those expressed using a bi-
nary notation. Every KQML implementation ignores the
content portion of the message, except to determine where it
ends. The communication level encodes a set of features to
the message which describe the lower level communication
parameters, such as the identity of the sender and recipient,
and a unique identifier associated with the communication.
It is the message layer that is used to encode a message
that one application would like to transmit to another. The
message layer forms the core of the KQML language, and
determines the kinds of interactions one can have with a
KQML-speaking agent. The primary function of the mes-
sage layer is to identify the network protocol to be used to
deliver the message and to supply a speech act or performa-
tive which the sender attaches to the content (such as that it

is an assertion, a query, a command, or any of a set of known
performatives). In addition, since the content is opaque to
KQML, this layer also includes optional features which de-
scribe the content language, the ontology it assumes, and
some type of description of the content, such as a descriptor
naming a topic within the ontology. These features make it
possible for KQML implementations to analyze, route and
properly deliver messages even though their content is in-
accessible.

The syntax of KQML is based on the familiars-
expressionused in Lisp,i.e., a balanced parenthesis list.
The initial element of the list is the performative; the re-
maining elements are the performative's arguments as key-
word/value pairs. Because the language is relatively sim-
ple, the actual syntax is not significant and can be changed
if necessary in the future. The syntax reveals the roots of
the initial implementations, which were done in Common
Lisp; it has turned out to be quite flexible. A KQML mes-
sage from agentjoe representing a query about the price of
a share of IBM stock might be encoded as:

(ask-one
:sender joe
:content (PRICE IBM ?price)
:receiver stock-server
:reply-with ibm-stock
:language LPROLOG
:ontology NYSE-TICKS)

In this message, the KQML performative isask-one, the
content is(price ibm ?price), the ontology assumed by the
query is identified by the tokennyse-ticks, the receiver of the
message is to be a server identified asstock-serverand the
query is written in a language calledLPROLOG. The value
of the :content keyword is the content level, the values
of the:reply-with , :sender , :receiver keywords
form the communication layer and the performative name,
with the:language and:ontology form the message
layer. In due time,stock-servermight send tojoe the fol-
lowing KQML message:

(tell
:sender stock-server
:content (PRICE IBM 14)
:receiver joe
:in-reply-to ibm-stock
:language LPROLOG
:ontology NYSE-TICKS)

Though there is a predefined set of reserved performa-
tives, it is neither a minimal required set nor a closed one.
A KQML agent may choose to handle only a few (perhaps
one or two) performatives. The set is extensible; a commu-
nity of agents may choose to use additional performatives

5



if they agree on their interpretation and the protocol associ-
ated with each. However, an implementation that chooses
to implement one of the reserved performatives must imple-
ment it in the standard way.

One of the design criteria for KQML was to produce a
language that could support a wide variety of interesting
agent architectures. Thus, KQML introduces a small num-
ber of KQML performatives which are used by agents to
describe the meta-data specifying the information require-
ments and capabilities; KQML also introduces a special
class of agents calledcommunication facilitators[15, 10,
22]. A facilitator is an agent that performs various useful
communication services,e.g. maintaining a registry of ser-
vice names, forwarding messages to named services, rout-
ing messages based on content, providing “matchmaking”
between information providers and clients, and providing
mediation and translation services.

5.2. FIPA and its ACL

Although the Knowledge Sharing Effort (KSE) intro-
duced the major research issues and approaches to the in-
teroperability problems of the agents community it did not
offer a disciplined way for developing standards. This void
was filled in 1996 by the Foundation for Intelligent Physical
Agents (FIPA). FIPA is a non-profit association whose pur-
pose is to “promote the success of emerging agent-based
applications, services and equipment.” FIPA's goal is to
make available specifications that maximize interoperabil-
ity across agent-based systems. FIPA operates through the
open international collaboration of member organizations,
which are companies and universities that are active in the
field. The participating companies cover an impressive
range of telco's and telecommunications equipment com-
panies from Europe, the Far East, and to a lesser degree,
from North America.

FIPA's operations are built around annual rounds of spec-
ification deliverables. Current specification is FIPA97 and
can be found at the FIPA home-page3 Themodus operandi
of FIPA is to assign tasks to Technical Committees (TCs)
that have the primary responsibility for producing, main-
taining and updating the specification(s) that are applicable
to their task(s). A TC was assigned with the task of pro-
ducing a specification for an Agent Communication Lan-
guage. Along with the TC in charge of Agent Manage-
ment (agent services, such as facilitation, registration and
agent platforms) and Agent/Software Interaction (integra-
tion of agents with legacy software applications) they form
the backbone of the FIPA specifications.

The FIPA Agent Communication Language (FIPA

3which washttp://drogo.cselt.stet.it/fipa at the
writing of this paper; a new official FIPA page isunder construction, at
http://www.fipa.org

ACL), like KQML, is based on speech act theory: messages
are actions, or communicative acts, as they are intended to
perform some action by virtue of being sent. The specifi-
cation consists of a set of message types and the descrip-
tion of their pragmatics, that is the effects on the mental
attitudes of the sender and receiver agents. Every commu-
nicative act is described with both a narrative form and a
formal semantics based on modal logic. The specification
also provides the normative description of a set of high-
level interaction protocols, including requesting an action,
contract net and several kinds of auctions. The FIPA ACL
is superficially similar to KQML. Its syntax is identical to
that of KQML's except for the different names for some re-
served primitives. Thus, it maintains the KQML approach
of separating the outer “language” that defines the intended
meaning of the message and the inner language, or “con-
tent language” that denotes the expression towards which
the beliefs, desires and intentions of the interlocutors, as
described by the meaning of the communication primitive,
apply. The FIPA ACL specification document claims that
FIPA ACL (like KQML) does not make any commitment to
a particular content language. Although such a claim holds
true for most primitives, there are FIPA ACL primitives for
which some understanding of the language SL (Semantic
Language) is necessary for the receiving agent tounder-
stand and process the primitive.

6. Bringing the two worlds together

We want to investigate the possibilities of supplement-
ing mobile agents with the ability to handle an ACL. As we
previously argued, doing so will make a new range of inter-
operability options available to mobile agents. The deep di-
vision between stationary and mobile agents is unnecessary
and integrating ACLs into mobile agents frameworks might
not be as hard of a problem as it often seems. Moreover, the
MASIF proposal and the enduring presence of FIPA, along
with the continuous interaction between the communities
involved in these two endeavors, make the time right for the
relatively minor adjustments needed to bring the two worlds
together.

We would like to first trace the origins of the different
perspectives between the agents and the mobile agents com-
munities; we suggest that a convergence might be subtly
taking place, at least at the conceptual level (Section 6.1).
We then explore the particular technical areas that need to
be addressed in order to achieve the integration of the two
universes (Section 6.2.)

6.1. Origins of the di�erent perspectives

The semantic approaches of current ACLs [21, 33, 7, 34]
suggest the origins of much of the past and ongoing re-

6



search on ACLs. Rooted in various branches of Artifi-
cial Intelligence, these semantic approaches rely on multi-
modal logics that are often non-computable and/or have
no efficient implementation. Despite these problems, BDI
agents4 [31, 12, 30] can be implemented with traditional
AI languages, but we have relatively little experience in do-
ing so with object-oriented languages like Java5. Mobile
agents, however, are usually programmed in object-oriented
or scripting languages. Traditionally, this is not the domain
of AI programming languages and techniques nor do such
languages usually contain libraries that offer the compo-
nents typical of BDI agents, such as inference engines and
knowledge representation libraries.

But things seem to be changing. An informal survey of
the various multi-agent systems that use an ACL for intera-
gent communication would reveal two interesting trends.

� Java is rapidly becoming the language of choice for
building agents and knowledge based systems in gen-
eral [6].

� Many of the new APIs for agent communication lan-
guages [3, 27, 9, 8] offer support for modeling, ma-
nipulating and reasoning about conversations among
agents

Conversations offer an intuitive way to structure an
agent's activities. Also, given the problematic nature of
compliance with the ACL's semantic account, conversations
shift the focus from the internals of the agent to its observ-
able behavior expressed as sequences of messages sent to
other agents. Agents can agree on a conversation protocol
for a particular task (e.g., negotiation or auction) and then
engage in a scripted interaction. We do not suggest that this
is a conformance test, but it might be useful for an agent
designer to know that its interlocutors engage in a scripted,
pre-specified communicative

The reluctance of the mobile agents community to en-
gage into the world of ACLs has to do, in some degree,
with the programming languages that dominateeach branch
of the agents paradigm. The fact that Java is becoming the
favorite language for programming agents of all types, how-
ever, might be changing that. The reality of a language like
Java can be seen at the realm of the semantic definition of
ACLs.

This last problem though, applies to any agent mobile or
not. The realization of the limits of these semantic accounts
in terms of software development can explain, at least in
part, the interest in conversations.

4The aforementioned semantic approaches rely heavily on modalities
such belief, desire and intention. BDI agents,i.e., Belief, Desire, Intention
Agents have concrete, computational implementations of these modalities.

5For some very current work along these lines, see [4, 5] for a descrip-
tion a Java-based framework for BDI agents.

6.2. Integrating ACL's and mobile agents

From a software design point of view, for an agent sys-
tem to “speak” KQML (or FIPA ACL for that matter) the
following things have to be provided:

1. a suite of APIs that facilitate the composition, send-
ing and receiving of ACL messages,

2. an infrastructure of services that assist agents with
naming, registration and basic facilitation services
(finding other agents that can do things for your
agent), and

3. the code that for every reserved message type (perfor-
mative or communicative act) takes the actions pre-
scribed by the semantics, for the particular applica-
tion; this code depends on the application language,
the domain and the details of the agent system that
uses the ACL.

Normally as a programmer you would only have to pro-
vide item (3). Items (1) and (2) should be re-usable compo-
nents that one can just integrate into the application code;
actually item (2) does not even need to be integrated be-
cause it ought to be provided as continuous running services
that a new agent can just use. Unfortunately, such services
were not the focus of the standardization efforts until very
recently. There is no service where one can register an agent
by just sending a registration message. This problem, which
is being addressed by the agents community, has to do pri-
marily with the lack of agreement on the naming scheme
for agents. Providing the code (item (3)) that processes the
primitives is more of an art than a science.

Because mobile agents are typically programmed in
object-oriented or scripting language, it might seem that
the major obstacle for adopting ACLs in the mobile agents
community is the difficulty of translating the semantics ac-
count into code in such languages that complies with the
ACL's specification. As Java rapidly becomes the language
of choice in the agents world, we feel that this is not the
essential problem, or at least, it is not more of a problem
for mobile agents than it is for agents in general. This view
seems to be supported by the emphasis in conversations and
the specification of conversation protocols; this shift of fo-
cus suggests a programming-friendly way toaccount for an
agent's communicative behavior.

Instead, we identify two major technical obstacles that
ought to be addressed for the integration of mobile agents
and the ACL infrastructure.

Th first problem is that mobile agents ought to be able
to compose, send and receive ACL messages. At this point,
we are only concerned with the code necessary for these
tasks. Our answer to this issue is that mobile agents need

7



not actually have such code; theagent place6 can provide
this functionality. We do not suggest that this kind of in-
teraction has to be specified, in the MASIF proposal. Im-
plementation of places for agent systems can provide such
functionality. As we mentioned, there is a variety of Java
APIs that support that kind of functionality; the only issue
is integrating them with places' implementations. The mo-
bile agent will use its usual mechanisms of interacting with
the place in order to retrieve its messages or to submit mes-
sages for sending. It is likely that a mobile agent will only
retrieve or submit the content of the ACL message,i.e., the
value of the:content parameter, leaving the place's ser-
vices with the task of composing a complete ACL message
and parsing and extracting its:content .

A place can interact with other places, facilitators and
ontology services in order to manage delivery to the ap-
propriate recipient, or language and ontology translation is-
sues. But these aspects of interoperability and the necessary
infrastructure to achieve it, do not differ from the require-
ments for non-mobile agents. Of course mobile agents are
still left with the task of processing the content of an ACL
message, as they see fit. This task, as is the case for non-
mobile agents, will depend on the particulars of the agent
and its domain. The only real difference is that the compo-
sitions, sending and receiving of messages is delegated to
the agent place.

A second obstacle is that mobile agents do not have a
permanent location on the network. This has repercussions
for the naming scheme needed to identify and refer to them
in the network. Technically speaking, the naming scheme
and its implicit ontology is not part of an ACL specifica-
tion. Agent naming though is viewed as one of the most
essential agent management issues that the ACL commu-
nity is concerned with. Over time, a variety of suggestions
have been made, and FIPA is exploring it in the context of
its Agent ManagementTechnical Committee. The views of
the agents community have been gradually shifting from the
earlier viewpoint of a permanent fixed agent location and a
symbolic name associated with it, to a more flexible view,
where agents may or may not be connected to the network
all the time, or may suspend their operation and resume it in
some new location or even might have multiple names asso-
ciated with a unique identity (in such a case these name are
related to each other and to the common identity). Such a
view seems to include, at least conceptually, the concept of
a mobile agent that changes locations carrying (all or parts
of) state and data. To the extend that such concepts are re-
flected in current naming mechanisms and conventions its
should be possible to find a common ground between the
two communities. It would be fruitless to get into more de-

6A place is a context in which an agent executes. It is associated with
a location, which consists of the place name and the address of the agent
system where the place resides [35]

tail about naming matters since existing proposals are just
proposal and bound to change, but this is exactly the oppor-
tunity we ought to take advantage of.

If we were to assign priority to the technical issues men-
tioned here, the most important concern would be to en-
sure that naming conventions are consistent between the
MASIF proposal and whatever gets adopted in the wider
agents community (for example FIPA's choices).

7. Conclusions

Software agents offer a new paradigm for building very
large scale distributed heterogeneous applications that fo-
cus on the interactions of autonomous, cooperating pro-
cesses that can adapt to humans and other agents. As
such, communication is key to realizing the potential of this
new paradigm, just as the development of human language
was critical to the development human society and culture.
This holds for mobile agents as well as for stationary ones.
Agents use an Agent Communication Language to commu-
nicate information and knowledge. Some[15] even go so far
as to suggest that the use of a rich ACL is a defining char-
acteristic of a software agent,i.e., a software agent is any
process that makes appropriate use an ACL to exchange in-
formation. Although this sounds circular, it is not if we
stipulate that an ACL should be sufficiently rich to encode
a wide range of knowledge and a reasonable set of proposi-
tional attitudes toward sentences in the ACL.

The distinguishing characteristic of mobile agents, in
terms of being agents, should not be their ability to move
around the network but their ability to act (autonomously)
on behalf of their users and eventually perform tasks for
them. Mobility is orthogonal to communication; what is
important is that both functionalities might be ways to per-
form tasks and to interoperate and collaborate with other
agent systems. Agents can achieve high-level interoperabil-
ity by communication at a higher-level of abstraction in-
volving such concepts as beliefs, goals, expectations and
intentions. Currently, mobile agent present a very narrow
view of agent communication that does not take full advan-
tage of communication as an interoperability mechanism.
We argue that at this critical period of standardization ef-
forts in the broader area of agents, bringing mobile agents
and agent communication together is an opportunity not to
be missed. Doing so, entails relatively small adjustments
primarily in agent naming schemes. Having achieved that,
a mobile agent can “speak” an agent communication lan-
guage, having an agent platform manage the details of han-
dling ACL messages for it.

References

[1] ARPA Knowledge Sharing Initiative. Specification of the

8



KQML agent-communication language. ARPA Knowledge
Sharing Initiative, External Interfaces Working Group, July
1993.

[2] J. M. Bradshaw, editor.Software Agents. AAAI/MIT Press,
1995.

[3] J. M. Bradshaw, S. Dutfield, P. Benoit, and J. D. Woolley.
Kaos: Toward an industrial-strength open agent architec-
ture. In J. M. Bradshaw, editor,Software Agents. AAAI/MIT
Press, 1997.

[4] P. Busetta and R. Kotagiri. The bdim agent toolkit design.
Technical Report 97/15, Department of Computer Science,
The University of Melbourne, Australia, 1997.

[5] P. Busetta and R. Kotagiri. An architecture for mobile bdi
agents. In J. Carroll, G. B. Lamont, D. Oppenheim, K. M.
George, and B. Bryant, editors,Proceeding of the 1998 ACM
Symposium on Applied Computing (SAC'98), pages 445–
452, February 1998.

[6] V. K. Chaudhri, A. Farquhar, R. Fikes, P. D. Karp, and J. P.
Rice. Okbc: A programmatic foundation for knowledge
base interoperability. InProceedingsof the National Confer-
ence on Artificial Intelligence (AAAI98). AAAI Press, 1998.

[7] P. R. Cohen and H. Levesque. Communicative actions for ar-
tificial agents. InProceedings of the 1st International Con-
ference on Multi-Agent Systems (ICMAS'95). AAAI Press,
June 1995.

[8] R. S. Cost, T. Finin, Y. Labrou, X. Luan, Y. Peng, I. Sobo-
roff, J. Mayfield, and A. Boughannam. Jackal: a java-based
tool for agent development. InWorking Papers or the AAAI-
98 Workshop on Software Tools for Developing Agents, au-
gust 1998.

[9] R. S. Cost, I. Soboroff, J. Lakhani, T. Finin, and E. Miller.
TKQML: A scripting tool for building agents. In
M. Wooldridge, M. Singh, and A. Rao, editors,Intelligent
Agents Volume IV – Proceedings of the 1997 Workshop on
Agent Theories, Architectures and Languages, volume 1365
of lnai, pages 336–340. sv, Berlin, 1997.

[10] K. Decker, K. Sycara, and M. Williamson. Middle-agents
for the internet. InProceedings of the 15th International
Joint Conference on Artificial Intelligence, Nagoya, Japan,
August 1997.

[11] A. Farquhar, R. Fikes, and J. Rice. The ontolingua server:
A tool for collaborative ontology construction. InKAW96,
November 1996.

[12] K. Fischer, J. P. M¨uller, and M. Pischel. A pragmatic BDI
architecture. In M. Wooldridge, J. P. M¨uller, and M. Tambe,
editors, Intelligent Agents Volume II—Proceedings of the
1995 Workshop on Agent Theories, Architectures, and Lan-
guages (ATAL–95), Lecture Notes in Artificial Intelligence.
Springer–Verlag, 1996. (In this volume).

[13] M. Genesereth. Designworld. InProceedings of the IEEE
Conference on Robotics and Automation, pages 2,785–
2,788. IEEE CS Press.

[14] M. R. Genesereth. Knowledge interchange format version
3.0 reference manual. Technical Report Logic Group Report
Logic-92-1, Stanford University, June 1992.

[15] M. R. Genesereth and S. P. Katchpel. Software agents.
CACM, 37(7):48–53, 147, 1994.

[16] O. M. Group. Mobile agent facility (joint submission). Tech-
nical report, Object Management Group, 1997.

[17] T. R. Gruber. A translation approach to portable ontology
specifications.Knowledge Acquisition, 2:199–220, 1993.

[18] N. Guarino. The ontological level. In R. Casati, B. Smith,
and G. White, editors,Philosophy and the Cognitive Sci-
ences. Hölder-Pichler-Tempsky, Vienna, 1994.

[19] C. G. Harrison, D. Chess, and A. Kershenbaum. Mobile
agents: Are they a good idea? Research report, T.J. Watson
Research Center, 1994.

[20] Y. Labrou and T. Finin. A proposal for a new kqml speci-
fication. Technical Report Technical Report TR-CS-97-03,
University of Maryland Baltimore County, 1997.

[21] Y. Labrou and T. Finin. Semantics and conversations for
an agent communication language. InProceedings of the
Fifteenth International Joint Conference on Artificial Intel-
ligence (IJCAI-97), Nagoya, Japan, August 1997.

[22] D. L. Martin, H. Oohama, D. Moran, and A. Cheyer. In-
formation brokering in an agent architecture. InProceed-
ings of the Second International Conference on the Practi-
cal Application of Intelligent Agents and Multi-Agent Tech-
nology, London, Apr. 1997. The Practical Application Com-
pany Ltd.

[23] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci,
B. Friedman, K. Kosaka, D. Lange, K. Ono, M. Oshima,
C. Tham, S. Virdhagriswaran, and J. White. Masif: The
omg mobile agent system interoperability facility.Personal
Technologies, 2(3), December 1999.

[24] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci,
B. Friedman, K. Kosaka, D. Lange, K. Ono, M. Oshima,
C. Tham, S. Virdhagriswaran, and J. White. Masif: The omg
mobile agent system interoperability facility. In K. Rother-
mel and F. Hohl, editors,Mobile Agents, Proceedings of
the Second International Workshop, MA'98, LNCS 1477.
Springer-Verlag, 1998.

[25] D. S. Milojicic, M. Condict, F. Reynolds, D. Bolinger, and
P. Dale. Mobile objects and agents. In”Distributed Ob-
ject Computing on the Internet” AdvancedTopics Workshop,
Second USENIX Conference on Object Oriented Technolo-
gies and Systems (COOTS), Toronto, Canada, 1996.

[26] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Sena-
tor, and W. Swartout. Enabling technology for knowledge
sharing.AI Magazine, 12(3):36–56, Fall, 1991.

[27] M. H. Nodine and A. Unruh. Facilitating open communi-
cation in agent systems: the InfoSleuth infrastructure. In
M. Singh, A. Rao, and M. Woolridge, editors,Proceedings
of the 14th Annual Workshop on Agent Theories, Architec-
tures and Languages (ATAL '97), Providence, RI, 1997.

[28] H. S. Nwana. Software agents: an overview.Knowledge
Engineering Review, 11(3):1–40, September 1996.

[29] R. S. Patil, R. E. Fikes, P. F. Patel-Schneider, D. McKay,
T. Finin, T. Gruber, and R. Neches. The darpa knowledge
sharing effort: Progress report. In M. Huhns and M. Singh,
editors,Readings in Agents. Morgan Kaufmann Publishers,
1997. (reprint of KR-92 paper).

[30] A. S. Rao. Decision procedures for propositional linear–
time belief–desire–intention logics. In M. Wooldridge, J. P.
Müller, and M. Tambe, editors,Intelligent Agents Volume
II—Proceedings of the 1995 Workshop on Agent Theories,
Architectures, and Languages (ATAL–95), Lecture Notes in

9



Artificial Intelligence. Springer–Verlag,1996. (In this vol-
ume).

[31] A. S. Rao and M. P. Georgeff. Modeling rational agents
within a bdi-architecture. In J. Allen, R. Fikes, and E. Sande-
wall, editors,Principles of Knowledge Representation and
Reasoning: Proc. of the Second International Conference
(KR'91), pages 473–484. Kaufmann, San Mateo, CA, 1991.

[32] D. Rus, R. Gray, and D. Kotz. Transportable information
agents. In1997 International Conference on Autonomous
Agents, Marina del Ray, CA, 1997.

[33] M. Sadek. A study in the logic of intention. InProceedings
of the 3rd Conferenceon Principles of Knowledge Represen-
tation and Reasoning (KR'92), pages 462–473, Cambridge,
MA, 1992.

[34] I. A. Smith and P. R. Cohen. Toward a semantics for an
agent communications language based on speech-acts. In
Proceedings of the 13th National Conference on Artificial
Intelligence. AAAI/MIT Press, August, 1996.

[35] J. White. Mobile agents. In J. M. Bradshaw, editor,Software
Agents. MIT Press, 1995.

10


